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A complete well logging suite is needed frequently, but it is either unavailable or

has missing parts. The mudstone section is prone to wellbore collapse, which

often causes distortion in well logs. Inmany cases, well logging curves are never

measured, yet are needed for petrophysical or other analyses. Re-logging is

expensive and difficult to achieve, whilemanual construction of themissingwell

logging curves is costly and low in accuracy. The rapid technical evolution of

deep-learning algorithms makes it possible to realize the digital construction of

missing well logging curves with high precision in an automated fashion. In this

article, a workflow is proposed for the digital construction of well logging curves

based on the long short-term memory (LSTM) network. The LSTM network is

chosen because it has the advantage of avoiding the vanishing gradient problem

that exists in traditional recurrent neural networks (RNNs). Additionally, it can

process sequential data. When it is used in the construction of missing well

logging curves, it not only considers the relationship between each logging

curve but also the influence of the data from a previous depth on data at the

following depth. This influence is validated by exercises constructing acoustic,

neutron porosity, and resistivity logging curves using the LSTM network, which

effectively achieves high-precision construction of these missing curves. These

exercises show that the LSTM network is highly superior to the RNN in the digital

construction of well logging curves, in terms of accuracy, efficiency, and

reliability.
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Introduction

During well logging operations, borehole damage or collapse

occurs frequently in the mudstone section, resulting in distortion

in well logs, and even more seriously, in missing well logging

curves. Instrument failure and logging environments can also

lead to lost or erroneous logging curves. In petrophysical analysis,

a comprehensive analysis of all the depths of the well logging

curves is usually a must. As a result, the distortion or absence of a

particular section of the logging curve will have profound reverse

effects on the results of the final analysis. Therefore, it is

necessary for the entire logging curve to be reliable with high

accuracy, for which an efficient, simple, and accurate logging

curve construction method is particularly essential.

Re-logging can be used to obtain the missing logging curves.

However, doing so will significantly increase the cost from the

standpoint of both labor and equipment. Moreover, re-logged

curves may deviate from those in the original logging

environment due to changes in that environment, for

example, mud-filtrate invasion. Many other methods for

reconstructing the missing logging curves have been

investigated in the literature, such as empirical formulas,

correlation correction methods, forward modeling correction

methods, and multi-variate regression methods (Zhang et al.,

2018; Zhou et al., 2021). If the borehole collapses and the logging

curve distortion is serious, the correlation correction method will

not succeed. The forward modeling correction method requires

accurate knowledge of the complex physical properties (Asquith

et al., 2004; Bateman, 2012), which are not readily available.

Although those methods can reconstruct the missing logging

curve to a certain extent, they ignore the complexity and strong

non-uniformity of the formation conditions, thus greatly

simplifying the real formation conditions, and hindering the

predicted results from meeting the accuracy requirements of

logging interpretation and reservoir characterization (Bassiouni,

1994).

With the advancement of computer and information

technology, machine learning has become a powerful tool for

model construction and prediction (Ramaswamy et al., 2000;

Cawley 2006; Kusiak et al., 2010; Marvuglia and Messineo, 2012;

Hu et al., 2014), and has undoubtedly found applications in the

field of petroleum exploration and production (Iturrar N-Viveros

and Parra, 2014; Zerrouki et al., 2014; Chen 2020). Potential

machine-learning algorithms include support vector machines

(SVMs), artificial neural networks (ANNs), recurrent neural

networks (RNNs), and generative adversarial networks

(GANs) (Goodfellow et al., 2014; Goodfellow, 2016). Rolon

et al. (2009) used the generalized regression neural network to

reconstruct the missing logging curves, and the experimental

results show that synthetic logging curves from the neural

network are more accurate than those from traditional multi-

variate regression, linear regression, and other methods (Rolon

et al., 2009). Salehi et al. (2017) reconstructed density and

electrical logs using the multilayer perceptron (MLP). Yang

et al. (2008) used the back propagation (BP) neural network

to reconstruct acoustic logging curves, and verified that the

method could significantly improve the quality of acoustic

logging curves affected by wellbore collapse. Hu (2020)

adopted the GAN with constraint conditions to learn the

distribution of real logging curves, and introduced the mean

square error into the objective function of the original GAN to

improve the learning ability of the model. He demonstrated that,

compared with the Kriging interpolation method and the fully

connected neural network, this method performs better in

predicting the logging curve. However, although the above

methods are able to reconstruct the missing well logging

curves to a certain extent, it is still difficult to achieve high

accuracy.

