Check for updates

OPEN ACCESS

EDITED BY MoezAllslam Ezzat Faris, University of Sharjah, United Arab Emirates

REVIEWED BY

Mohd Adzim Khalili Rohin, Sultan Zainal Abidin University, Malaysia Zahra Vahdat Shariatpanahi, Shahid Beheshti University of Medical Sciences, Iran

*CORRESPONDENCE Rami Al-Jafar ⊠ r.al-jafar18@imperial.ac.uk

SPECIALTY SECTION This article was submitted to Nutrition and Metabolism, a section of the journal Frontiers in Nutrition

RECEIVED 28 October 2022 ACCEPTED 02 January 2023 PUBLISHED 17 January 2023

CITATION

Al-Jafar R, Wahyuni NS, Belhaj K, Ersi MH, Boroghani Z, Alreshidi A, Alkhalaf Z, Elliott P, Tsilidis KK and Dehghan A (2023) The impact of Ramadan intermittent fasting on anthropometric measurements and body composition: Evidence from LORANS study and a meta-analysis. *Front. Nutr.* 10:1082217. doi: 10.3389/fnut.2023.1082217

COPYRIGHT

© 2023 Al-Jafar, Wahyuni, Belhaj, Ersi, Boroghani, Alreshidi, Alkhalaf, Elliott, Tsilidis and Dehghan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The impact of Ramadan intermittent fasting on anthropometric measurements and body composition: Evidence from LORANS study and a meta-analysis

Rami Al-Jafar ^{1,2*}, Nisa Sri Wahyuni¹, Karim Belhaj¹, Mohammad Hamed Ersi³, Zahra Boroghani^{3,4}, Amer Alreshidi⁵, Zahra Alkhalaf⁶, Paul Elliott^{1,7,8}, Konstantinos K. Tsilidis^{1,9} and Abbas Dehghan^{1,7,10}

¹Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom, ²Department of Data Services, Lean Business Services, Riyadh, Saudi Arabia, ³Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran, ⁴Clinical Research Development of Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran, ⁵Pharmaceutical Care Department, Hail General Hospital, Hail Health Cluster, Ministry of Health, Hail, Saudi Arabia, ⁶Dammam Medical Complex, Medical and Clinical Affairs, Dammam, Saudi Arabia, ⁷Dementia Research Institute at Imperial College London, London, United Kingdom, ⁸National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom, ⁹Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece, ¹⁰MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom

Background: Although the effect of Ramadan intermittent fasting (RIF) on anthropometry and body composition has been questioned, none of the previous studies tried to explain the reported changes in these parameters. Also, systematic reviews that investigated the topic were limited to healthy individuals or a specific disease group.

Methods: The London Ramadan Study (LORANS) is an observational study on health effects of RIF. We measured weight, waist circumference (WC), hip circumference (HC), body mass index (BMI), waist-to-hip ratio (WHR), basal metabolic rate (BMR), fat percentage (FP), free-fat mass (FFM), extremities predicted muscle mass, total body water (TBW), trunk FM, trunk FFM and trunk predicted muscle mass before and immediately after Ramadan. Using mixed-effects regression models, we investigated the effect of RIF with adjustment for potential confounders. We also conducted a meta-analysis of the results of LORANS with other studies that investigated the effect of RIF on anthropometry and body composition. The review protocol is registered with PROSPERO registry (CRD42020186532).

Results: We recruited 146 participants (Mean \pm SD age = 43.3 \pm 15 years). Immediately after Ramadan, compared with before Ramadan, the mean difference was -1.6 kg (P < 0.01) in weight, -1.95 cm (P < 0.01) in WC, -2.86 cm (P < 0.01) in HC, -0.60 kg/m^2 (P < 0.01) in BMI and -1.24 kg (P < 0.01) in FM. In the systematic review and meta-analysis, after screening 2,150 titles and abstracts, 66 studies comprising 7,611 participants were included. In the general population, RIF was followed by a reduction of 1.12 Kg in body weight (-1.89 - -0.36, $I^2 = 0$), 0.74 kg/m² reduction in BMI (-0.96 - -0.53, $I^2 = 0$), 1.54 cm reduction in WC (-2.37 - -0.71, $I^2 = 0$) and 1.76 cm reduction in HC (-2.69 - -0.83, $I^2 = 0$). The effect of fasting on anthropometric and body composition parameters starts to manifest in the second week of Ramadan and starts to diminish 3 weeks after Ramadan. **Conclusion:** RIF is associated with a reduction in body weight, BMI, WC, HC, FM, FP and TBW. Most of these reductions are partially attributed to reduced FM and TBW. The reductions in these parameters appear to reverse after Ramadan.

KEYWORDS

anthropometry, weight, waist circumference, body mass index, fat, muscle mass, systematic review

Introduction

In the last few decades, more fasting regimens, usually referred to as intermittent fasting, have emerged as a non-pharmaceutical approach in integrative medicine and a method to reduce and control weight to improve health (1, 2). There are different types of intermittent fasting, but the most common ones are alternate-day fasting, time-restricted feeding, twice-a-week method and 24 h fasting (2). Ramadan intermittent fasting (RIF) is a model of time-restricted feeding. Every year, hundreds of millions of Muslims observe RIF. During Ramadan, Muslims fast from dawn to sunset and adopt a different lifestyle that could affect their health. Inevitably, this dramatic change in their dietary habits and lifestyle will be reflected in their anthropometric measurements and body composition, which are tightly connected to their health status. For instance, body weight and shape influence metabolism and insulin sensitivity (3, 4). Most studies that have investigated the effect of RIF on anthropometric and body composition parameters concluded that RIF is associated with lower weight, body mass index (BMI), fat mass (FM), fat percentage (FP), waist circumference (WC) and hip circumference (HC) (5-9). However, a few studies showed no changes or even an increase in these parameters (10-17). Moreover, none of the studies showing reductions in these parameters considered potential confounders that may have affected their findings or explained the observed changes (13, 14, 18–20) and none targeted the general population.

Furthermore, to date, seven meta-analyses have been done on the effect of RamadanRIF on body weight (21-24), BMI (24, 25), WC (26), FP (27), FM (24, 27), and fat-free mass (FFM) (24, 27). Still, none has done a meta-analysis on the effect on HC, muscle mass, total body water (TBW), and waist-to-hip ratio (WHR). The studies on BMI and FFM reported heterogeneous results. Also, except for one review which focused on type 2 diabetes patients (25), all others were limited to healthy individuals; therefore, the findings of these studies are not generalisable to the Muslim population (healthy and unhealthy). Using time of follow-up visits as a subgrouping variable, two reviews (23, 27) conducted a meta-analysis on the effect estimates at two timepoints of follow-up (last week of Ramadan-a week after Ramadan; more than 2 weeks after Ramadan), but the other reviews observed the effect at only one time-point of follow-up. Conducting analyses at various time points of follow-up is required to know when the effects start to take place during Ramadan and whether they persist or fade away after Ramadan.

Therefore, to bridge these knowledge gaps, we conducted the London Ramadan Study (*LORANS*), which is a community-based study targeting the general population, in which we collected data on anthropometry and body composition of individuals as well as potential confounders to apply appropriate adjustments and explain the changes in the investigated parameters. And we conducted a systematic review and meta-analysis (including subgroup analysis based on time-points of follow-up) to investigate the effect of RIF on BMI, weight, FM, muscle mass, TBW, WC, HC, and WHR.

Methods

LORANS

LORANS is an observational study among the general population of Muslims in London during Ramadan 2019 (25 April-16 June 2019). We contacted six large mosques in London and provided them with information about the study. Out of the six, five mosques (Beitulfutuh Mosque, Finsbury Park Mosque, West London Mosque, Almanaar Mosque, and Madina Mosque) agreed to support the study and dedicate a room for recruitment and data collection. Before data collection, from 19 to 24 April, we launched a temporary website (https://fastingresearch.co.uk/) that provided information about the study and its aims and had a booking link enabling interested individuals to book their visits in one of the data collection settings. Further, we visited the five mosques to invite individuals who attended prayer sessions to take part in LORANS and distributed flyers about the study. And we asked mosque leaders to arrange for an announcement about our study right after a Friday midday prayer a couple of weeks before our data collection period.

