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Heat pipe cooled reactor (HPR) has broad application prospects in deep space

exploration, deep-sea submarine exploration, and other scenarios due to the

small size, high inherent safety, and easy modularization and expansion.

However, the HPR conducts thermal energy through evaporation and

condensation of the working fluid inside the heat pipe. This feature makes

the HPR a large time-delay system. If the power control system adopts the

conventional PID algorithm, there will be a long settling time. Therefore, the

model predictive control algorithm is proposed for the power control system to

improve the control performance. The HPR linear model, which is developed by

linearization of its nonlinear model, is chosen as the predictive model. The

optimal control value is obtained by solving the optimization problem based on

the predictive model and the electric power feedback value. The discrepancy

between the predive model and the actual system response results in the

presence of steady-state error. To solve this problem, an integral controller is

added to eliminate the error. The appropriate control system parameters are

tuned by the trial and error method. The proposed control system has

satisfactory control performance, which can significantly shorten the settling

time. The model predictive control can effectively overcome the influence of

the large time-delay characteristic.
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1 Introduction

The design concept of heat pipe cooled reactor (HPR) was proposed in the 1960s. The

primary circuit system uses heat pipes to conduct the heat energy generated in the core to

the secondary circuit system or the thermoelectric converter instead of adopting coolant.

HPR has the characteristics of high inherent safety, simple structure, low operation

pressure and easy modularization, whichmake it have broad application prospects in deep

sea, space, star catalogues and other scenarios Yu etal., 2019. However, the transfer of heat

energy is realized through evaporation, condensation process and natural circulation flow

of the working fluid inside the heat pipe Zhang et al., 2021. This heat transfer process is

relatively slow, and it takes long time for the heat transfer from the hot end of the heat pipe

to the thermoelectric converter at the cold end of the heat pipe to generate electrical

energy. Therefore, the electric power cannot respond to the change of core power in time.
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This feature makes the electric power response with delay, which

brings challenges to the electric power control system.

There are few studies on the electric power control system

of the heat pipe cooled reactor. Zhang et al., 2022 used cascade

control to regulate the electrical power of HPR. Although the

electric power can be adjusted to the setpoint, the settling time

is long and the overshoot is large. Pu et al. (2022) used robust

control to regulate the core power of HPR, which can

effectively suppress noise disturbance, but the control

performance of this method on electric power regulation is

not included in the paper.

Given these challenges, model predictive control (MPC)

is an appropriate control paradigm for this application.

MPC periodically solves forward-looking constrained

optimization problems to calculate the control inputs that

make a model of the plant best satisfy the control objectives

while respecting all constraints Bone et al., 2021. Tong et al.

(2018) used MPC to solve the problem of large time delay in

stress control. Bobal et al. (2013) proposed an adaptive

predictive controller for control of the time-delay system,

which was successfully tested and verified by simulation of a

heat exchanger. Chen. (2011) applied the combination of

MPC and GA (Genetic Algorithm) to the temperature

control of a typical time-varying time-delay system—beer

fermenter and achieved satisfactory control results. These

results show that MPC performs well for time-delay

systems. In addition, MPC is also used in the field of

nuclear reactor control. Wang et al. (2017) proposed QP-

based MPC and verified the effectiveness in load following

of pressurized water reactor by numerical simulations. Li

et al. (2019) used a multivariable control method of pressure

and water level based on MPC to achieve stable tracking of

the setpoint accurately under the simultaneous change of

pressure and water level setpoints. Jiang et al. (2019)

designed a soft-constrained MPC based on the linear

parameter varying model for U-tube steam generator

water level control.

An electric power control system for the heat pipe cooled

reactor based on MPC is designed in this study. The control

system can effectively overcome the influence of large time

delay on the control performance, which shortens the

settling time and reduces the overshoot. The rest of the

paper is organized as follows: Section 2 introduces the

structure of the selected HPR and establishes the

nonlinear models of the reactor. In Section 3 the

nonlinear models are linearized to obtain the state space

model of the reactor. Section 4 introduces the principle and

realization method of MPC. Section 5 proposes an electric

power control system based on MPC and verifies the control

performance on the nonlinear model. Conclusion is drawn

in the last part.