In this article, we demonstrate that the LSTM network is a

deep-learning algorithm naturally suited to the digital

reconstruction of well logging curves. This is because the well

logging curve has the characteristic of a time sequence, due to the

connection of the curve from point to point. When dealing with

these kinds of data, we should not only consider the interaction

between each well logging curve, but also the influence of the

previous data point on the following data point. Recurrent neural

networks (RNNs) are very effective in processing data with

sequential characteristics (Schuster and Paliwal, 1997).

However, a regular RNN has the problem of a vanishing

gradient, which effectively prevents the weight in the neural

network from changing its value and hence stops the neural

network from further training.

The long short-term memory (LSTM) network

(Hochreiter and Schmidhuber, 1997) is a variant of the

RNN. Compared with the RNN, the LSTM network has

three more control devices: input control, forget control,

and output control, which can better retain the required

data. The LSTM network overcomes the problem of the

vanishing gradient that exists in the RNN, making it more

effective and reliable for training the well logging curves. It has

found application in many different domains. Zhao et al.

(2021) developed a hybrid model by combining a long

short-term memory network (LSTM), a convolutional

neural network (CNN), and a singular spectrum analysis

(SSA). Among these, the LSTM network effectively

extracted the time features, and the hybrid model could

accurately extract data features of monitoring signals and

further improve the recognition performance of mass

spectral signals. Thus, the long short-term memory

network has significant advantages in processing time-

series data. Shashidhar et al. (2022) adopted the LSTM

method for visual speech recognition, and the research

results show that this network can recognize speech very

well. Ma et al. (2022) applied LSTM to predicting the

normal passenger flow and emergency passenger flow of a

metro traffic system. Compared with the traditional data of
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incoming and outgoing warehouse or IC cards, this method

better reflects the passenger flow data of the metro traffic

system’s capacity. Absar et al. (2022) used the LSTM model to

predict infectious diseases, and their study showed that the

algorithm achieved good results in time-series prediction, and

could hence effectively reduce infection rates to a certain

extent.

In this study, the LSTM method is used to reconstruct the

missing logging curves through the TensorFlow (Martín et al.,

2016) framework, and the reliability of the model is verified using

field well logs. Experimental studies show that, compared to the

RNN, the LSTM network is very efficient, accurate, and concise

for the generation of digital well logging curves.

Methodology

Correlation analysis

Correlation analysis refers to the analysis of the degree of

correlation between two or more variables. In this work, it is

necessary to perform correlation analysis and find the logging

curves that have the highest correlation with the target logging

curve. The existence of some correlation is necessary to predict

one variable from another. Pearson’s (1920) correlation

coefficient is used to in this work. Assuming that there are

two variables, X and Y, Pearson’s correlation coefficient

between X and Y can be expressed as follows:

ρ(X,Y) � cov(X,Y)
σXσY

� E((X − μX)(Y − μY))
σXσY

� E(XY) − E(X)E(Y)�������������
E(X2) − E2(X)√ ������������

E(Y2) − E2(Y)√ , (1)

where E represents the mathematical expectation and cov(X, Y)

represents the covariance between variable X and variable Y; μX ,

μy are the mean for variable X and variable Y, respectively; and

σX, σY are the standard deviation for variable X and variable Y,

respectively. The value range of Pearson’s coefficient p is [-1,1].

The positive and negative values of the p-value represent the

direction of correlation, and the magnitude of its absolute value

represents the degree of correlation. When the p-value is greater

than 0, X and Y are positively correlated, and the greater the

p-value, the higher the correlation. By contrast, if the p-value is

less than 0, X and Y are negatively correlated; if the p-value is 0,

there is no linear relationship between X and Y; and if the

absolute value of p is 1, X and Y are completely linearly

correlated. A rule of thumb for measuring the significance of

the correlation is as follows: 0.0 < | p | < 0.2 means very weakly

related or unrelated, 0.2 < | p | < 0.4 means a weak correlation,

0.4 < | p | < 0.6 means moderately related, 0.6 < | p | < 0.8 means a

strong correlation, and 0.8 < | p | < 1.0 means a very strong

correlation.