We set up clinics in the five mosques where participants were recruited and data were collected. Within 10 days before Ramadan, we collected data on 146 participants from the five mosques. Eightyfive participants came for a second measurements visit which was 8–12 days after Ramadan. A comparison between participants who completed the study and those who only attended the first visit showed that the two groups were largely similar except for age and smoking status (Supplementary material 1).

We included all individuals 18 years old and over who were planning to fast for at least 20 days of Ramadan. Pregnant women and those who were not going to be available after Ramadan were excluded.

The measurements were collected from participants before Ramadan (from 26 to 30 April from 1 to 7 pm) and after Ramadan (from 10 to 14 June from 1 to 7 pm). We followed the Airwave study protocol (28) in data collection. We measured height, weight, WC and HC using a stadiometer (Leicester Height Measure), a weighing scale (Marsden digital weighing scale) and a body tape measure. Measurements were reported to the nearest 0.1 kg and 0.01. Each anthropometric measurement was repeated twice, and the average of the two measurements was recorded. Weight was measured without heavy clothes/items and shoes. WC was measured by wrapping the tape measure at the top of the hip bones or the narrowest area to the umbilicus if it was difficult to locate the hip bones. The HC was measured by wrapping the tape measure around

the broadest area of the hips. Participants' body composition was measured using a bioelectrical impedance analyser (BIA) (model: Tanita BC-418) with substracting 2 kg from weight measured by the BIA to correct for clothes. For accuracy and safety, before using the BIA, we asked participants whether they have metal implants or pacemakers. Participants' body composition was measured using a multi-frequency segmental bioelectrical impedance analyser (BIA) (model: Tanita BC-418). This BIA model is built to last for around 300,000 measurements without the need of calibration and has eight tactile electrodes for hands and feet. The BIA estimates basal metabolic rate (BMR), FP, FM, FFM, and TBW. The BIA also estimates FP, FM, FFM and predicted muscle mass (PMM) in the trunk and each limb using prediction equations that involve height, weight, age and sex of the participant to calculate body composition parameters (29). It uses inbuilt equations derived from previously conducted regression analyses with Dual Energy X-ray Absorptiometry (DEXA). BIA has been validated in studies using DEXA and magnetic resonance imaging (30, 31). Participants were asked to take off heavy clothes and shoes before taking their measurements or using the BIA. Also, we wiped tactile electrodes with disinfectant Wipes after each use. We calculated BMI by dividing weight (kg) by height in meters squared. We took the average of the four extremities' predicted muscle masses to estimate extremities PMM.

All participants submitted an online questionnaire about their lifestyle and socioeconomic status. Also, 55 participants filled out a 3-day food diary before and during Ramadan. The 3 days consisted of 2 weekdays and 1 weekend day to capture changes in diet during weekends. The food diary included instuctions about how to fill it out and examples for the participants. Nutritics (nutrition software) was used for food diary analysis (32).

The ethics committee at Imperial College London approved the study (reference: 19IC5138, dated 17/4/2019), and all participants gave informed consent before taking part.

Systematic review

We conducted a systematic review following the PRISMA guidelines (Supplementary material 2) and registered the review protocol under the PROSPERO registry of CRD42020186532.

Eligibility criteria

We sought published and unpublished studies that examined the effect of RIF on anthropometric measurements and/or body composition. We considered studies that measured any anthropometric or a body composition measure before and during/after Ramadan. We only included studies that reported measurements as means and SDs to obtain the pooled effect. We excluded reviews, studies that involved any other intervention besides RIF, studies on pregnant women and studies of athletes.

Information sources, search and study selection

We searched three databases: PubMed, Embase and Scopus from inception until 6 May 2022, seeking all relevant published studies without language restrictions. We used this search approach "Ramadan" or "Ramadan fasting" or "Ramadan intermittent fasting" and ("anthropometr*" or "weight" or "BMI" or "fat" or "body composition" or "waist circumference" or "obes*" or "body mass index" or "hip circumference").

Each of the following procedures was carried out twice and in parallel by two independent reviewers (divided among RA, NW, KB, ME, ZB, ZA, and AA). We screened all titles and abstracts of all potential studies; then we assessed the full-texts of studies that were deemed eligible. We resolved disagreements by consensus.

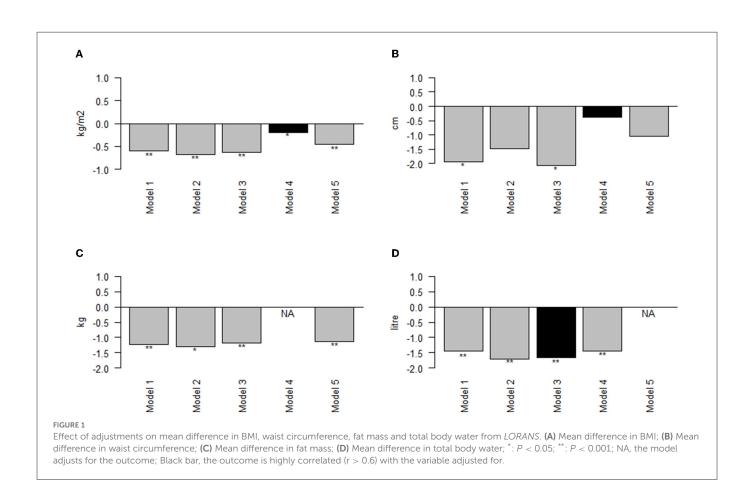
Data collection process

RA, NW, ME and ZB extracted all relevant data from enrolled studies in a spreadsheet. Extracted data included: author, year, study country, journal, sample size, population type, tools used for measurements, means and SDs of anthropometric and body composition measurements including weight, height, BMI, WC, HC, basal metabolic rate (BMR), FM, muscle mass, FFM, TBW and WHR in all time-points; information on adjustments (if any).

Risk of bias

We modified the Newcastle-Ottawa Quality Assessment Scale of cohort studies (33) to make a version that could be applied in this review. The scale (Supplementary material 3) is based on selection, comparability and outcome. Based on the quality score, we classified studies as either low quality (0–4), satisfactory (5, 6), good (7, 8) or very good (9). RA, NW, ME and ZB assessed the quality of all selected studies independently in parallel and resolved disagreements by consensus. Supplementary material 4 shows the quality scores of selected studies.

Estimating fasting time length


We adopted the same method developed by Faris et al. (26), which basically relies on "timeanddate" (https://www.timeanddate.com/sun/@8469718) to estimate the day length (from sunrise and sunset). Since Muslims start fasting around 80 min before sunrise (Al-Fajr prayer call), 80 min should be added to the day length to estimate the fasting time.

Statistical analysis

LORANS

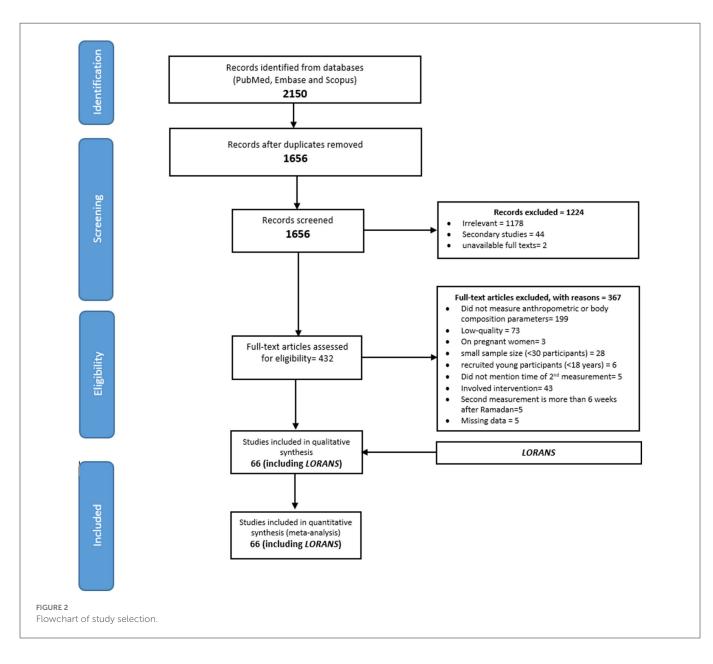
Using multiple imputations with ("mice") package in R (Windows 3.6.1), we imputed the second measurements of weight, WC, HC, BMR, FM, FP, FFM, TBW, extremities PMM, trunk FM, trunk FFM and trunk PMM for the 61 participants who didn't attend the second visit. Afterwards, we calculated BMI and WHR based on the imputed values.