2 Introduction to NUSTER-100model

NUSTER-100 is a marine silent HPR proposed by Xi’an

Jiaotong University. The structure of NUSTER-100 is mainly

divided into five parts: reactor core, heat pipe, cold plate cooling

system, thermoelectric converter and shield, as shown in

Figure 1. The thermal energy is generated by nuclear fission.

Control rod is used to adjust the reactivity, thereby changing the

core power. The heat generated in the core is transferred to the

heat pipe through radial heat conduction. The working fluid

inside the heat pipe transfers the energy from the hot end to the

cold end along the center of the heat pipe, and the cold end of the

heat pipe transfers the heat energy to the thermoelectric

converter to generate electricity. Cold plate cooling system

includes cold plates, coils and water tanks. The water tank

continuously supplies cold water to the cold plates, which

keeps the cold plates at a low temperature, and the cold water

flows back to the water tank through the spiral pipes. The

thermoelectric converter is located between the condensation

section of the heat pipe and the cold plates. Its structure is shown

in Figure 2 and includes copper sheets, P legs and N legs. The

thermoelectric converter generates electricity through the

temperature difference between the upper and lower ends of

the copper sheets. The shield is used for radiation protection in

the axial direction of the core.

A nonlinear model for NUSTER-100 is necessary for control

performance evaluation. The nonlinear model of NUSTER-100

can be divided into three parts: reactor core model, heat transfer

model and thermoelectric conversion model.

2.1 Reactor core model

The core model of NUSTER-100 adopts a point reactor

kinetics model with six groups of delayed neutrons, as shown

in Eq. 1, where ρ(t) is the input of the nuclear reactor and n(t) is

the output of the nuclear reactor (Zhang, 2014)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dn(t)
dt

� ρ(t) − β

Λ n(t) +∑6
i�1
λjcj(t)

dcj(t)
dt

� βj
Λ n(t) − λjcj(t), j � 1, 2, . . . , 6

(1)

where β � ∑6
j�1βj.

The reactivity is calculated by Eq. 2 and it includes the

control rod reactivity, and temperature reactivity feedback

from the fuel and matrix. Reactivity caused by fuel and matrix

temperature changes are obtained by Eqs. 3, 4.

ρ � ρrod + ρdop + ρMo (2)
ρdop � αdopTfuel − αdopT(fuel,100) (3)
ρMo � αMoTMo − αMoT(Mo,100) (4)
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2.2 Heat transfer model

The heat transfer process can be divided into three stages:

the first stage is from the fuel rod to the hot end of the heat

pipe, the second stage is from the hot end of the heat pipe

through the shielding area to the cold end of the heat pipe, and

the third stage is from the cold end of the heat pipe to the

collector.

For one single heat pipe, there are four fuel rods and one

moderator rod surrounding the heat pipe as shown in

Figure 3A. Using volume equivalence, the reactor core is

simplified to a circular tube, as shown in Figure 3B. Using

the lumped parameter method, the temperature of each

material is concentrated on one temperature node and the

model has eight temperature nodes, i.e., fuel, helium gap,

cladding, substrate, heat pipe wall, liquid sodium, wick, and

vapor sodium. In addition, heat conduction is considered to be

axisymmetric and axial heat conduction is ignored Yang and

Tao, (2006). This series of simplifications not only improve

the efficiency of heat transfer calculations, but also preserve

the overall characteristics of the heat transfer process and

meet the requirements of control simulations.

The ordinary differential equations to calculate the

temperature of each node are derived through the Fourier

law and the law of conservation of energy, which are shown as

Eqs. 5, 6:

_ΔU � _Qout + _Qin (5)
d(miCp,iTi)

dt
� Ki−1− i(Ti−1 − Ti) −Ki−i+1(Ti − Ti+1) + Qin (6)

FIGURE 1
NUSTER-100 structure.

FIGURE 2
Thermoelectric converter schematic (Tang et al., 2022).
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When calculating the node temperature, the heat transfer coefficient

between nodes is necessary, which can be obtained by Eq. 7:

Ki i+1 � 1
Ri + Ri+1

� 1

1
2πλi(Ti)li ln( di

di i+1) + 1
2πλi+1(Ti+1)li+1 ln(di i+1

di+1 )
(7)

where i represents the current node, i-1 represents the previous

node, and i+1 represents the next node.

