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Accurately classifying the surrounding rock of tunnel face is essential. In this

paper, we propose a machine learning-based automatic classification and

dynamic prediction method of the surrounding rocks of tunnel face using

the data monitored by a computerized rock drilling trolley based on the

intelligent mechanized construction process for drilling and blasting tunnels.

This method provides auxiliary support for the intelligent decision of dynamic

support at the construction site. First, this method solves the imbalance in the

classification of the surrounding rock samples by constructing the Synthetic

Minority Oversampling Technique (SMOTE) algorithm using 500 samples of

drilling parameters covering different levels and lithologies of a tunnel. Second,

it filters the importance of the characteristic samples based on the random

forest method. Third, it uses the XGBoost algorithm to model the processed

data and compare it with AdaBoost and BP neural network models. The results

show that the XGBoost model achieves a higher accuracy of 87.5% when the

sample size is small. Finally, we validate the application scenarios of the above

algorithm/model regarding the key aspects of the tunnel construction process,

such as surrounding rock identification, design interaction, construction

supervision, and quality evaluation, which facilitates the upgrading of

intelligent tunnel construction.
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1 Introduction

The common methods of tunnel construction include drilling and blasting, shield

construction, and immersed tube construction, among which over 80% of tunnel

construction use the drilling and blasting method (Wang, 2010, 2020). Rock drilling

rigs with hydraulic mechanical arms have been used in tunnels since the 1980s, which

marks the beginning of mechanized tunnel construction. In the 21st century, as we

entered the age of intelligence (Zhao et al., 2017), new opportunities and challenges for the

development of technological innovation in railway tunnel construction has emerged

(Yang et al., 2022), which has attracted the attention of the world’s leading tunnel

construction countries. In the future, the worldwide competition in railway tunnel
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construction technology level directly depends on the breadth

and depth of the application of intelligent technology in tunnel

construction. Intelligent construction is an essential reflection of

the level of intelligent construction technology. The number of

mechanical tools used in the construction process and the depth

of participation represent the technical level of railway tunnel

construction. Intelligent equipment is the premise and core node

of intelligent tunnel construction, and the full analysis and use of

data generated by intelligent equipment is an important part of

achieving the digital twin of the tunnel. More importantly, using

the intelligent method to accurately identify the surrounding

rock parameters of the tunnel working face and the application of

the intelligent classification method of surrounding rock can

provide timely geological condition feedback, which is conducive

to the early detection and early warning of the adverse geology

ahead.

At present, the cross-section of the railway tunnel excavation

can reach 160 m2, which is subject to faults, dense joints, local

weathering, and stratigraphic divisions. Local optimization and

adjustment of the design parameters must be made in time

(Zhao, 2019). So far, we have been mainly relying on

geologists to identify changes in the rock level in situ, which

is subjective, time-consuming, and heavily affected by the

technical level of the geologist (Liu et al., 2018). At this stage,

intelligent rock drill trucks can carry out over-support drilling

and anchor drilling and produce corresponding construction log

information (Yu et al., 2018). However, although the truck has

intelligent functions such as automatic positioning, automatic

marking of drilling positions, and automatic data transmission,

most of the information is discrete sensing data recording the

operating status of the machine itself. Meanwhile, the data grows

fast, with the structures varying greatly, and the representation

forms are diverse. Besides, the data interaction format and data

storage schemes differ greatly. Therefore, the collected data

cannot be directly used for intelligent classification of the

surrounding rock of tunnel face and guide the adaptive

adjustment of support structure types and parameters. The

dynamic control of the current state of construction at a later

stage is mainly based on engineering experience and manual

input of basic parameters and then matching. This will have a

direct impact on the safety, speed, efficiency, and quality of the

tunnel support measures and the cavern support measures in

place, which in turn affects the stability of tunnel face and the

quality of the tunnel construction.

Machine learning is a branch of artificial intelligence that is

undergoing the most rapid development. Machine learning

provides methods that can “learn” and uses sample data to

make predictions or decisions and resolve complicated

questions of reality without being explicitly “programmed.”

Machine learning technologies are used in various

applications (Yang et al., 2021a; Liu et al., 2021; Xiao et al.,

2021). Recently, machine learning technologies have undergone

rapid advances.

Machine learning technologies have also been applied to a

few rock quality analyses. Wedge et al. (2019) used convolutional

neural networks and drilling parameters collected in mineral

exploration to determine the lithology of strata and stratigraphic

partitioning information and compare them with manual

judgment results. Yi et al. (2021) used a support vector

machine (SVM) and two neural network models to describe

the identification of significant heterogeneity of surrounding

rock on the face of large cross-section rock tunnels.