We used R ("lme4" package) to apply linear mixed-effects model regression to estimate the impact of RIF on anthropometric measurements and body composition. The linear mixed-effects model allowed us to correct for potential confounders, including both fixed and random factors. The dependent variables were the anthropometric and body composition parameters. The independent variables were age, sex, number of fasting days during Ramadan, day of the second measurement, and location (mosque). Also, we adjusted for energy intake, extremities PMM, fat mass and TBW to

explore to what extent these parameters contribute to the changes in the other dependent variables. We ran the analysis using five models. In the first model, we adjusted for age, sex, number of fasting days, second visit day and location. Other models were further adjusted for energy intake (model 2); extremities PMM (model 3); FM (model 4); and TBW (model 5). These adjustments were applied to investigate the effects of potential confounders (which were measured before and after Ramadan) and to explain the observed changes in anthropometric measurements and body composition. Moreover, we grouped the participants based on their baseline BMI (normal weight = $18.5 - \langle 25; \text{ overweight} = 25.0 - \langle 30; \text{ obesity} = \geq 30 \text{ kg/m}^2$) and retested the changes of anthropometric and body composition indices (using the first model discussed above). When the correlation coefficient was >0.6 between the outcome and potential confounders, we did not apply the model to avoid collinearity. We considered the result to be statistically significant if the p < 0.05.

Meta-analysis

We used R (Windows 3.6.1, "meta" package) to run an inverse variance weighted fixed-effects model to estimate the pooled effect (difference in means after/before Ramadan from included studies) of RIF on anthropometric and body composition measures. Also, we estimated the consistency of included studies by a test of heterogeneity (I^2). We grouped studies based on the timing of their follow-up visits. To collate studies with similar follow-up, we grouped studies into four time-points of follow-up: middle of Ramadan ($2^{nd}/3^{rd}$ week of Ramadan), end of Ramadan (4^{th} week of Ramadan), immediately after Ramadan (within 2 weeks after Ramadan) and


long after Ramadan (three to 6 weeks after Ramadan). Meta-analysis was separately done for each measured parameter which were BMI, weight, FP, FM, WC, HC, WHR, TBW and muscle mass. If a study measured a parameter at two different time points (e.g., 4th week of Ramadan and long after Ramadan), we included it in both meta-analyses. This approach led to having 25 meta-analyses with three studies being the smallest number of studies in a meta-analysis. The pooled effect with a p < 0.05 was deemed statistically significant.

The potential presence of the small-study effect was assessed qualitatively (visualizing funnel plots) and quantitively (using Egger's regression tests) (34). If Egger's test had a p < 0.1, we applied the trim and fill method to address the asymmetry. Then, we re-estimated the effect under this correction and compared it to the original effect.

Results

LORANS

Supplementary material 5 shows the participants' baseline characteristics. Out of the 146 participants, 75 (51.4%) participants were male and mean \pm SD age was 43.3 \pm 15 years. During Ramadan, total energy intake was 1,507 kcal compared to 1,503 kcal before Ramadan (P = 0.940). Similarly, no significant changes were reported in intakes of carbohydrates (16.9 g, 0.3–34, P = 0.214), protein (-7.4, -16.1-1.3, P = 0.110) or fat (-3.8 g, -10.4-3, P = 0.274) during Ramadan. After Ramadan, there was a significant reduction of 1.6 kg (P < 0.01) in body weight, 1.95 cm (P < 0.01) in WC, 2.86 cm (P < 0.01) in HC, 0.60 kg/m² (P < 0.01) in BMI,

1.05% (P < 0.01) in FP, 1.24 kg (P < 0.01) in FM and 1.45 liter (P < 0.01) in TBW (Figure 1). We also observed non-significant decreases in FFM (-0.21 kg), trunk FP (-0.85 kg) and trunk FM (-0.53 kg). The change in extremities' PMM was non-significant and negligible. BMR decreased by -12.8 Kcal (P < 0.05) after Ramadan. Further, adjustment for energy intake only diminished the decrease in WC (from -1.95 to -1.49 cm), and trunk FP (from -0.85 to -0.73). None of the observed differences was influenced by adjusting for extremities PMM in the third model. Almost all mean differences were influenced by the fourth and fifth models. After adjustment for FM, the reductions in weight and trunk FFM became non-significant. Also, the reduction in WC became non-significant when adjusted for TBW in the fifth model (Supplementary material 6).

When we divided participants into groups based on baseline BMI, we noticed that the weight and BMI reductions were non-significant in individuals with obesity. And HC and TBW reductions were non-significant in individuals with normal weight (Supplementary material 7).

Systematic review

After screening 2,150 titles /abstracts and reading 432 full texts, we identified 139 studies (Figure 2). Of these, 73 studies had lowquality scores (quality score average = 3.85 out of 9) and were not included in the review. As a result, we included 66 studies (including *LORANS*) with a total of 7,496 participants in the meta-analysis. Of these, 55 studies were classified as satisfactory quality with moderate risk of bias and 10 studies as good quality with low risk of bias (Supplementary material 4).

Study characteristics

The included studies were from 20 countries and most commonly (15 studies, 22.7%) were conducted in Iran (Table 1). The majority of the studies targeted healthy individuals (21 studies). Others included type 2 diabetes patients (21 studies), overweight/obese individuals (four studies), chronic kidney disease (CKD) patients (five studies), and individuals with metabolic syndrome (three studies). *LORANS* was the only community-based study, targeting the general population. Weight was the most commonly investigated anthropometric index (54 studies) followed by BMI (50 studies), WC (33 studies), FP (13 studies), HC (13 studies), WHR (12 studies), FM (11 studies), MM (7 studies) and TBW (7 studies) (Supplementary material 8).

Effect on BMI and weight

We observed a similar pattern (a drop at the end of Ramada/immediately after Ramadan and a rise long after Ramadan) in BMI and weight. Compared to baseline values, BMI reduced at middle of Ramadan by 0.44 kg/m² (95 % confidence interval -0.87 to 0, I² = 9%), end of Ramadan by 0.36 kg/m² (-0.71 to -0.02, I² = 0%) and immediately after Ramadan by 0.74 kg/m² (-0.96 to -0.53, I² =0%). However, the mean difference of BMI between baseline and long after Ramadan was not significant (-0.14 kg/m², -0.43 to 0.14, I² =0%) (Figure 3). The similar pattern was observed in weight which decreased significantly at middle, end and immediately after Ramadan (-1.55 kg, -2.65--0.44, I² = 0%; -1.22 kg, -2.29--0.15, I² = 0%; -1.12 kg, -1.89--0.36, I² = 0%, respectively) but the reduction was not significant long after Ramadan (-0.32 kg, -1.95-0.31, I² = 0%) (Figure 4).

Effect on fat, muscle and body water

At the end of Ramadan and immediately after Ramadan, there was a drop in both FP (-0.66 kg, -1.57-0.25, $I^2 = 0\%$; -0.46 kg, -1.45-0.53, $I^2 = 0\%$) and FM (-0.64 kg, -1.54-0.26, $I^2 = 0\%$; -0.49 kg, -1.62-0.65, $I^2 = 0\%$). Long after Ramadan, FP (1.15 kg, 0.14-2.16, $I^2 = 32\%$) and FM (0.95 kg, -0.15-2.06, $I^2 = 0\%$) were higher than the baseline values (Supplementary materials 9, 10). Muscle mass reduced by the end of Ramadan by -0.25 kg (-2.10-1.60, $I^2 = 0\%$) (Supplementary material 11). TBW was also reduced at the end of Ramadan by -0.25 kg (-1.16-0.67, $I^2 = 0\%$) and immediately after Ramadan by -1.09 kg (-2.29-0.11, $I^2 = 0\%$) (Supplementary material 12).