Data normalization

The purpose of data normalization is to map large data or

small data in a data set to the same range. The most common

range is (0, 1), which is convenient for subsequent data

processing and model training. The maximum and minimum

normalization is adopted in this study, and its formula is shown

as follows:

x′ � x − x min

x max − x min
, (2)

where x is the data sample and xmax and xmin are the maximum

and minimum values in the x sample, respectively. Using Eq. 2,

all the data samples can be mapped to between 0 and 1.

The recurrent neural network

The recurrent neural network (Chung et al., 2015) is a kind of

recursive neural network that takes sequence data as input, and

recurses in the evolutionary direction of sequence where all nodes

(cyclic units) are linked by chain. The RNN is very effective for

processing sequential data, which are arranged in a certain

chronological or logical order. The RNN simply consists of an

input layer, a hidden layer, and an output layer, which is shown

below.

Figure 1 is the basic structure of an RNN. It does not show all

the nodes of the recurrent neural network. Assuming that the

arrow above W is removed, this network becomes the most

common fully connected neural network. The X vector

represents the input layer data, S represents the value of the

FIGURE 1
Basic structure of the recurrent neural network.
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hidden layer, and the O vector represents the value of the output

layer. It should be noted that in actual problems, the input layer,

output layer, and hidden layer are not one node as shown in the

figure above; instead, each layer actually contains multiple nodes.

Here U is the weight from the input layer to the hidden layer, V is

the weight from the hidden layer to the output layer, andW is the

weight of the last hidden layer as the input for this time. It can

therefore be seen that the hidden layer of the recurrent neural

network is composed of the current input value X and the last

hidden value S. An expanded recurrent neural network is shown

below. The related formulas are as follows:

Ot � g(V•St) (3)
St � f(U•Xt +W•St−1) (4)

Figure 2 is the expansion of Figure 1. It can be seen from

Figure 2 or Eq. 4 that the received value at time t in this network

consists of the input Xt and the output of a hidden layer at a

previous time, which reveals how the recurrent neural network

works. It can be seen from Eqs 3, 4 that the specific calculation

process of the recurrent neural network is obtained by

multiplying the input by the corresponding weight before

finally adding the activation function. Throughout the training

process, the same weight W is used for each moment. A cyclic

neural network is similar to a multilayer neural network: as the

number of neurons increases, the RNN also has the problems of

gradient explosion and gradient disappearance in the process of

back propagation (Franke et al., 2012).

The LSTM network

In order to eliminate the problems of gradient explosion,

gradient disappearance etc., various improved recurrent neural

networks have been proposed instead of the traditional RNNs.

The long short-term memory network is a variant of the

recurrent neural network. The recurrent neural network will

store all the values of the hidden layer at each moment and

apply them to the next moment, thus ensuring that each

moment contains the information of the previous moment.

The LSTM network selectively stores information by adding

three gating devices, namely input control, output control, and

forget control, compared with the hidden layer that stores all

data in the recurrent neural network. The LSTM is composed of

a series of recursively connected sub-networks of memory

blocks, each of which contains one or more memory cells

and three multiplication units (input gate, output gate, and

forget gate), which can carry out continuous write, read, and

reset operations on memory cells (Hochreiter and

Schmidhuber, 1997; Graves et al., 2013). The LSTM can thus

effectively mitigate the problems of gradient disappearance and

gradient explosion that exist in the traditional RNN (Cho et al.,

2014). The internal structure of the LSTM network is shown in

Figure 3. Excluding the nodes in each neural unit, an LSTM

network is an RNN.