Nishitsujiy and Exley (2019) compared the performance of

SVM, deep learning, linear classifier, and Bayesian classifier in

the classification of lithology. They concluded that deep learning

might become the main method of lithology classification in the

future. Valentin et al. (2019) used ultrasonic andmicro-resistivity

imaging logs as input to construct a classification model for

borehole image data and identified four lithologies: calcareous,

gabbro, shale, and siltstone, using a deep residual network. Cai

(2002) selected seven types of parameters, such as rock strength,

self-weight stress, rock integrity, and mining influence, as input

to the neural network to identify the stability state of the

surrounding rock of the roadway project. The research of the

above scholars shows that it is feasible to use machine learning

theory combined with drilling parameters to identify the

geological structure information such as formation lithology,

rock thickness, and joint development. However, it still

requires intensive investigation on how to further

quantitatively identify the surrounding rocks in different areas

of tunnel face in practical engineering to guide the adjustment of

design parameters.

In this paper, we selected tunneling sites with complex lithology

for sample collection and focused on monitoring and analyzing the

drilling parameters of computerized rock drill trucks. By using the

random forest algorithm without significantly reducing the accuracy

of the surrounding rock classification results or affecting the

classification distribution, the correlation degrees between the

surrounding rock and the drilling parameters–including

propulsion speed, impact pressure, propulsion pressure, and

rotary pressure–were obtained to be 82%, 63%, 50%, and 40%,

respectively. This results in the ranking in order of the

importance of each characteristic parameter with a strong

correlation, affecting the classification results of the surrounding

rock. for the selected tunnels, whichmainly exhibit Class III, Class IV,

and some Class V rock, the Synthetic Minority Oversampling

Technique (SMOTE) algorithm was applied to analyze and

simulate the few samples characterizing the mechanical

parameters and add new samples to the data set. This solves the

problem to some extent that the classifier emphasizes the majority

classes and ignores the minority classes due to the differences in

tunnel construction progress, the inconsistent number of

surrounding rock grades, and the imbalance of samples. Third,

we established a machine learning-based classification model for

the surrounding rock of tunnel face. By drawing on the idea of

integrated learning, we constructed the Back-Propagation Neural
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Network, AdaBoost, and XGBoost algorithms to predict the

processed data, respectively. It was found that with continuous

adjustment of the learning rate and other hyperparameters, the

prediction accuracy of the XGBoost algorithm (ensemble-tree-

based) is the highest, reaching the optimal performance of 87.5%.

Figure 1 shows the research flow of this paper, which focuses

on the key issues of perception, analysis, and decision-making of

the drilling data acquired by intelligent equipment in real time.

The investigation is to support the key aspects of the intelligent

tunnel construction process, such as surrounding rock

identification, design interaction, construction supervision,

and quality evaluation, thus transforming and upgrading from

the traditional working mode to the intelligent mode.

The contributions of this study are as follows: (1) establishing a

prediction algorithm for automated surrounding rock classification

based on the operation data of mechanical construction; (2)

proposing a machine learning-based method for automatic

classification and dynamic prediction of tunnel working face

perimeter rock and (3) supporting the transformation and

upgrading of the tunnel construction process from traditional

working mode to intelligent working mode through machine

learning technology.

2 Materials and methods

The classification of the tunnel surrounding rock is

important for identifying the nature of the surrounding rock,

determining the stability of the tunnel envelope, selecting the

type of tunnel support, ensuring the safety and health of

construction workers, and guiding safe construction. In

general, the classification of surrounding rock is determined

by a combination of two methods, namely qualitative

classification and quantitative index. Qualitative classification

refers to the use of an on-site geological sketch of the tunnel face

to obtain a qualitative description of the rock hardness and rock

integrity; while quantitative refers to the use of a rock rebound

test, rock compressive strength test, rock wave velocity test, and

rock body wave velocity test, and the introduction of

groundwater, ground stress and the main structure of the

surface production indicators, to obtain its surrounding rock

classification index (Ranjbarnia et al., 2018).

In engineering practice, the determination of the

surrounding rock level takes qualitative study as a primary

tool and quantitative study as the secondary one. In this

paper, we focus on the surrounding rock level data

qualitatively obtained from the on-site tunnel face sketch

results and use them as sample data for machine learning to

solve classification problems. In addition, as the correctness of

the surrounding rock level label will affect the accuracy of

prediction, we verified the labeling of the surrounding rock

level given by the field geological engineers through a small

amount of rock rebound tests, rock compressive strength tests,

rock wave velocity tests and rock body wave velocity tests.