The second stage of the heat transfer model has two nodes,

namely the shielding area and the condensation area. The

calculation equation of each node temperature is the same as

that of the first heat transfer model. The heat transfer coefficient

between the nodes is:

K � λl (8)

The third-stage heat transfer model has four nodes, namely

the wick, liquid sodium, heat pipe wall, and collector. The

transfer method of the temperature of each node is opposite

to that of the first-stage heat transfer model, and the calculation

method is the same, which is not repeated here.

2.3 Thermoelectric conversion model

The thermoelectric conversion model is more concerned with the

temperature difference between the hot and cold ends. Themain nodes

are the copper plates at the hot end and the copper plate at the cold end

of the thermoelectric converter. The ordinary differential equation for

calculating the temperature of each node is shown inEq. 6, and the heat

transfer coefficient needs to be calculated using the thermal resistance

network shown in Figure 4. The calculation is based on Eq. 9.

KCu Cuc � 1
RCu + RP N + RCuc

� 1

δCu
λCuACu

+
δP

λPAP
×

δN
λNAN

δP
λPAP

+ δN
λNAN

+ δCuc
λCucACuc

(9)

3 Linear dynamicmodel development

In Section 2, the nonlinear dynamic model of NUSTER-

100 is established. Because the MPC controller needs a state

space model of NUSTER-100 as the prediction model, the

nonlinear model needs to be linearized to obtain its state space

model. Linearization is carried out based on the perturbation

theory (Tong et al., 2018). The equilibrium point is first

selected, and a small disturbance is introduced at the

equilibrium point to obtain the linear differential equation

among the state variables of the system. The state space model

of the system can be established through linear differential

equations.

Take the reactor core model as an example and the

linearization of the rest part is similar. Assume that at t0
time, the nuclear reactor is in a steady state, and the steady

state value of each state is n0, cj,0, ρ0. If there is a small change

Δρ in the reactivity at this time, there will also be a small

change in the neutron density n and delayed neutron

precursor concentration c. Thus, we can obtain ρ = ρ0+Δρ,
cj = cj,0+Δcj.

At steady state, the total reactivity ρ = 0, the left-hand side of

Eq. 1 is 0, the following relationships can be obtained:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

βjn0

Λ � λjcj,o

βn0
Λ � ∑6

j�1
λjcj,o

(10)

Substituting Eq. 10 into Eq. 1, one can obtain:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dΔn(t)
dt

� n0
ΛΔρ(t) + Δρ(t)

Λ Δn(t) + ρ0 − β

Λ Δn(t) +∑6
j�1
λjΔcj(t)

dΔcj(t)
dt

� βj
ΛΔn(t) − λjΔcj(t), j � 1, 2, ..., 6

(11)

FIGURE 3
Revise the caption as comparison diagram of single-channel model (Pu et al., 2021): (A) Reactor core unit. (B) Reactor core single-channel
model.
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The term Δρ(t)
Λ Δn(t) is high-order infinitesimal and can be

ignored. Thus, Eq. 11 can be transformed into linearized

equations of dynamic equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dΔn(t)
dt

� n0
ΛΔρ(t) + ρ0 − β

Λ Δn(t) +∑6
j�1
λjΔcj(t)

dΔcj(t)
dt

� βj
ΛΔn(t) − λjΔcj(t), j � 1, 2, ..., 6

(12)

Select x1 � [Δn Δc1 Δc2 Δc3 Δc4 Δc5 Δc6]T as the state

vector, u1 � [Δρ] as the input variable, and y1 � [Δn] as the

output variable. Eq. 12 can be written as a state space model as

shown in Eq. 13.

{ _x1 � A1x1 + B1u1

y1 � C1x1 + D1u1
(13)

where, A1, B1, C1, D1 are as follows:

A1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0 − β

Λ λ1 λ2 λ3 λ4 λ5 λ6

β1
Λ −λ1 0 0 0 0 0

β2
Λ 0 −λ2 0 0 0 0

β3
Λ 0 0 −λ3 0 0 0

β4
Λ 0 0 0 −λ4 0 0

β5
Λ 0 0 0 0 −λ5 0

β6
Λ 0 0 0 0 0 −λ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0
Λ
0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C1 � [ 1 0 0 0 0 0 0 ]D1 � [0]

Similarly, the state space models of the heat transfer model and

the thermoelectric conversion model can be obtained. Connect the

state spacemodels of the reactor coremodel, heat transfer model, and

thermoelectric conversionmodel. The state spacemodel of NUSTER-

100 can be obtained as Eq. 14.