Firstly, the forget gate determines howmuch information in

the unit state Ct-1 of the previous moment will be retained in the

current moment Ct. The input Xt of the current moment is

combined with the hidden state of the previous moment to form

a new vector, and is then multiplied by the weight coefficient W,

and finally through the sigmoid function. The result is

multiplied by the unit state Ct-1 at the last moment to

determine how much information is added to the unit state

Ct-1 at the last moment. The expression of the forget gate

control for this time is

ft � σ(Wf•[ht−1,Xt] + bf) (5)

Secondly, the input gate controls how much information

from the input Xt of the current moment will be retained in the

cell state Ct of the current moment. The sigmoid function

determines which values need to be updated for the input

gate layer. The tanh function determines the candidate value
~Ct at the current time and is multiplied by the current it vector to

finally determine how much of the candidate information is

input into the cell state Ct, where the expression is

it � σ(Wi•[ht−1,Xt] + bi) (6)
~Ct � tan h(Wc•[ht−1,Xt] + bc) (7)

Finally, the output gate controls howmuch state C of the unit

is output to the hidden state of the unit. The output gate and

output signal are multiplied to determine the amount of

information to be output at this moment. The expressions for

decision vector Ot and the hidden state ht of the cell unit are as

follows:

Ot � σ(Wo•[ht−1,Xt] + bo) (8)
ht � ot* tan h(Ct) (9)

The cell state exists in the whole process, and its function is to

update the cell state, that is, to update Ct-1 to C, multiply the old

state by ft, discard unwanted information, add new candidate

FIGURE 2
Expanded structure of the recurrent neural network.
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values, and determine the change of each cell state according to

the result. The formula is as follows:

Ct � ft•Ct−1 + it ~Ct (10)

In the above expressions, Xt is the input data of the long

short-term memory network at time t; ht is the data output at

time t; it, Ot, and ft are the activation vector values of input gate,

output gate, and forget gate of the LSTM neural network at time t

of a node; Wf, Wi, Wc, and Wo are the corresponding weights of

each structure, respectively; and bi, bc, and bo are the offsets

corresponding to each structure, respectively. C is the state of

neuron cells, σ is sigmoid function, and tanh is a hyperbolic

tangent function.

Comparison of LSTM and RNN

Table 1 lists the comparison of the LSTM network and the

RNN. The main advantage of the LSTM network is that it solves

the problems of disappearing gradients in RNN, and is more

suitable for processing long-memory time-series data.

The optimization algorithms

Optimization algorithms are required in the model to update

training and output parameters so that they approach or reach

the optimum, thereby maximizing (or minimizing) the loss

function (Kingma and Ba, 2015). Optimization algorithms are

divided into three categories (Qing, 1999). The first category is

gradient descent, which includes batch gradient descent, random

gradient descent, and small batch gradient descent. These

optimization algorithms optimize the model by minimizing

the loss function. The second category is momentum

optimization methods, including the momentum gradient

descent method and the Nesterov accelerated gradient method

(NAG). The last category is the adaptive learning rate

optimization algorithm, including the AdaGrad, RMSProp,

Adam, and AdaDelta methods (Kingma and Ba, 2015). Of

these, the Adam (adaptive momentum) optimization

algorithm is adopted in this study. This method can calculate

the adaptive learning rate for each parameter. The flow chart for

the Adam algorithm is shown in Figure 4.

In Figure 4, a is the learning rate, ß1, ß2 ⊂ [0,1) are to control

the moving average index attenuation rate; f(θ) is the objective
function; θ0 is the vector for the initial parameter; m0 is the initial

first moment for the gradient (expectation); m1 is the initial

second moment for the gradient (expectation of the square of the

gradient); m̂t and v̂t are the bias-corrected estimates; t is the time

step; and e is a small number. We need to determine the objective

function f(θ) and α, β1, and β2. Here a is generally 0.001, β1 is 0.9,
β2 is 0.999, and e is 10−8. Meanwhile, we need to initialize the

parameter vectors θ0, the first-order moment vector mt, the

second-order moment vector vt, and the time step t. Then we

need to determine whether the current θt converges to less than e.

FIGURE 3
Structure of the LSTM network.

TABLE 1 Comparison of LSTM and RNN.

RNN LSTM

Can process time-series data Can process time-series data

Short memory, failure of long-term dependence due to gradient vanishing problem Both long and short memory

Weights sharing Weights Sharing

Gradient disappearing and/or explosion No gradient disappearing and explosion
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If not, we update each part iteratively; that is, we update t to t+1,

the gradient of parameter θt, the first order matrix mt, and the

second-order matrix vt. Then we calculate the first order matrix

estimation and the second-order matrix estimation. Finally, we

update the parameter θt. Once the last θt value is less than ε, the
iteration ends and the optimal θt value is found.