Many factors influence the accurate identification of the

surrounding rock of tunnel face, such as the geological

analysis during the preliminary survey and design, advanced

geological forecasting, the construction of the borehole camera,

spectral imaging, 3D digital photography, laser scanning, and

drilling measurement. They are of significance for reference to

FIGURE 1
Research flow of this study.
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the surrounding rock parameters evaluation. With the

promotion of large supporting mechanized equipment, the

real-time rock drilling parameters collected by the machine’s

self-awareness system can play a critical role and provide rapid

response feedback (Zhao and Lu, 2018) for the determination of

the surrounding rock level. Consequently, in this paper, we focus

on the drilling parameters generated by a specific model of a

computerized three-arm rock drilling rig during the rock drilling

process in a tunnel with complex rock quality. The drilling

parameters include propulsion speed, rotary pressure,

propulsion pressure, rotary velocity, impact pressure, etc. A

machine-learning sample library was then constructed using

the above drilling parameters as well as the surrounding rock

levels identified from the geological sketch of the tunnel face. The

process and methodology for the prediction of tunnel

surrounding rock levels are shown in Figure 2.

1) Data perception: The intelligent rock drilling trolley is used to

collect drilling parameters such as the surrounding geological

environment, operating conditions, and equipment

information of the tunnel being constructed by the drill

and blast method.

2) Data cleaning and collation: the collected raw data are cleaned

and collated, and the data features are then vectorized. Finally,

the data set is balanced using the SMOTE algorithm.

3) Model construction: The balanced dataset is used as the input

of the XGBoost model for model training. XGBoost is an

optimized distributed gradient boosting method that

implements machine learning under the gradient boosting

framework and solves numerous data-related problems in a

rapid and accurate manner. It is an improvement over the

gradient boosting decision tree with higher prediction

accuracy and training efficiency.

The prediction accuracy and other aspects of the model are

compared with that of the BPNN (Back propagation neural

network) and AdaBoost models to find the model with the

best prediction effect and stability.

2.1 Data pre-processing analysis

Due to the differences in geological conditions and

construction progress of the tunnels, the number of collected

tunnel surrounding rock level samples was inconsistent and

disproportionate. According to the data collected from the test

tunnel, the samples of the surrounding rock levels were mainly

divided into three types: III, IV, and V. There were 162 samples of

III, 278 samples of IV, and 60 samples of V. The imbalance of the

categories was high. However, it is generally considered that the

ratio of data samples should be kept around 1:1 to make the

classification model better reflect the classification effect (Liu

et al., 2020). For this reason, in this paper, we employ the SMOTE

method for processing to solve the data imbalance problem.

SMOTE algorithm was proposed by Chawla in 2002 and has

been adopted by both academia and industry (Kam and Dick,

FIGURE 2
Process and methods for predicting the tunnel surrounding rock level.
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2006). The general idea of SMOTE is to interpolate between

minority class samples to generate additional samples. The

method generates new synthetic samples based on the k

nearest neighbor samples of the minority samples, which are

random points on a line segment with endpoints corresponding

to the two nearest neighbor minority class samples.

xnew � x + rand(0, 1)p||x̂ − x|| (1)
where x is a minority class sample, x̂ is the nearest neighbor

sample, and ‖ · ‖ denotes the distance formula.

Because the SMOTE algorithm has the problem of a lack of

diversity, many improved algorithms have been proposed, such as

BorderlineSMOTE proposed by Han et al. (2005) and adaptive

synthetic (ADASYN) sampling proposed by He et al. (2008).

BorderlineSMOTE will only generate synthetic data for minority

class samples adjacent to the boundary, which leads to weaker model

generalization. On the contrary, ADASYN generates minority-class

data samples adaptively based on the distribution of minority-class

data samples, and minority samples that are harder to learn will

generate more synthetic data thanminority samples that are easier to

learn. In this paper, the ADASYN algorithm is adopted for data

augmentation of the imbalanced sample data.

2.2 Feature selection

The drilling parameters of the intelligent rock drill rig reflect

the response of the rock drill to different surrounding rocks

under the action of constant impact energy. The intelligent rock

drill trolley automatically collects a series of operating process

data of the rock drill in real-time and records in detail the

measured values and parameters, operating status, and other

information during the operation of the intelligent construction

equipment. The trolley has the characteristics of high collection

frequency and a large amount of data. It possesses the most

detailed process record data during the whole operation process.