Effect on WC, HC and WHR

WC, HC and WHR are also affected by RIF. The meta-analysis showed reductions compared to baseline in WC in the middle of Ramadan (-0.11 cm, -1.07-0.84, $I^2 = 0\%$), at the end of Ramadan (-1.08 cm, -2.26-0.11, $I^2 = 0\%$), immediately after Ramadan (-1.54 cm, -2.37--0.71, $I^2 = 0\%$) but no significant difference long after Ramadan (-0.45 cm, -1.08-0.18, $I^2 = 0\%$) (Figure 5). HC did not change by the end of Ramadan (-0.07 cm, -1.82-1.69, $I^2 = 0\%$), decreased significantly immediately after Ramadan (-1.76 cm, -2.69--0.83, $I^2 = 10\%$) and did not show a significant difference long after Ramadan (0.26 cm, -1.89-2.41, $I^2 = 0\%$) (Supplementary material 13). There was a negligible change in the waist to hip ratio at the middle, end and long after Ramadan (Supplementary material 14).

Small-study effects bias

To assess for asymmetry, we constructed funnel plots and ran Egger's test on all subgroups and considered a significant *p*-value

as evidence for asymmetry (Supplementary material 15). The trim and fill method was applied to correct for the potential asymmetry. However, after applying this method, no changes were observed in the effects.

Discussion

LORANS found that RIF is associated with a significant reduction in body weight, WC, HC, BMI, FP, FM, TBW, trunk FFM and trunk PMM immediately after Ramadan. Most of these changes were independent of physical activity, energy intake and extremities PMM but partially dependent on TBW and FM. The meta-analysis has 66 studies (including LORANS) and 7,496 participants indicated a significant reduction in weight, BMI, WC and HC starting within the second and third weeks of Ramadan, continuing in the fourth week of Ramadan, peaking immediately after Ramadan and declining to reach the pre-Ramadan levels 3 weeks or more after Ramadan.

Conducting LORANS enabled us to investigate the effect of adjustments on the changes in anthropometric and body composition indices of interest. The main adjustments that made a change in anthropometric changes after Ramadan were FM and TBW which decreased significantly after Ramadan and are more likely to be mediators rather than confounders. In other words, the observed changes in anthropometric and body composition measures are due to losing fat or dehydration. The latter should not be confused with daily dehydration which happens due to abstinence from water drinking during Ramadan since the measurements were done a few days after Ramadan when participants were supposed to be wellhydrated. Although some studies reported that RIF is associated with lower energy intake and physical activity (85, 86), the two factors didn't change significantly after Ramadan and didn't change the observed effects of RIF on anthropometric and body composition indices in LORANS. Fernando et al. (27) argued that decreased weight and fat might be due to increased energy expenditure, but another study showed that there is no association between RIF and energy expenditure (86).

Several animal and human studies on intermittent fasting reported reduced body fat and maintained muscle and attributed the observed effects to the metabolic switch (87–89). In this state, the body uses ketones and fatty acids for energy and the metabolism becomes more efficient (90). Although we reported similar effects, we are still uncertain about the mechanism behind the effects of RIF on anthropometric measurements and body composition due to the differences between RIF and the other types of intermittent fasting.

In 2022, Erdem et al. conducted a recent study (91) that assigned 360 individuals into five groups, including time-restricted fasting (TRF) with 6 h eating window (TRF-6 h), TRF with 8 h eating window (TRF-8 h) and alternate-day fasting (ADF). There was no restriction on calorie intake in the two TRF models, but it was restricted to <500 kcal 2 days per week in ADF. They measured anthropometric measurements on three-time points (after 1, 6 and 12 weeks). Similarly to Ramadan effects in our study, the authors reported that the three fasting models significantly reduced weight, BMI, and WC but not HC. Interestingly, although energy intake in the two TRF groups was almost identical, the reductions in all indices were greater in group TRF-6 h than in group TRF-8 h. The eating window in the two TRF models is close to that in LORANS (~7 h). However, the eating window was at night in LORANS, but

TABLE 1 Characteristics of studies included in the meta-analyses.

References	Country	Subjects	Age (mean \pm SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
Adanan et al. (7)	Malaysia	68	54.3 ± 2.2	55.2	13 h 35 min	CKD patients	↑	BMI	26 ± 4.20		$\begin{array}{c} 25.80 \pm \\ 4.10 \end{array}$		$\begin{array}{c} 25.90 \pm \\ 4.20 \end{array}$
								FM	23.20 ± 8.40		$\begin{array}{c} 22.20 \pm \\ 8.80 \end{array}$		$\begin{array}{r} 23.10 \pm \\ 8.30 \end{array}$
								FP	29 ± 8.50		$\begin{array}{c} 28.80 \pm \\ 8.40 \end{array}$		29 ± 8.40
								WC	92 ± 11.40		90.30 ± 10.70		91.50 ± 11.60
Adnan et al. (10)	Malaysia	35	54 ± 2.2	46	12 h 38 min	CKD patients	NA	Weight	65.20 ± 12.30		65.20 ± 12.50		
Ahmadinejad et al. (35)	Iran	81	22.7 ± 2.3	50.6	10 h 30 min	Healthy subjects	NA	BMI	21.20 ± 4.50		20.90 ± 2		
								Weight	62.40 ± 11.60		$\begin{array}{c} 61.20 \pm \\ 10.80 \end{array}$		
Al Awadi et al. (36)	NM	136	$32\pm \mathrm{NM}$	55.1	Unknown	T1D patients	NA	Weight	74.80 ± 14.30				75 ± 14.40
								WC	89.30 ± 16.30				88.70 ± 15.80
Aliasghari et al. (37)	NM	42	36 ± 7	59.5	Unknown	NAFLD Patients	NA	BMI	30.09 ± 4.49			29.28 ± 4.14	
								Weight	83.65 ± 13.02			81.50 ± 12.80	
								WC	100.21 ± 11.02			99.26 ± 10.86	
								НС	107.02 ± 7.11			106.47 ± 7.09	
Akanji et al. (38)	Kuwait	64	48 ± 10.6	71.7	11 h 44 min	Hyperlipidaemic subjects	NA	Weight	82.40 ± 13.60			82.90 ± 14.80	
Alzoughool et al. (11)	Jordan	60	$20.9 \pm \text{NM}$	28.3	15 h 25 min	Healthy subjects	NA	BMI	24.10 ± 4.49		$\begin{array}{c} 23.90 \pm \\ 4.34 \end{array}$		
								Weight	65.10 ± 13.94		64.70 ± 13.16		
								WC	78 ± 11.62		78.10 ± 10.84		

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
Bahmani (39)	Iran	191	$30 \pm \mathrm{NM}$	18.8	14 h 14 min	Prediabetic subjects	NA	BMI	29.44 ± 4.18			28.79 ± 4.25	
								Weight	69.30 ± 13.30			68.90 ± 11.30	
Bashier et al. (40)	NM	417	54 ± 11.6	41.5	Unknown	T2D patients	NA	Weight	83.90 ± 17				$\begin{array}{r} 83.80 \pm \\ 16.60 \end{array}$
Bernieh et al. (41)	NM	31	54 ± 4.2	61.3	Unknown	CKD patients	NA	Weight	76.40 ± 18		75 ± 17.60		$\begin{array}{c} 75.70 \pm \\ 18 \end{array}$
Bencharif et al. (42)	Algeria	72	51.2 ± 4.7	48.6	10 h 57 min	T2D patients	NA	BMI	28 ± 4.30	$\begin{array}{r} 27.90 \pm \\ 4.30 \end{array}$			$\begin{array}{c} 28.60 \pm \\ 4.30 \end{array}$
								Weight	75.40 ± 11.30	75.20 ± 11.40			77.1 ± 11.5
								FP	33.40 ± 8.60	$\begin{array}{c} 34.60 \pm \\ 8.50 \end{array}$			$\begin{array}{c} 33.70 \pm \\ 8.10 \end{array}$
								WC	94.40 ± 6.30	95 ± 6.40			$\begin{array}{c} 96.40 \pm \\ 6.10 \end{array}$
Bouida et al. (18)	Tunisia	98	59.1 ± 10	87.7	12 h	Individuals with high cardiovascular	Ţ	BMI	29.50 ± 3.70		29 ± 3.60		29.60 ± 3.70
						risk		Weight	83.20 ± 11.10		81.7± 11.1		$\begin{array}{c} 82.90 \pm \\ 13.90 \end{array}$
Dasgupta et al. (19)	NM	43	32 ± 10.5	14	Unknown	Healthy subjects	\downarrow	BMI	$22.68 \pm 4.965.0$			21.65 ± 4.75	
								Weight	51.60 ± 12.03			49.26 ± 11.55	
								WC	83.63 ± 11.01			81.32 ± 10.64	
Devendra et al. (12)	United Kingdom	52	62.3 ± 9.8	65.4	13 h 58 min	T2D patients	NA	Weight	87.60 ± 8.11			88.20 ± 8.48	
Ebrahimi et al. (8)	Iran	42	38 ± 7	59.5	16 h 22 min	Non-alcoholic fatty liver disease patients	NA	BMI	30.09 ± 4.49			29.28 ± 4.14	
								Weight	83.65 ± 13.02			81.50 ± 12.8	
								FP	34.70 ± 8.76			34.02 ± 8.82	
								WC	100.21 ± 11.02			99.26 ± 10.86	