The Adam algorithm is different from the traditional

stochastic gradient descent algorithm, which uses a single

learning rate to update the weight, and the learning rate does

not change in the training process. The Adam algorithm

iteratively updates neural network weights based on training

data. The Adam algorithm designs different adaptive learning

rates for different parameters by calculating the first-order and

second-order moment estimation of the gradient, which is the

combination of two stochastic gradient descent methods. The

adaptive gradient algorithm (AdaGrad) preserves a learning rate

for each parameter to improve the performance of sparse

gradients in natural language processing and computer vision.

Root mean square propagation (RMSProp) adaptively preserves

the learning rate for each parameter based on the mean of the

nearest magnitude of the weight gradient, which means that the

algorithm has good performance on unsteady and on-line

problems. The Adam algorithm combines the advantages of

the above two algorithms (Qing, 1999). It has the advantages

of efficient computation, small memory consumption, and

invariable gradient diagonal scaling. It is suitable for solving

large-scale optimization problems with big data and parameters,

as well as problems of high noise or sparse gradient, and has the

advantage of an intuitive interpretation of hyperparameters.

Regularization

Regularization is a general term for a class of methods that

add extra terms to loss functions in machine learning to prevent

overfitting and to improve model performance. Common

regularizations are l1 regularization and l2 regularization, or l1
norm and l2 norm. The model using l1 regularization is called

lasso regression, and the model using l2 regularization is called

ridge regression. The linear regression l1 regularization loss

function is

min
w

⎡⎣∑N

i�1(wTxi − yi)2 + λ‖w‖1⎤⎦ (11)

while the l2 regularization loss function is

min
w

⎡⎣∑N

i�1(wTxi − yi)2 + λ‖w‖22⎤⎦ (12)

In Eqs 11, 12, ω represents the coefficient of a feature, and the

regularization term puts a limit on the coefficient. Here l1 is

regularized as the sum of the absolute values of the elements in

the weight vectorw, and l2 is regularized as the sum of squares of the

elements in the weight vectorw. The regularization term is preceded

FIGURE 4
Flow chart for the Adam optimization algorithm.
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by a coefficient λ, whose value determines the relative importance of

the two terms in Eq. 12. In order to prevent overfitting in this work,

l2 regularization is used to constrain weight and bias.

Experiments and results analysis

The field well logs used in this study are from X field, including

13 logging curves, namely, computed gamma ray (CGR), uranium

(URAN), potassium (POTA), thorium (THOR), shallow lateral

resistivity (LLS), deep lateral resistivity (LLD), spontaneous

potential (SP), natural gamma ray (GR), borehole diameter

(CALI), photoelectric factor (PEF), neutron porosity (NPHI),

density (RHOB), and sonic interval transit time (DTCO). There

are two natural gamma ray logs: CGR and GR, of which GR is from

conventional GR logging, while CGR is from GR spectrometry

logging. CGR is the computed gamma ray, subtracting uranium

from total gamma ray is the summation of thorium and potassium

sources (Doveton, 1994). As a result, GR is larger than CGR. Four

groups of experiments are conducted: Exercise 1 assumes that there

are missing data in the upper section of the sonic log curve (DTCO).

Exercise 2 assumes that there aremissing data in the lower section of

the sonic log curve (DTCO). Exercise 3 assumes that there are

missing data in the neutron porosity logging curve (NPHI), and

Exercise 4 assumes a portion of the LLD curve is missing. Results

from the linear and logarithmic domain are then compared. From

there, we perform analysis on the results and provide an overall

evaluation. For all the exercises, and for comparison purposes, we

plot the results from both LSTM and RNN side-by-side.

Data and model preparation

The following steps are taken to prepare the data and model.

Step 1: Correlation analysis
Pearson correlation coefficients are computed for the original

well-logging curves to check the correlation between all the

curves and to help select the training data with strong

correlations with the target well-logging curve. We emphasize

that the Pearson correlation coefficient only checks the linear

relationship between the curves. However, the curves may have

some degree of nonlinear relationships. In this work, the Pearson

correlation coefficient is used to provide the first degrees of

correlation between the curves. In other words, it serves as a

reference. The final feature selection also incorporates human

experience. In fact, because not many features are involved, using

the Pearson correlation coefficient with human judgement is in

general sufficient for well logs; the advanced feature selection

method is not required.