According to the operating characteristics of intelligent

construction equipment, the data is sampled, quantified, and

coded with a certain collection frequency by means of each data

interface, and the data is cleaned according to some specific rules

to form a data format that meets the needs of business functions

such as real-time dynamic, intelligent grading of the

surrounding rock.

The main data set information collected by the computerized

rock drill rig is shown in Table 1.

The total energy output of the mechanical power system of

the intelligent rock drill rig during the construction operation

condition with normal main motor current and voltage can well

reflect the quality and level of the surrounding rock (Jiang and

Shen, 2018). It is generally believed that the lower the energy

required to break the rock, the worse the quality of the

surrounding rock and the higher the level of the surrounding

rock; the higher the total energy output of the required drilling rig

power system, the better the quality of the surrounding rock and

the lower the level of the surrounding rock. Different mechanical

arms of the multi-arm rock drill rig have different drilling

parameters, and it is extremely difficult for us to consider all

the influencing factors one by one in the actual engineering

prognosis. On the one hand, too many parameters will bring

trouble to the actual engineering site data collection. On the other

hand, the excess parameters will make the construction of the

neural network model complicated and prolong the training

time. Meanwhile, the parameters of these influencing factors

are not independent of each other, but there is a certain coupling

relationship. Considering all of them may produce the problem

of overfitting and be unfavorable to the prediction results.

TABLE 1 Main data set for computerized rock drill rigs.

Serial
number

Data category Data Content

1 Trolley positioning
data

Current stake of the dolly

2 Real-time status data Name of data Normal operating range
(HC110)

Promoting pressure −10-230 (bar)

Speed of propulsion −50-50 (m/min)

Impact pressure −10-210 (bar)

Slewing pressure −10-210 (bar)

water pressure 0-50 (bar)

water flow 0−180 (L/min)

Current operating status, total current, and voltage of the whole machine

3 Recurring log data Positioning mileage, number of holes, total drilling distance, drilling start and stop time, jamming
time, flushing/other time, feed rate, impact pressure, thrust pressure, rotary pressure, water
pressure, water flow
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In order to meet the research requirements and improve data

quality, the raw data were cleaned with the goal of accuracy,

completeness, and consistency.

Regarding duplicate values, since the ID is a unique

identifier for each sample, no duplicate rejection operation

is required after a duplicate lookup of the data. Regarding the

missing values, for continuous variables, the missing values

are filled with the mean value of the overall data on the

variable; for discrete variables, the value with the highest

frequency of the overall data on the variable is filled; when

the number of missing variables is too large, the data is directly

rejected.

The characteristic variables were initially filtered to see the

distribution of values on the overall data for each variable, in

turn, by the statistical function. In particular, the positioning

mileage (current stake of the dolly) was removed because it does

not provide useful information for the identification of the

surrounding rock; the working status was removed because it

only has a unique value on the whole data (normal working

without warning status); and the variables such as the number of

holes and the total length of the holes are not relevant to the

output variable “surrounding rock level” and were removed; for

The discrete variables with too many values for the four time

values of drilling start/stop time, jamming time, and flushing/

other time will produce a sparse matrix with too many

dimensions, which will affect the effect of learning for

classification, so they were also removed.

Second, the data was standardized to eliminate the effect of

magnitude. Different variables often have different magnitudes

and may differ in order of magnitude, and features with larger

values tend to receive higher weights in the classification. In order

to avoid the bias of the classifier among different features, the data

was normalized to scale the value interval of the features to a

specific range so that different feature variables would have the

same weight in the classification and improve the efficiency of the

model.

z-score normalization, also known as standard deviation

normalization, is the most common method used in data

normalization. The mean of each dimensional feature after

processing is 0, and the standard deviation is 1. For each

value vi of the specific dimensional feature, the

standardization formula is as follows.

v′i �
vi −mean

std

wheremean is the mean of the original data in this dimension, and

std is the standard deviation of the original data in this dimension.

After the dimensionality reduction of the data by eliminating

the data of low relevance and redundant features, the size of the

data set was reduced, which can effectively improve machine

learning efficiency.

In addition to the above analysis, after data filtering of the

original data, we then use the random forest algorithm (Yang

et al., 2021b; Wei et al., 2022) to obtain the importance score of

each attribute in the process of classifying and predicting the

surrounding rock level, which can measure the value of the

features in the model. The top six important features for the

prediction model of the surrounding rock classification include

propulsion speed, propulsion pressure, impact pressure, slewing

pressure, water pressure, and water flow.