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
								НС	107.02 ± 7.11			106.47 ± 7.09	
Elfert et al. (43)	Egypt	216	NM	65.3	14 h 18 min	Liver Cirrhosis Patients	NA	BMI	28.7 ± 3			27.30 ± 3	
Faris et al. (9)	UAE	57	36 ± 12.5	61.4	15 h	Overweight/ obese subjects	1	BMI	30.80 ± 5.10		$\begin{array}{c} 30.40 \pm \\ 5.10 \end{array}$		
								Weight	89.40 ± 14.90		$\begin{array}{c} 88.20 \pm \\ 14.50 \end{array}$		
								FM	27 ± 9.10		$\begin{array}{c} 26.10 \pm \\ 9.20 \end{array}$		
								WC	93 ± 13		92 ± 12		
								НС	106 ± 11		105 ± 11		
								TBW	43.7 ± 8		43.3 ± 8		
								ММ	55 ± 9.70		$54.50 \pm \\ 6.30$		
Faris et al. (20)	Jordan	50	32 ± 9.5	42	14 h 30 min	Healthy subjects	Ļ	BMI	26.30 ± 5.01	$\begin{array}{c} 25.85 \pm \\ 4.91 \end{array}$			26.40 ± 5
								Weight	71.82 ± 13.41	70.58 ± 13.20			71.92 ± 13.50
								FP	24.12 ± 12.60	20.38 ± 11.32			30.48 ± 11.32
								WC	83.62 ± 11.17	82.69 ± 10.34			82.68 ± 10.37
								НС	102.61 ± 9.66	101.9 ± 9.98			101.02 ± 9.67
								WHR	0.81 ± 0.07	0.81 ± 0.07			$\begin{array}{c} 0.81 \pm \\ 0.06 \end{array}$
Feizollahzadeh et al. (44)	NM	70	$48 \pm NM$	100	Unknown	Healthy subjects	NA	BMI	27.98 ± 1.38			27.35 ± 1.51	
								Weight	79.77 ± 8.95			77.93 ± 8.93	
Finch et al. (45)	United Kingdom	41	35.3 ± 11.5	37	11 h 36 min	Healthy subjects	NA	Weight	71 ± 12.04		$\begin{array}{c} 70.7 \pm \\ 12.80 \end{array}$		70.8 ± 12.61

60

10.3389/fnut.2023.1082217

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after F
Gholami et al. (13)	Iran	20	NM	44.4	15 h 33 min	T2D patients	NA	BMI	28.53 ± 3.90			28.14 ± 3.92	
								WC	99.66 ± 10.30			100.33 ± 9.70	
Hassanein et al. (46)	NM	1,749	58.3 ± 13.1	55.6	Unknown	T2D patients	NA	Weight	84.70 ± 16				$\begin{array}{c} 84 \pm \\ 14.40 \end{array}$
								WC	100.30 ± 14.30				99.20 ± 14.40
Hassanein et al. (47)	United Kingdom	59	NM	55.9	Unknown	T2D patients	NA	Weight	77.34 ± 12.85				77.58 ± 13.53
Khan et al. (48)	Pakistan	35	21 ± 4	51.4	15 h 21 min	Healthy subjects	NA	BMI	21.33 ± 3.99		$\begin{array}{c} 21.27 \pm \\ 4.03 \end{array}$		21.25 ± 3.94
								Weight	60.49 ± 14.74		60.46 ± 15.02		60.17 ± 14.52
								WC	79.9 ± 10.18		$79.74 \pm \\ 10.33$		79.42 ± 10.87
								НС	95.56 ± 9.73		96.12± 7.69		96.19 ± 8.57
								WHR	0.84 ± 0.07		$\begin{array}{c} 0.83 \pm \\ 0.07 \end{array}$		0.82 ± 0.07
Khattak et al. (49)	Malaysia	30	NM	100	13 h 44 min	Healthy subjects	NA	BMI	23.50 ± 3.96	23.40 ± 4.01			
								Weight	69 ± 8.30	68 ± 8.40			
								WHR	0.85 ± 0.04	0.84 ± 0.05			
Karatoprak et al. (14)	Turkey	76	57.4 ± 10.1	25	15 h 30 min	T2D patients	NA	Weight	82.60 ± 14.60			82.70 ± 14.1	
Kiyani et al. (50)	Pakistan	80	$20.5\pm \mathrm{NM}$	37.5	14 h 25 min	Healthy subjects	NA	Weight	62.70 ± 8.80			62.30 ± 9	
Muhammad et al. (51)	Indonesia	45	33 ± 11.5	28.9	13 h 30 min	Overweight/ obese subjects	Ļ	BMI	28.50 ± 3.50		$\begin{array}{c} 27.90 \pm \\ 3.5 \end{array}$	28.30 ± 3.70	
								Weight	71.30 ± 10.50		$\begin{array}{c} 69.90 \pm \\ 10.4 \end{array}$	70.90 ± 10.80	

10

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
								FP	33.70 ± 5.50		$\begin{array}{r} 32.60 \pm \\ 5.6 \end{array}$	33.20 ± 5.80	
								WC	85.20 ± 8.90		$\begin{array}{r} 85.30 \pm \\ 10.5 \end{array}$	85.60 ± 10.1	
Madkour et al. (52)	UAE	56	36 ± 12.4	60.7	15 h	Overweight/obese subjects	e —	BMI	30.91 ± 5.21		$\begin{array}{r} 30.45 \pm \\ 5.09 \end{array}$		
								Weight	89.39 ± 14.87		$\begin{array}{r} 88.24 \pm \\ 14.56 \end{array}$		
								FM	27.31 ± 9.56		$\begin{array}{c} 26.09 \pm \\ 9.24 \end{array}$		
								FP	30.47 ± 7.06		29.64± 7.11		
								ММ	57.77 ± 10.22		$\begin{array}{c} 57.37 \pm \\ 10.08 \end{array}$		
								WC	95 ± 13.27		91.9± 11.37		
								НС	105.91 ± 10.54		104.65 ± 10.42		
								TBW	43.5 ± 7.6		43.23 ± 7.5		
								WHR	0.89 ± 0.08		$\begin{array}{c} 0.89 \pm \\ 0.07 \end{array}$		
Malekmakan et al. (53)	Iran	93	37 ± 7.9	52.7	15 h 15 min	Healthy subjects	NA	BMI	26.1 ± 3.30			25.7 ± 3.20	
								Weight	71.6 ± 12.40			70.4 ± 12	
								WC	89.1 ± 11.10			87.5 ± 11.10	
								НС	101.4 ± 8.6			100.1 ± 8.50	
Khaled and Belbraouet (54)	Algeria	276	49 ± 6	0	12 h 29 min	Diabetic and obese	NA	BMI	35.16 ± 3.63	34.4 ± 3.64			35.14± 3.94
								Weight	84.26 ± 8.84	81.84 ± 8.67			83.6± 9.23

Al-Jafar et al.