Step 2: Data normalization
All the original well-logging curves are properly normalized

using equation 2 given in Section 2.2 and mapped to between

0 and 1. Here we emphasize that for the resistivity logs, the

normalization, training, and digital construction are performed

in the logarithm domain.

Step 3: Data transformation
The normalized data are transformed into supervised data to

a common input format for training time-series models such as

the LSTM network or RNN.

Step 4: Data training
The above processed data are divided into training set,

validation set, and test set, which comprise 60%, 20%, and

20% of the data, respectively. The training set is used to

adjust the deep learning network parameters to minimize the

loss function. By studying the training loss with the epoch

and the validation loss with the epoch, we can see if the

model is overfitting. If the result is not desired, the model

structure and hyperparameters, such as the learning rate, the

number of trainings, and batch size should be adjusted

accordingly.

The performance of the model is optimized by comparing

the training loss with the validation loss. Figure 5 shows part

of the network optimization process: The model in Figure 5A

shows that the validation loss is higher than the training loss at

one time, and the other way around at another time, which

indicates the model is unstable. In this case, the number of

trainings and batch processing samples need to be increased.

Generally speaking, with an increase in the number of

trainings, the number of weight updates in the network will

also increase, which is beneficial for model fitting. The larger

the number of batch samples, the more will be sampled from

the original data set each time, and the easier it will be to

ensure that the distribution of batch samples is similar to that

of the original data set. Figure 5B shows that it is difficult for

the training loss and the validation loss to coincide after the

inflection point, which may indicate that the network

converges very slowly due to the low learning rate, and so

it is necessary to increase the learning rate. If the learning rate

is increased to 0.01, for example, as shown in Figure 5C, a

sawtooth appears as the epoch increases, and the loss value

hovers around the optimal value. It is possible that the

learning rate is too large and that it directly skipped the

lowest value. It is therefore necessary to appropriately

reduce the learning rate to 0.001. For example, in

Figure 5D, the training loss and verification loss appear to

coincide at the end, indicating that a model with a better

performance has been trained and achieved.
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FIGURE 5
Model optimization. (A) Unstable case; (B) Learning rate too small; (C) Learning rate too large; (D) Optimal case.

FIGURE 6
Pearson correlation matrix for all the logging curves.
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Experiments

The experimental environment is Tensor flow 2.5.0 with

Python 3.9. The parameters of the LSTM network model

constructed in this article are as follows: There is one LSTM

network layer; there are 50 neurons in each hidden layer; and

there is 1 neuron in the output layer. The weight and bias in the

loss function are added into the l2 regularization term, and the

FIGURE 7
Reconstructed sonic logging curve between the depth of 12,699.0 ft and 12,909.5 ft.
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regularization coefficients are all set to 0.01. The loss function

adopts mean absolute error (MAE) and the optimization

algorithm adopts Adam. The model is trained in 250 epochs

and 128 models are processed in batches each epoch. Part of the

well logs (about 20%) are manually removed to simulate the

missing logs.

FIGURE 8
Reconstructed sonic logging curve between 12,949.0 ft and 13,159.5 ft.
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Exercise 1 (upper acoustic curve missing)
Assuming the sonic logging curve between the depth of

12,699.0 ft and 12,909.5 ft is missing, we first compute the

Pearson correlation matrix of the curves, which is show in Figure 6.

It can be seen from Figure 6 that CGR, POTA, THOR, GR,

and NPHI have relatively high positive correlation with DTCO,

while SP has the highest negative correlation with DTCO. Note

that we select the logging curves with the highest correlation with

DTCO, although this does not necessarily mean the correlation is

actually strong. For example, the correlation between CGR and

DTCO is 0.59, which is moderately correlated at best. In this

experiment, six logs—CGR, POTA, THOR, GR, NPHI, and

SP—are selected to train the LSTM network and the RNN,

and are then used to reconstruct the missing part of the sonic

logging curve. The training data in the model consists of two

complete logging sections, from a depth of 12,450.0 ft to a depth

of 12,699.0 ft and from a depth of 12,909.5 ft to a depth of

13,500.0 ft. The logging interval is 0.5 ft. The reconstructed sonic

logging curve using the LSTM model and the RNN model are

shown in the last two panels of Figure 7.