{ _x � Acx + Bcu
y � Ccx

(14)

where, the state vector x, the input variable u, the output variable
y are as follows:

x � [Δn Δc1 Δc2 Δc3 Δc4 Δc5 Δc6 Tfuel TClad TMo TWall TNa− l

TWick TNa−v TSc TNa−vc TWickc TNa−lc TWallc TSur TCu TCuc]T
u � [Δρ]y � [ΔPelec]

4 The principles of MPC

MPC is an advanced control strategy, which uses the plant

model and the feedback measurements of the current process to

calculate the future control value while satisfying constraints. The

calculated control value is output to the controlled object to

realize the control effect.

MPC obtains the control value u(k) by solving the

optimization problem. The output y(k) of controlled

object is sent to the model predictive controller as a

feedback for the next step of optimization. Each round of

optimization obtains the optimal output increment based on

the prediction model, the reference trajectory and the output

value at the current moment. MPC is mainly composed of

prediction model, rolling optimization and feedback

correction (Wang et al., 2017), and its structure is shown

in Figure 5.

4.1 Prediction model

MPC is a model-based control algorithm and a prediction

model is used. The function of the prediction model is to

predict the future output of controlled object based on its

FIGURE 4
Thermoelectric converter equivalent thermal resistance
network.
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historical information and future inputs. The specific

expression form of this model is not important, and the

important part is that it can realize the prediction function.

The state space model of NUSTER-100 is obtained and

selected as the prediction model in this study. The

continuous state space model needs to be discretized to

implement the controller (Eq. 15):

{ _x(k + 1) � Adx(k) + Bdu(k)
y(k + 1) � Cdx(k + 1) (15)

where, Ad � eAcTs , Bd � ∫Ts

0
eAcτ · Bcdτ, Cd � Cc, Ts is the

sampling time.

In order to facilitate the solution of the control variables, the

discrete state space model is rewritten as an incremental model

(Chen, 2013), as shown in Eq. 16.

{Δx(k + 1) � AdΔx(k) + BdΔu(k)
y(k + 1) � CdΔx(k + 1) + y(k) (16)

where,

{Δx(k) � x(k) − x(k − 1)
Δu(k) � u(k) − u(k − 1)

In order to derive the predictive equation from the prediction

model, let the prediction horizon be p and the control horizon be

m and m ≤ p. At the current moment k, taking the measured

value of state variable x(k) as the starting point, the state value at
any time in the horizon p can be predicted by recursive operation

of the system equation of the incremental model (Eq. 16), as

shown in Eqs. 17, 18.

Δx(k + i|k) � Ad
iΔx(k) + Ad

i−1BdΔu(k) + Ad
i−2BdΔu(k + 1)

+/ + BdΔu(k + i − 1), i � 1, 2, ..., m (17)
Δx(k + j

∣∣∣∣k) � Ad
jΔx(k) + Ad

j−1BdΔu(k) + Ad
j−2BdΔu(k + 1)

+/ + Ad
j−mBdΔu(k +m − 1), j � m + 1, ..., p

(18)

where, k + i | k indicates the state predicted value of the time k + i

at the time k. When the time exceeds m, the change of

corresponding control variable is equal to 0.

The output equation of the prediction model Eq. 15 can

predict the system output, that is electric power Pelec. For the

convenience of analysis, the prediction output vector and control

vector are defined as follows:

Yp(k + 1|k) �def
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yp(k + 1|k)
yp(k + 2|k)

..

.
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The predicted value in the prediction time horizon can be

calculated by the following prediction equation:

Yp(k + 1|k) � Φxx(k) + Iyy(k) +ΦuU(k) (19)
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FIGURE 5
MPC structure.
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4.2 Feedback correction

Since the controlled object is a nonlinear system, the predicted

value based on its linear model cannot be completely consistent

with the actual system output. Therefore, it is necessary to use the

deviation between the predicted value at the previous time yp (k|k-

1) and the measured value at the current time y(k) to perform

feedback correction on the predicted value at the current moment,

as shown in Eq. 20:

Y cor(k + 1|k) � Yp(k + 1|k) +H[y(k) − yp(k|k − 1)]
� Yp(k + 1|k) +He(k) (20)

where H � [h(1)/h(p)]T is the error correction matrix.