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
								WC	107.3 ± 8.06	106.89 ± 7.96			$\begin{array}{c} 107.25 \pm \\ 8.01 \end{array}$
								WHR	0.90 ± 0.06	0.89 ± 0.05			$\begin{array}{c} 0.90 \pm \\ 0.05 \end{array}$
Nachvak et al. (16)	Iran	152	39 ± 10.7	100	15 h 33 min	Healthy subjects	Ļ	BMI	26.10 ± 3.79		$\begin{array}{c} 25.37 \pm \\ 3.74 \end{array}$		$\begin{array}{c} 26.08 \pm \\ 3.81 \end{array}$
								Weight	76.33 ± 11.40		74.22 ± 11.20		76.31 ± 11.50
								FM	18.34 ± 6.10		$\begin{array}{c} 17.60 \pm \\ 6.20 \end{array}$		$\begin{array}{c} 19.36 \pm \\ 6.20 \end{array}$
								FP	23.50 ± 5.60		$\begin{array}{c} 23.13 \pm \\ 5.80 \end{array}$		$\begin{array}{r} 24.80 \pm \\ 5.40 \end{array}$
								WHR	0.9 ± 0.081		$\begin{array}{c} 0.89 \pm \\ 0.082 \end{array}$		$\begin{array}{c} 0.90 \pm \\ 0.078 \end{array}$
Namaghi et al. (55)	Iran	80	45.4 ± 9	68	15 h 55 min	Individuals with metabolic	\downarrow	BMI	30.70 ± 4			30.10 ± 4	
						syndrome		Weight	85.50 ± 13			84 ± 13	
								FM	31 ± 10			29.80 ± 10	
								MM	30.50 ± 6			30.20 ± 6	
								TBW	40.2 ± 7			39.9 ± 7	
Nematy et al. (56)	Iran	82	54 ± 10	46.3	13 h 44 min	Cardiovascular Patients	NA	BMI	28.40 ± 4			27.70 ± 4	
								Weight	73.50 ± 13			71.70 ± 13	
								WC	98.3 ± 9			96.70 ± 9	
Norouzy et al. (57)	Iran	82	40.1 ± 6.3	65.8	13 h 44 min	Healthy subjects	Ļ	BMI	26.18 ± 3.88			25.90 ± 3.85	
								Weight	71.81 ± 13.08			70.72 ± 13.01	
								FM	20.70 ± 6.16			20.26 ± 6.27	
								FP	28.52 ± 5.68			28.29 ± 6.05	

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
								WC	92.04 ± 11.01			90.71 ± 10.79	
								НС	102.93 ± 6.67			100.89 ± 6.83	
Norouzy et al. (58)	Iran	88	51 ± 10	51.1	13 h 44 min	T2D patients	NA	BMI	27.60 ± 3.90			27.20 ± 3.80	
								Weight	72.60 ± 12.90			70.90 ± 12.50	
								WC	97.90 ± 9.60			97.20 ± 9.60	
								НС	105.50 ± 7.90			104.70 ± 8.50	
Ongsara et al. (17)	Thailand	65	20.8 ± 1.1	63.7	13 h 56 min	Healthy subjects	NA	BMI	21.49 ± 3.55		$\begin{array}{c} 21.27 \pm \\ 3.48 \end{array}$		$\begin{array}{c} 21.45 \pm \\ 3.61 \end{array}$
								Weight	55.73 ± 12.99		$55.06 \pm \\13.27$		55.65 ± 13.20
								FM	12.68 ± 6.40		$\begin{array}{c} 12.81 \pm \\ 6.52 \end{array}$		$\begin{array}{r}14.21\pm\\7.64\end{array}$
								FP	23.86 ± 7.40		$\begin{array}{c} 22.71 \pm \\ 6.45 \end{array}$		$\begin{array}{r} 24.65 \pm \\ 7.33 \end{array}$
								WC	72.31 ± 10.44		$\begin{array}{c} 68.94 \pm \\ 9.78 \end{array}$		69.84 ± 10.10
								MM	39.74 ± 8.91		$\begin{array}{c} 39.83 \pm \\ 8.61 \end{array}$		$\begin{array}{r} 39.20 \pm \\ 7.88 \end{array}$
Patel et al. (59)	NM	334	54.3 ± 11.7	43.7	Unknown	T1D patients	NA	BMI	28.90 ± 5.90			28.70 ± 5.90	
								Weight	70.60 ± 16			70.10 ± 16	
Sahin et al. (60)	NM	88	57 ± 9.6	32.8	Unknown	T2D patients	NA	BMI	36.32 ± 15.33			35.71 ± 11.47	
								Weight	89.96 ± 17.20			89.22 ± 16.68	
								WC	106.97 ± 15.57			106.06 ± 14.04	
Shariatpanahi et al. (61)	Iran	55	34.1 ± 8.9	100	15 h 54 min	Individuals with metabolic syndrome	NA	BMI	27.62 ± 3.39			26.87 ± 3.36	
								Weight	80.69 ± 12.27			78.73 ± 12.05	
								WC	94.81 ± 7.80			91.98 ± 7.70	

Al-Jafar et al.

Frontiers in Nutrition

TABLE 1 (Continued)

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
Shehab et al. (62)	UAE	60	38.7 ± 10.5	68	14 h 19 min	Healthy subjects	NA	BMI	27.83 ± 4.85		27.56 ± 4.75		$\begin{array}{r} 27.76 \pm \\ 4.81 \end{array}$
								Weight	78.58 ± 16.10		77.63 ± 15.89		78.17 ± 16.14
								WC	91.71 ± 14.14		89.31 ± 14.55		90.35 ± 14.08
Sulu et al. (15)	Turkey	45	$28.7\pm \rm NM$	51.1	16 h 22 min	Healthy subjects	NA	BMI	26.2 ± 5.20		$\begin{array}{c} 26.1 \pm \\ 5.30 \end{array}$		
Syam et al. (63)	Indonesia	43	34 ± 11.3	16	13 h 11 min	Healthy subjects	Ļ	BMI	23.71 ± 3.90		$\begin{array}{c} 23.35 \pm \\ 3.96 \end{array}$		
								Weight	59.82 ± 11.25		58.95 ± 11.20		
								FM	17 ± 6.42		$\begin{array}{c} 16.52 \pm \\ 6.33 \end{array}$		
								TBW	30.81 4.9		30.5 ± 4.8		
Ghania et al. (64)	NM	80	56 ± 8	38.8	Unknown	T2D patients	NA	BMI	28.52 ± 4.44	$\begin{array}{c} 28.83 \pm \\ 4.48 \end{array}$			
								Weight	77.11 ± 11.96	77.73 ± 11.58			
								WC	95.98 ± 10.42	96.39 ± 10.25			
Toony et al. (65)	Egypt	200	50 ± 9.8	27	15 h 10 min	T2D patients	NA	BMI	32.27 ± 6.30	$\begin{array}{r} 32.82 \pm \\ 6.30 \end{array}$			$\begin{array}{r} 32.83 \pm \\ 6.30 \end{array}$
								Weight	79.24 ± 14.50	78.67 ± 16.20			79.29 ± 14.5
								WC	99.17 ± 13.10	99.02 ± 13			98.82 ± 12.90
Yarahmadi et al. (66)	Iran	57	NM	29.8	11 h 18 min	T2D patients	NA	BMI	28.80 ± 4.56	27.35 ± 4.03	$\begin{array}{c} 28.83 \pm \\ 4.99 \end{array}$		
								WHR	0.867 ± 0.77	0.865 ± 0.79	$\begin{array}{c} 0.866 \pm \\ 0.77 \end{array}$		