In Figure 7, panel 6 and panel 7 show the comparison

between the original sonic logging curve (red) and the

reconstructed sonic logging curve using the LSTM (green,

barely seen, because it is so close to the original curve), and

the prediction error in percentage, while panel 8 and panel

9 show the comparison of the original sonic logging curve

(red) and the reconstructed sonic logging curve using the

RNN (green, barely seen, because it is so close to the original

curve), and the prediction error in percentage. Clearly, both

reconstructed sonic logging curves match the original curve very

well, with the maximum error within 2%. However, the errors

from the LSTM are much smaller than those from the RNN.

Exercise 2 (lower acoustic curve missing)
In this exercise, we construct the lower section of the sonic

logging curve, between 12,949.0 ft and 13,159.5 ft. Figure 8 shows

the reconstructed sonic logging curves.

Similar to Figure 7, in Figure 8, panel 6 and panel 7 show the

comparison of the original sonic logging curve (red) and the

reconstructed sonic logging curve using the LSTM (green, barely

seen, because it is so close to the original curve), and the

prediction error in percentage, while panel 8 and panel

9 show the comparison of the original sonic logging curve

(red) and the reconstructed sonic logging curve using the

RNN (green, barely seen, because it is so close to the original

curve), and the prediction error in percentage. Clearly, both

reconstructed sonic logging curves match the original curve well,

with the maximum error within 5%. The errors (including

pattern and magnitude) from the LSTM are similar to those

from the RNN. The reason for the reconstruction at different

sections on the same logging curve is to avoid contingency, which

demonstrates that using the LSTM network to reconstruct well

logging curves has universal applicability.

Exercise 3 (partial absence of neutron porosity
logging curve)

In practice, acoustic, neutron porosity, density, and other

logging curves may be missing. In order to verify that the

LSTM network is capable of reconstructing logging curves

other than the sonic logging curve, we assume in this case that

the neutron porosity logging curve section between 12,949.0 ft

and from a depth of 13,159.5 ft is missing. It can be seen from

the correlation matrix in Figure 5 that CGR, POTA, THOR,

GR, and DTCO have positive correlation with NPHI, while SP

has a negative correlation with NPHI. In this experiment, six

logs: CGR, POTA, THOR, GR, DTCO, and SP are used to train

the LSTM network, and then to reconstruct the neutron

porosity curve. The training data in the model consists of

two complete logging sections, from a depth of 12,450.0 ft to a

depth of 12,949.0 ft, and from a depth of 13,160 ft to a depth of

13,500.0 ft. The logging interval is 0.5 ft. The reconstructed

neutron porosity logging curves using the LSTM and RNN

models are shown in Figure 9.

In Figure 9, panel 6 and panel 7 show the comparison

between the original NPHI logging curve (red) and the

reconstructed NPHI logging curve using the LSTM (green,

barely seen, because it is so close to the original curve), and

the prediction error in percentage, while panel 8 and panel

9 show the comparison of the original NPHI logging curve

(red) and the reconstructed NPHI logging curve using the

RNN (green, barely seen, because it is so close to the original

curve), and the prediction error in percentage. Clearly, both

reconstructed sonic logging curves match the original curve very

well, with the maximum error within 5%. However, the errors

from the LSTM are much smaller than those from the RNN. The

peak error at the depth of around 13090 ft is apparently caused by

the peak in POTA and CGR. As a result, more data cleaning is

needed before the prediction.