The correction value Ycor (k+1|k) with error information is

used to carry out a new round of optimization. The error

information will be considered when solving the new control

variable, so as to realize feedback correction.

4.3 Rolling optimization

MPC is an optimization control algorithm that obtains future

control value by solving optimization problem. Furthermore,

compared with optimal control, the optimization in MPC is a

rolling optimization with a limited period of time. At current

sampling moment, the optimal solution of the optimization

problem only involves a limited time in the future from that

moment. At the next sampling moment, the optimization period

moves forward. Therefore, the relative form of the optimization

problem at different time is the same while its absolute form, that

is, the time area included, is different (Bemporad and Morari,

1999).

4.3.1 Optimization problem
In this study, the optimization problem is set as the difference

between the measured value and the reference trajectory, and the

change rate limit of the control variable. Moreover, the

importance of the index can be adjusted by the weight of each

index, as shown in Eq. 21.

min J � ∑p
i�1

�����γy(y(k + i|k) − r(k + i))�����2 +∑m
i�1

����γuΔu(k + i − 1)����2
(21)

The matrix-vector form is:

min J � ����Γy(Y cor(k + 1|k) − R(k + 1))����2 + ‖ΓuΔU(k)‖2 (22)

where Γy, Γu is the weight matrix, as shown in Eq. 23 Compared

with the weight factor γy, γu, a larger weight value imposes a

higher penalty on its associated performance factor by increasing

its contribution to the optimization problem.

⎧⎨⎩ Γy � diag(γy)p×p
Γu � diag(γu)m×m

(23)

4.3.2 Optimization problem solution
According to the objective function, let

zJ(ΔU)
zΔU � 0 (24)

FIGURE 6
NUSTER-100 electric power control system.

FIGURE 7
Electric power response to reactivity step disturbance.
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FIGURE 8
System response under MPC controller: (A) Control rod reactivity response. (B) Core power response. (C) Fuel temperature response. (D)
reactivity feedback response. (E) Thermoelectric conversion device hot end temperature response. (F) Electric power response.
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Substituting Eqs. 19, 20, the optimal control sequence at time

k can be obtained:

ΔU*(k) � (ΦT
uΓ

T
yΓyΦu + ΓT

uΓu)−1ΦT
uΓ

T
yΓyEp(k + 1|k) (25)

where Ep (k+1|k) is error and shown in Eq. 26.

Ep(k + 1|k) � R(k + 1) −ΦxΔx(k) − Iy y(k) −He(k) (26)

Eq. 25 is the optimal solution of the control variable

increment in the control time horizon. To prevent the

error of control from the ideal state caused by model

mismatch or environmental disturbance, only the first

increment of the control variable increment sequence is

acted on the system. The control increment acting on the

system in real time is:

Δu(k) � [10/ 0]1×mΔU*(k)
� [10/ 0]1×m(ΦT

uΓ
T
yΓyΦu +ΓT

uΓu)−1ΦT
uΓ

T
yΓyEp(k+1|k)

(27)
The predictive control gains are defined as

Kmpc � [ 1 0 / 0 ]1×m(ΦT
uΓ

T
yΓyΦu + ΓT

uΓu)−1ΦT
uΓ

T
yΓy (28)

Then the control action can be calculated by the following

equation:

u(k) � u(k − 1) + Δu(k)
� u(k − 1) + KmpcEp(k + 1|k) (29)

5 Power control system based
on MPC

The power control system of NUSTER-100 based on MPC is

designed using the linear model and the performance of the

control system is verified on the nonlinear model. NUSTER-100

power control system is shown in Figure 6. The purpose of the

control system is to maintain the electric power at the setpoint,

and the measured value of the electric power needs to be fed back

to the model predictive controller to form a closed-loop system.

The output by the controller is the control rod reactivity.