14

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
Shariatpanahi et al. (67)	Iran	65	40.1 ± 10.8	100	Unknown	Individuals with metabolic syndrome	NA	BMI	28.62 ± 4.79			27.87 ± 3.34	
								WC	96.41 ± 8.22			93.80 ± 6.40	
Khan et al. (48)	Pakistan	75	52.8 ± 8.5	50.7	13 h 37 min	T2D patients	NA	Weight	71.43 ± 15.45		69.41± 11.55		70.16 ± 11.37
								WC	98.16 ± 10.13		$\begin{array}{c}97.84\pm\\9.24\end{array}$		$98.8 \pm \\ 8.82$
								НС	102.26 ± 10.42		103.79 ± 10.65		103.69 ± 10.08
								WHR	0.96 ± 0.07		$\begin{array}{c} 0.95 \pm \\ 0.07 \end{array}$		$\begin{array}{c} 0.96 \pm \\ 0.08 \end{array}$
Imtiaz et al. (68)	Pakistan	34	47.7 ± 14.6	64.7	15 h	CKD patients	NA	Weight	59.30 ± 13.40		59.4 ± 13.70		
Laajam (69)	Saudi Arabia	39	51.5 ± 10.3	25.6	Unknown	T2D patients	NA	Weight	77.10 ± 18.17			76.50 ± 18.11	
Pathan and Patil (70)	India	30	NM	100	Unknown	Healthy subjects	NA	Weight	61.90 ± 11.39			60.56 ± 10.74	
Traore et al. (71)	Mali	25	48.5 ± 6.8	44	13 h 46 min	T2D patients	NA	Weight	84.20 ± 10.20		83 ± 9.80		$\begin{array}{c} 83.10 \pm \\ 10.20 \end{array}$
Abdullah et al. (72)	Yemen	98	NM	100	14 h 22 min	T2D patients	NA	BMI	24.2 ± 4.3		$\begin{array}{c} 24.16 \pm \\ 4.18 \end{array}$		
								WC	94.4 ± 11.3		94.3 ± 11.25		
Al-Rawi et al. (73)	UAE	57	$38.4\pm$	70.1	15 h 13 min	Overweight/obese subjects	e —	Weight	88.3 ± 16.2			86.7 ±15.7	
								BMI	29.9 ± 5.02			29.4 ± 4.9	
								WC	98.6 ± 13.7			97.2 ± 13	
								HC	110.1 ± 9.5			108.6 ± 8.9	
								TBW	44 ± 7.3			43.8 ± 7	
								FP	29.5 ± 7.1			28.6 ± 7.3	
								FM	26.5 ± 9.5			25.3 ± 9.4	

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
								FFM	61.8 10.4			60.9 ± 11	
								MM	58.7 9.9			58.4 ± 9.6	
Das et al. (74)	India	75	NM	100	Unknown	Healthy subjects	NA	Weight	57.6 ± 15.13				62 ± 15.1
								BMI	24.1 ± 6.4				26 ± 6.3
Farag et al. (75)	Iraq	120	37.5 ± 6.6	50	15 h 19 min	hypertensive patients	NA	Weight	82.9 ± 15.6			79.4 ± 15.6	
								BMI	32.9 ± 5.1			31.5 ± 5.3	
								WC	108.8 ± 10.12			106.3 ± 10.1	
Gad et al. (76)	Egypt	40	46 ± 9	32.5	14 h 22 min	Non-alcoholic fatty liver disease patients	NA	BMI	30.9 ± 2.42			29.4 ± 1.93	
Harbuwono et al. (77)	Indonesia	37	53.05 ± 6.9	45.9	13 h 9 min	T2D patients	NA	Weight	65.41 ± 11.46				65.6 ± 11.9
								BMI	26.77 ± 4.52				26.76 ± 4.65
Ismail et al. (78)	Egypt	300	54.23 ± 8.8	44	15 h 10 min	T2D patients	NA	BMI	28.59 ± 3.69				$\begin{array}{r} 27.9 \pm \\ 3.39 \end{array}$
Jahrami et al. (79)	Bahrain	50	43.28 ± 10	100	14 h 40 min	Diagnosed with major	NA	Weight	82.04 ± 12.19			80.6 ± 12.25	
						depressive disorder		BMI	29.47 ± 6.45			28.9 ± 6.39	
								WC	93.2 ± 10.2			92.62 ± 10.3	
								НС	100.76 ± 11.05			100.7 ± 11.1	
								WHR	0.93 ± 0.16			0.93 ± 0.17	
								FP	29.48 8.56			28.74 ± 8.42	
								FM	29.9 ± 9.31			30.92 ± 2.88	
López-Bueno et al. (80)	North Africa	62	33.6 ± 12.7	0	15 h 26 min	Healthy subjects	NA	Weight	67.2 ± 14.1		66.1 ± 14		
								BMI	26.3 ± 5.8		25.8 ± 5.6		
								WC	90.1 ±12.4		89.4 ±12.4		

10.3389/fnut.2023.1082217

References	Country	Subjects	Age (mean ± SD)	Males (%)	Average daylight hours (fasting hours)	Population	Caloric intake during Ramadan*	Variable	Before R	2nd or 3rd week of R	4th week of R	Immediately after R	Long after R
								НС	99 ± 12.7		98.1 ± 12.7		
								TBW	31.3 ± 3.4		31.1 ± 3.3		
								FP	32.1 ± 9.4		31.4 ± 9.5		
								FM	22.8 ± 10.7		22 ± 10.5		
								WHR	0.9 ± 0		0.9 ± 0		
								MM	42.2 ± 3.9		42.3 ± 3.8		
Mohamed et al. (81)	Saudi Arabia	289	42.3 ± 12.4	60.6	14 h 12 min	T2D patients	NA	BMI	28.3 ± 6.27				$\begin{array}{r} 27.43 \pm \\ 5.92 \end{array}$
Mohammadzadeh et al. (82)	Iran	30	41.57 ± 2.5	80	10 h 51 min	Healthy subjects	NA	BMI	25.72 ± 3.17			25.25 ± 3.01	
Urooj et al. (83)	India	52	37.8 ± 12	48	12 h	Healthy	NA	Weight	71.65 ± 14.43			70.96 ± 14	
						subjects		BMI	27.45 ± 4.52			27.21 ± 3.18	
								FP	36.11 ± 10.24			36.36 ± 9.9	
								WHR	0.914 ± 0.06			0.92 ± 0.05	
								MM	30.5 ± 3.7			30.1 ± 3.6	
Yazdanyar et al. (84)	Iran	40	55.23 ± 9.3	17.5	15 h 53 min	T2D patients	NA	Weight	74.9 ± 12.7			73 ± 13.1	
								BMI	29.9 ± 5.2			29 ± 5.1	
								WC	106.2 ± 11.8			105.3 ± 11.6	
								WHR	0.98 ± 0.05			0.97 ± 0.04	
LORANS 2019	UK	82	45.4 ± 16	52.9	17 h 10 min	General	_	BMI	28.37 ± 4.84			27.61 ± 4.32	
						population		Weight	76.57 ± 13.60			74.58 ± 12.23	
								FM	23.39 ± 10.60			22.48 ± 10.05	
								FP	30.62 ± 11.03			30.09 ± 10.91	
								WC	95.88 ± 13.07			93.82 ± 11.87	
								НС	106.50 ± 9.57			102.32 ± 8.70	
								TBW	37.78 ± 7.86			35.8 ± 7.21	

NM, not mentioned; NA, not applicable; * = whether caloric intake during Ramadan increased (\uparrow), decreased (\downarrow) or didn't change (—) compared to the month before or after.