The list of features after completing feature selection is

described in Table 2.

2.3 Training and testing of the
classification model

To verify the applicability of the algorithms to different

classification models and their influences on the effect of the

surrounding rock level classification, we select several

classification learning models commonly used in existing

research for comparison experiments, including BPNN (Back

TABLE 2 Feature name, description, and derived importance.

Feature name Characterization Importance

Propulsion pressure (bar) Numerical type: feed pressure to the rock drill load-bearing mechanism to push the cylinder 0.50

Propulsion speed (m/min) Numerical type: rock drill travel speed 0.82

Impact pressure (bar) Numerical type: feed pressure to the rock drill impact hydraulic mechanism 0.63

Slewing pressure (bar) Numerical type: oil feed pressure to the drilling tool rotation mechanism of the rock drill 0.40

Water pressure (bar) Numerical type: rock driller inlet line pressure 0.20

Water flow rate (L/min) Numerical type: rock driller inlet line flow 0.15

TABLE 3 List of hyperparameters of each classification model.

Model List of Parameters

BPNN batch=32, stddev=0.1(variance), lr=0.1 (learning rate), epochs=500
(number of rounds), hide_layer_num=3

XGBoost base_score=0.5 (global bias), booster=’gbtree’ (base classifier model),
learning_rate=0.05 (learning rate), max_depth=8 (maximum depth of
tree), n_estimators=50 (number of trees)

AdaBoost scoring=’accuracy’, cv=5-fold, error_score=’raise’
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propagation neural network), XGBoost, and AdaBoost

algorithmic models.

To ensure the stability of the experimental results, the model

training process is based on k-fold cross-validation (Zhao et al.,

2020, 2021). The data set is divided into five mutually exclusive

equal subsets, and five rounds of training tests are conducted,

with one subset taken as the test set and the other four subsets as

the training set in each round without repetition. The evaluation

index results after five rounds of training tests are averaged, and

the final evaluation results are the output.

3 Results

The hyperparameters of each classification model are sought

by GridSearchCV. The list of hyperparameters for each model is

described in Table 3.

Adopting the training set and prediction set samples after pre-

processing and feature selection mentioned above, the calculated

prediction set discrimination results are shown in Table 4. In the case

that the training set and prediction set were the same, XGBoost had

the best prediction accuracy of 87.5%. The grading accuracy of the BP

neural network for surrounding rock classification of the prediction

set was 79.2%. AdaBoost had a much longer training time and was

sensitive to the sample. Abnormal samples in the iteration may get

higher weights, thus affecting the final prediction accuracy of strong

learners. AdaBoost performed the worst this time, with an accuracy

of 62.9%.

No matter how efficient a model we select, its prediction

results will always be subject to some errors. Therefore, we

analyze and evaluate the results and performance of these

classification models on the test set based on a confusion

matrix (Table 5). In this confusion matrix, four categories

include TP (true positive), False Positive (FP), True Negative

(TN), and False Negative (FN). TP case is a positive case that was

correctly classified. FP case is a negative case that was incorrectly

classified as positive. FN case is a positive case that was

incorrectly classified as negative. TN case is a negative case

that is correctly classified.

Precision is the proportion of true positive examples among

all examples classified as positive. The closer its value is to 1, the

better the classification performance for positive examples.

Precision � TP

TP + FP

Recall is the proportion of all true positive examples that are

correctly classified as positive examples. The closer its value is to

1, the better the classification performance for positive examples.

Recall � TP

TP + FN

The F-measure (F) is the harmonic mean of Precision and

Recall. The closer its value is to 1, the better the combined

classification performance for positive samples. Its formula is

shown below.

F � 2
Recall−1 + Precision−1

Or equivalently,

F � 2RecallpPrecision
Recall + Precision

TABLE 4 Model training and testing results.

Surrounding rock
level

Actual Sample
Size/Sample

Number of Accurate Samples
Identified by the Model/Sample

Accuracy/%

BPNN XGBoost AdaBoost BPNN XGBoost AdaBoost

III 265 227 242 168 85.7% 91.3% 63.1%

IV 278 218 254 184 78.4% 91.4% 66.2%

V 257 188 213 153 73.2% 82.9% 59.5%

TABLE 5 The confusion matrix.