Next, the parameters of the MPC controller need to be set. A

-10pcm step disturbance with the open-loop system is performed

on the controlled object NUSTER-100, and the electric power

response is shown in Figure 7. The rise time Tr is around 42.44s,

and the sample time of the controller is set to Tr/20≈2s. To cover
the significant dynamics of the open-loop system, the prediction

horizon p is set to 30. To balance control effects and

computational complexity, a good rule of thumb for choosing

the control horizon is to set it as 10%–20% of the prediction

horizon (Bemporad et al., 2020). Here it is set as 5. Since the

difference in the order of magnitude between electric power and

control rod reactivity is 10–5, the output weight of the controlled

object γy is set to 10
–4, and the weight of the control variable rate

of change γu is set to 0.1. At the same time, considering the

mechanical limit of the control rod drive mechanism, the output

change rate of the controller is limited to -10–5~10–5.

FIGURE 9
NUSTER-100 power control system with IMPC.

FIGURE 10
NUSTER-100 power control system with PI controller.
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A -10% step change in the electric power setpoint is

introduced to evaluate the control performance. The

simulation starts from 0s at 100%FP, and at 100s the setpoint

is changed stepwise from 100% to 90%. Simulations are

performed in MATLAB and Simulink environment.

The system responses are shown in Figure 8. At 100s, the

controller starts to act due to the error signal. The control rod

reactivity is introduced at a certain rate due to mechanical

constraints and stabilizes at 3.2 × 10–4 after 150s (Figure 8A).

As shown in Figure 8B, due to the introduction of negative

reactivity, the core power is rapidly reduced to 85.9%. As a

results, the fuel temperature changes (Figure 8C), and the fuel

temperature change in turn causes the neutron resonance

absorption rate to change, resulting in reactivity feedback

(Figure 8D). The core power gradually increases and stabilizes

at 94%. Because the heat transfer process of the heat pipe has a

certain delay, the hot end temperature of the thermoelectric

conversion device does not respond promptly to the change of

the control rod reactivity, and drops to 993K relatively slowly

(Figure 8E). With the change of the hot end temperature of the

thermoelectric conversion device, the electric power gradually

decreases and stabilizes at 90.3%, with a steady-state error of 0.3%

(Figure 8F).

The steady-state error cannot be eliminated by only

modifying the controller parameters. Therefore, the structure

of the control system is modified, and an integral controller is

introduced. MPC controller with an Integral controller to

eliminate steady state error is named as IMPC in this study.

The modified block diagram of IMPC is shown in Figure 9.

To reduce overshoot, a selector is added in front of the

integral controller. The function of the selector is that when the

absolute value of the error e is greater than the threshold eh, the

selector outputs e’ = 0, otherwise, e’ = e, as shown in Eq. 30. Using

the selector, the error integral controller can only play a role

FIGURE 11
System responses under IMPC controller and PI controller in case 1: (A) Control rod reactivity response. (B) Core power response. (C)
Thermoelectric conversion device hot end temperature response. (D) Electric power response.
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when the error is small, so as to achieve the control effect of

eliminating the steady-state error without increasing the

overshoot.

{ e′ � e, e≤ eh
e′ � 0, e> eh

(30)

After parameter tuning experiments based on trial and error

method, the integral coefficient is set to be 6 × 10–7, and the

threshold eh is set as 4. The parameters of the MPC controller

remain unchanged. For comparison, a PI controller is also

formulated for NUSTER-100 as shown in Figure 10. The

parameters of PI controller are tuned through a tuning

technique based on genetic algorithm (Mantri and Kulkarni.,

2013). The proportional coefficient is 1.05 × 10–8, and the integral

coefficient is 5.45 × 10–7.

In order to evaluate the control performance, simulations

under various typical operating conditions are carried out. The

first case, a 10% step change in the electric power setpoint is

introduced. The simulation starts from 0s at 100%FP, and at 100s

the setpoint is changed stepwise from 100% to 90%. The system

responses are shown in Figure 11. PI, MPC and IMPC stand for the

results with PI controller, MPC controller and IMPC controller,

respectively. During the 0–100s of the simulation, all parameters

are kept as the initial values. At 100s, the electric power setpoint is

changed. As shown in Figure 11A, the overall change trend of the

control rod reactivity is decreasing. As shown in Figure 11B, the

core power rapidly decreases to the lowest point, then increases

rapidly and reaches a steady state. As shown in Figures 11C,D, the

thermoelectric conversion device hot end temperature and electric

power have similar trends. They both decrease monotonically and

reach a steady state smoothly. Under the regulation of PI controller

FIGURE 12
System response under IMPC controller and PI controller in case 2: (A) Control rod reactivity response. (B) Core power response. (C)
Thermoelectric conversion device hot end temperature response. (D) Electric power response.
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FIGURE 13
System response under IMPC controller and PI controller in case 3: (A) Control rod reactivity response. (B) Core power response. (C)
Thermoelectric conversion device hot end temperature response. (D) Electric power response.