Exercise 4 (portion of deep lateral logging curve
is missing)

For Exercises 1-3, the predicted curve, either the sonic

logging curve or neutron porosity curve, belongs to porosity-

related curves, both having nice correlations with lithology-

related logging curves, such as GR or SP. The digital

construction of those curves is rather stable with high

accuracy. In this exercise, we predict the deep resistivity

logging curve (LLD), which is related to another

petrophysical parameter, fluid saturation, to see how the

LSTM network performs. To do so, we select the LLS curve,

NPHI curve, and DTCO curve for the model training. For the

resistivity curve, we compare the performance between the

linear domain and the logarithmic domain. The predicted

LLD curves in the linear resistivity domain using both the

LSTM and RNN for the missing segment are shown in

Figure 10, while those in the logarithmic resistivity domain

are shown in Figure 11.
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From panel 6 and panel 7 of Figure 10 and Figure 11, we can

see that the reconstructed LLD curve from the LSTM is very

close to the original LLD curve, especially in the logarithmic

resistivity domain. The result in the logarithmic resistivity

domain is much better than that in the linear domain. In the

logarithmic domain, the error is within 5%, while in the linear

domain, some of the error can be as high as 20%. From panel

8 and panel 9 of Figure 10 and Figure 11, we can see that the

FIGURE 9
Reconstructed neutron porosity logging curve between 12,949.0 ft and 13,159.5 ft.
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reconstructed LLD curve from the RNN is much worse than

that from the LSTM, with some of the error as high as 100% in

the linear resistivity domain, and 20% in the logarithmic

domain.

Results analysis

It can be seen from Figures 7–11 that by using the LSTM

network one can reconstruct the missing sonic, neutron porosity,

FIGURE 10
Reconstructed LLD logging curve between 12,949.0 ft and 13,159.5 ft in linear resistivity domain.
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and deep resistivity logging curves with very high accuracy using

the dataset in this study, and the results are much more accurate

than those from the RNN.We expect the procedure has universal

applicability. Table 2 shows the comparison of the LSTM and

RNN parameters for Exercise 1, 2, and 4. Clearly the RMSEs from

the LSTM for the three cases are much smaller than those from

the RNN, with only half the training time.

Due to the special gate design of the LSTM, the network

training not only takes into account the dependence of each log

curve, but also the influence of the previous depth on the future

FIGURE 11
Reconstructed LLD logging curve between 12,949.0 ft and 13,159.5 ft in logarithmic resistivity domain.
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depth. This enables the LSTM network to not only take full

advantage of the nonlinear characteristics between logs, but also

to learn the characteristics of the logs as they vary with the logging

depth. In addition, compared with the RNN, the LSTM network

has three more gating devices, so it can effectively solve the

problems of gradient disappearance and gradient explosion

present in the RNN. Moreover, the LSTM network has the

capability of handling long-term memory to include effects of

longer well-logging sequences. As a result, the LSTM network has

shorter training time, and the results are much more accurate than

those from the RNN. Digital logging curve construction can thus

be effectively and efficiently performed using the LSTM network.

Conclusion

In this study, the LSTM network is used to reconstruct three

types of logging curves with the following findings:

1) The network reconstructs all the missing sonic, neutron

porosity, and deep resistivity logging curves very well.

2) The resistivity construction should be conducted in the

logarithmic domain.

3) Comparative study shows that the results from the LSTM

network are much more accurate than those from the

traditional RNN.

As a special type of RNN, the LSTM network has an added three

gating devices, which make it more useful for the reconstruction of

logging curves due to its inherent memory characteristics and ability

to handle gradient disappearance and/or explosion. The network

allows for automatically finding the logging curves possessing strong

correlations with the target curve to serve as a training set for the

model, thereby saving the cost of manual data processing, and

avoiding the limitations of traditional empirical formulas and

statistical analysis reconstruction. In this study, 60% of the total

logging segments are used as the training data for the LSTM network

model, which achieves very accurate reconstructions with the

advantages of cost saving, high accuracy, robustness, and

intelligence. This finding could pave the way for digital

construction of well logs using deep-learning algorithms in the future.
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TABLE 2 The parameters for the LSTM and RNN.

Logging curve No. of
iterations

No. of
batches

Optimization
algorithm

Training time
(s)

RMSE

RNN DTCO 250 64 Adam 32.51 0.616

NPHI 250 64 Adam 32.70 0.006

LLD (Log Domain) 250 64 Adam 31.98 4.358

LSTM DTCO 250 128 Adam 15.58 0.551

NPHI 250 128 Adam 15.02 0.004

LLD (Log Domain) 250 128 Adam 13.96 0.013
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