Predicted condition

Positive (PP) Negative (PN)

Actual condition Positive (P) True Positive (TP) True Negative (TN)

Negative (N) False Positive (FP) False Negative (FN)
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The evaluation results of the three classification models,

namely BPNN, XGBoost, and AdaBoost, are depicted in

Table 6. We find that our machine learning-based approach

performs well in the studied problem.

With only the operating state of the machine itself known,

the construction of the above-mentioned different

classification models has well predicted the level of the

surrounding rock with fast response. This also shows that

the tunnel surrounding rock level is closely related to the

drilling and blasting machinery construction parameters. By

establishing a relationship between the drilling parameters of

rock drilling machinery and the classification of the

surrounding rock levels, the drilling parameters can be

further optimized based on the predicted surrounding rock

levels, which is of great significance for the study of intelligent

visualization of tunnel construction.

4 Discussion

4.1 Discussion of the prediction results

The above predictions analyze the relationship between the

change in the surrounding rock level and the mechanical drilling

parameters during the construction of the rock drilling platform

from different angles. Overall, the model meets the basic

requirements for prediction accuracy. However, due to the

lack of drilling parameter data and the inadequate

classification of corresponding surrounding rock levels in

practical analysis, the training data obviously cannot

accurately fit the real surrounding rock level changes during

the tunnel-boring process. The correlation between the

construction drilling parameters and the parameters

themselves has not been considered. In addition, we did not

consider the differences in geological conditions and tunnel

geometry. We think some improvements, such as optimizing

the selection of input parameters, expanding the number of

samples, diversifying the study area, and introducing more

advanced and reasonable prediction methods, can be made to

achieve better prediction results (Moore et al., 2022; Xu et al.,

2022; Zhang et al., 2022). Furthermore, big data analysis based on

heterogeneous monitoring data is suggested to help decision-

making from the traditional construction method based on the

TABLE 6 Classification model evaluation results.

Classifier Precision Recall F value

BPNN 0.83 0.80 0.81

XGBoost 0.90act 0.88 0.89

AdaBoost 0.78 0.81 0.80

FIGURE 3
Intelligent classification of surrounding rocks and its application scenarios.
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model of physical entities and the new decision model based on

artificial intelligence.

4.2 Discussion of application scenarios

The research is based on machine learning and the design of

algorithm models to achieve automatic collection, analysis, and

classification of information from the complex geological

environment of tunnels in difficult mountainous areas

(Figure 3). The virtual simulation training model and the

construction site can interact dynamically in the real-time

field and share data with each other, leading to self-learning

and self-optimization driven by the algorithm model. By using

intelligent feedback analysis for forecasting and big data

monitoring based on tunnel construction machinery, we can

effectively identify the cases of poor stability of tunnel

surrounding rock, including over-deformation, over-damage,

and effectiveness for reinforcement. In addition, we will be

able to assess the tunnel stability under the supporting system

and evaluate the rationality of the supporting parameters so as to

realize an intelligent, refined, and dynamic design of the tunnel

supporting structure. The developed model will provide accurate,

efficient, and comprehensive auxiliary decision-making for

construction and management personnel, thus effectively

strengthening the quality control and safety management of

tunnel as well as improving the mechanization level of tunnel

construction, accelerating the project progress and enhancing the

construction efficiency under the premise of ensuring quality and

safety.

5 Conclusion

In this paper, we established a prediction algorithm for

automated surrounding rock classification based on the

operation data of mechanical construction. Firstly, the data

set was pre-processed, including missing value processing,

outlier processing, data standardization processing, data

normalization processing, and data sampling by the

ADASYN algorithm to address the imbalance of data

categories. Then, feature screening was carried out on the

data set, and the importance of data features was sorted

through the Random Forest algorithm so as to retain the

features that have a larger impact on the prediction results

and eliminate the features that have a smaller impact, hence

enhance the model generalization ability and reduce the risk

of overfitting. The model was divided into a training set and a

test set, and the training data were fitted with different

classifiers by the cross-validation method. The optimal

classifier parameters were determined by the grid search

method to adjust the parameters and evaluate the

experimental results. Through the intelligent classification

of “fast collection-real-time transmission-remote evaluation”

of surrounding rock information, the intelligent connection

between intelligent perception and intelligent equipment and

background server is realized. The above-mentioned new

artificial intelligence decision-making model from the

original signal end of the equipment to the automated

classification of tunnel envelope can be applied to key

links and scenarios such as surrounding rock recognition,

design interaction, construction supervision, and quality

evaluation in the tunnel construction process. It supports

the transformation and upgrading of the tunnel construction

process from the traditional working mode to the

intelligent one.
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