TABLE 1 Transient performance.

Case Controller Settling time (s) Undershoot (%) Steady-state error (%)

1 PI 217.3 1.9 0

MPC 90.5 0 2.8

IMPC 91.3 0 0

2 PI 389.4 0.3 0

MPC 313.5 0 2.8

IMPC 304.1 1 0

3 PI 1,554.8 0 0

MPC 1,495.3 0 15.2

IMPC 1,489.1 0 0
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and IMPC controller, the electric power successfully reaches the

setpoint, while under the regulation of MPC controller, the electric

power has one steady-state error.

The second case, a -2%FP/min ramp change in the electric

power setpoint is introduced. The simulation starts from 0s at

100%FP, and at 100s the setpoint is linearly changed from 100%

to 90%FP. The system responses are shown in Figure 12. As the

setpoint of the electric power decreases linearly, the parameters

of the system also decrease gradually and reach a steady state. As

shown in Figure 12D, under the regulation of PI controller and

IMPC controller, the electric power successfully reaches the

setpoint, while under the regulation of MPC controller, the

electric power has steady-state error. Moreover, it can be seen

that the IMPC control system can track the change of the electric

power setpoint more quickly than the PI control system.

The third case is similar to the second case. The simulation

starts from 0s at 100%FP, and at 100s the setpoint is linearly

changed from 100% to 50%FP. As shown in Figure 13. the system

responses are also similar to the second case, indicating that the

system can achieve a wide range of power regulation.

As shown in Table 1, using the IMPC controller, the electric

power can track the setpoint changes more quickly than using PI

controller. At the same time, the problem of steady-state error of

MPC controller is effectively solved by adding the integral controller.

6 Conclusion

In this study, in order to improve the response speed of the heat

pipe cooled reactor system and enable the electric power of heat pipe

cooled reactor to track the change of the setpoint faster, an MPC

strategy with an integral controller is proposed for the electric power

control of HPR. TheMPC controller uses the linearizedmodel of the

controlled object as the predictive model, and obtains the control

variable by solving the optimization problem to achieve the control

effect. In order to eliminate the steady-state error, the proposed

control scheme adds an integral controller with a selector.

To verify the performance of the controller, a marine silent

HPR, NUSTER-100, is taken as the controlled object, and

simulation tests are carried out. As demonstrated by

simulations, the proposed controller provides enhanced

control performance with improved speed under different

operating conditions. Compared with the traditional PI

controller and MPC controller, the system responds faster,

and can track the change of the electric power setpoint faster

with zero steady state error in various tests under the regulation

of the proposed controller. The proposed controller provides a

feasible method to improve the control performance of the HPR.
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Nomenclature

n Neutron density(m−3)

ρ Reactivity(pcm)

βj The delayed neutron fraction of the jth group

Λ Generation time(s)

λj The delayed neutron precursor decay constant of the jth

group (s−1)

cj The delayed precursor nucleus density of the jth group (m−3)

Qout External heat source(W)

Qin Internal heat source(W)

m Mass(kg)

Cp Specific heat capacity at constant pressure (J·kg−1·K−1)

T Temperature(K)

Ki Heat transfer coefficient of ith node(W·K−1)

R Thermal resistance(K·W−1)

l Length(m)

δ Thickness(m)

A Area(m2)

A State matrix

B Input-state matrix

C Output-state matrix

D Feedforward matrix

Pelec Electric power(W)

Subscripts

rod Control rod

dop Doppler

Mo Matrix

fuel Fuel

Clad Cladding

Wall Heat pipe wall at the hot end

Na_l Liquid sodium at the hot end

Wick Wick at the hot end

Na_v Vapor sodium at the hot end

Sc Shield

Na_vc Vapor sodium at the cold end

Wickc Wick at the cold end

Na_lc Liquid sodium at the cold end

Wallc Heat pipe wall at the cold end

Sur Heat collector

Cu Hot end of thermoelectric conversion device

Cuc Cold end of thermoelectric conversion device
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