Study Number Mean difference in BM MD 99-K-I Image: Control of Remaining Bencher G107 200 000 1-150, 150, 000 000 </th <th>Study</th> <th></th> <th></th> <th></th> <th></th>	Study				
Benchard 2017 Provide 101 Provide		subjects	Mean difference in BMI	MD	95%-CI
Khukid and Belbraouel 2009 276				-0 10	[-1.50: 1.30]
NumberNumbe					
Ohania 2015B000 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
<pre>value 12023 57 + 14.5 [32.0; 3]; Common effect model Fease 2012 - 0.0; 4.4 [9.37; -0.09] Common effect model Adding 2005 88 Adding 2017 89 Adding 2018 58 Adding 2018</pre>					
Faris 201250					
Common effect model Heterogenetic, "Feb, st," = 0.1144, p = 0.300.44 (P.0.37, e.0.01Heterogenetic, "Feb, st," = 0.1144, p = 0.300.00 (F1.21, 1					
transmission of the spectral spectra			-		
Addulla 2020 Beild 2026 Beild 2026 Beild 2026 Beild 2026 Beild 2017 Bould 2018 Bould 2018 Bould 2017 Bould 2			5	0.11	[0.07, 0.00]
Adama 2020 66 0 0.20 1.20 1.20 1.20 1.20 1.20 1.20 1.					
Admadinejad 2006 Biolida 2017 Biolida 2017 Biolida 2017 Faris 2019 Kina 2017 Kina 2017 Biolida 2017 Biolida 2017 Biolida 2017 Biolida 2018 Biolida 2018 Biolida 2017 Biolida 2018 Biolida 2017 Biolida 2018 Biolida					
Alzeouphoi 2019 60 -0.25 [1.78], 1.82] Fairs 2019 57 -0.45 [1.78], 1.82] Kian 2017 156 -0.45 [1.78], 1.82] Machour 2018 45 -0.45 [1.78], 1.82] Machour 2018 45 -0.45 [1.78], 1.82] Norgara 2017 156 -0.45 [1.78], 1.82] Suba 2012 60 -0.55 [1.72], 1.78] 1.86] Common effect model -0.55 [1.72], 1.78] 1.86] 1.97] Hardregonery 1017 43 -0.55 [1.71], 1.05] 1.98] Common effect model -0.55 [1.71], 1.05] 1.98] 1.98] 1.96] 1.96] 1.96] 1.96] 1.96] 1.96] 1.96] 1.96] 1.96] 1.96] 1.96]					
Bouida 2017 Faris 2019 Since 2017 Faris 2019 Since 2017 Since 2017 Since 2017 Since 2017 Since 2017 Since 2018 Since 2					
Kina 2017 36 -0.06 [2.95; 0.85] Muchammad 2018 45 -0.06 [2.25; 0.85] Nachwak 2018 152 -0.05 [2.25; 0.85] Ongara 2017 65 -0.05 [2.25; 0.45] Shebab 2012 60 -0.05 [2.25; 0.45] Ongara 2017 65 -0.05 [2.25; 1.30] Shebab 2012 60 -0.05 [2.25; 1.30] Ongara 2017 43 -0.05 [2.25; 1.30] Varanhandi 2033 57 -0.05 [2.25; 1.30] Dipez-bueno 2021 -0.05 -0.05 [2.36; 1.02] Hetrogenety, 1* 0.95, 1* 0.92 -0.05 [2.25; 1.04] -0.05 Daspha 2017 43 -0.05 [1.15; 0.15] -0.05 Daspha 2017 43 -0.05 [1.26; 1.04] -0.05 [1.15; 0.15] Daspha 2017 43 -0.05 [1.15; 0.15] -0.05 [1.15; 0.15] Malekmakan 2017 93 -0.05 [1.26; 1.04] -0.05 [1.15; 0.15] Norouzy 2013 82 -0.05 [1.16; 0.16] -0.05		98			
Muhammad 2018 45					
Madkwar 2019 56 -0.73 (1.43) 0.93 Nachwar 2018 52 -0.73 (1.43) 0.93 Shehab 2012 60 -0.74 (1.72) 1.78 Syam 2016 43 -0.74 (1.72) 1.78 Yarahmadi 2003 57 -0.75 (1.52) 1.01 Inpez-bueno 2021 -0.77 -0.75 (1.52) 1.01 Heargoanity 71 = 0%, -f=0, p=1.00 -0.85 -0.85 1.03					
Nachvak 2018 152 + 10000 + 10000 + 1000 + 1000 + 1000 + 1000 + 1000 +					
Ongsara 2017 65 -0.27 [:1,4]; 0.91 Shehab 2012 60 -0.27 [:1,9]; 1.45] Syam 2016 43 -0.36 [:2,2]; 2.07] Yarahmadi 2003 57 -0.36 [:2,0]; 1.30] Syam 2016 -0.36 [:2,0]; 1.51] -0.36 [:2,0]; 1.51] Common effect model -0.36 [:4,0]; 0.82] -0.36 [:4,0]; 0.82] Hetrogeneity, if = 0%, if = 0, p = 1.00 -0.36 [:4,1]; 0.15] -0.36 [:4,1]; 0.15] Dasgupta 2017 43 -0.36 [:4,1]; 0.15] -0.36 [:1,1]; 0.15] Dasgupta 2017 43 -0.36 [:1,1]; 0.15] -0.36 [:1,1]; 0.15] Dasgupta 2017 13 [:3,0]; 0.22] -0.40 -1.33 [:3,0]; 0.22] Bifer 2018 2017 70 -0.36 [:1,1]; 0.15] 0.60 [:1,1]; 0.15] Milakmäka 2017 70 30 -0.40 [:1,3]; 0.33 0.30 [:1,4]; 0.81] Norouzy 2013 86 -0.40 [:1,4]; 0.81] 0.40 [:1,4]; 0.81] Norouzy 2012 87 74					
$ Shehab 2012 & 60 \\ Syam 2016 & 43 \\ Yarahmadi 2003 & 57 \\ Yarahmadi 2003 & 57 \\ Syam 2016 & 43 \\ Yarahmadi 2003 & 57 \\ Syam 2016 & 43 \\ Yarahmadi 2003 & 57 \\ Syam 2016 & 43 \\ Yarahmadi 2003 & 57 \\ Syam 2016 & 43 \\ Yarahmadi 2003 & 57 \\ Syam 2016 & 43 \\ Yarahmadi 2017 & 42 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Immediately after Ramadan \\ Aliasghan 2017 & 42 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Immediately after Ramadan \\ Aliasghan 2017 & 43 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Immediately after Ramadan \\ Aliasghan 2017 & 43 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0\%, \tau^2 = 0, p = 1.00 \\ Heterogeneity; J^2 = 0, J39, L38, J = 0, J39, J = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L38, J = 0, J39, J = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L38, J = 0, J39, J = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L38, J = 0, J39, J = 0, J37 \\ Heterogeneity; J^2 = 0, J39, L38, J = 0, J39, J = 0, J37 \\ Heterogeneity; J^2 = 0, J39, L38, J = 0, J39, J = 0, J37 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J39 \\ Heterogeneity; J^2 = 0, J39, L = 0, J$					
$ \begin{array}{c} Sulu 2010 & 45 \\ Syam 2016 & 43 \\ Syam 2016 & 42 \\ Hetrogenety, f^{2} = 0, f^{2} = 0, p = 1.00 \\ Immediately after Ramadan \\ Aliasghan 2017 & 42 \\ Dasgupte 2017 & 43 \\ Hetrogenety, f^{2} = 0, f^{2} = 0, p = 1.00 \\ Hinder 2018 & 42 \\ Ebrahimi 2018 & 42 \\ Ebrahimi 2018 & 42 \\ Hifer 2011 & 43 \\ Hill (11, 0.15) & 12, 0.21 \\ Hetrogenety, f^{2} = 0, f^{2} = 0, p = 1.00 \\ Hinder 2019 & 54 \\ Mula kmakar 2017 & 93 \\ Malekmakar 2017 & 93 \\ Maranghi 2019 & 80 \\ Norouzy 2013 & 82 \\ Morouzy 2013 & 82 \\ Morouzy 2012 & 82 \\ Morouzy 2012 & 82 \\ Morouzy 2013 & 82 \\ Morouzy 2012 & 82 \\ Morouzy 2012 & 82 \\ Malekmakar 2017 & 95 \\ Shintalpanahi 2017 & 95 \\ Shintalpanahi 2017 & 95 \\ Maharam 2020 & 120 \\ Maran 2020 & 120 \\ Maran 2020 & 100 \\ Maran 2020 & 100 \\ Morouzy 2012 & 82 \\ Maran 2020 & 100 \\ Morouzy 2012 & 82 \\ Maran 2020 & 100 \\ Morouzy 2012 & 82 \\ Maran 2020 & 100 \\ Morouzy 2012 & 82 \\ Maran 2020 & 100 \\ Morouzy 2012 & 82 \\ Maran 2020 & 100 \\ Maran 2021 & 000 \\ Maran 2020 & 000 \\ Maran 2021 & 000 \\ Maran 2020 & 000 \\ $					
Yarahmadi 2003 57 003 [-1,72; 1,79] Jopez-buene 2021 004 [-2,54]; 1.51] Common effect model 0.36 [-3,71; 0.02] Haterogeneity: I ⁺ = 0%, t ⁺ = 0, p = 1,0 0.31 [-2,66]; 1.09] Immediately atter Ramadan 0.31 [-2,66]; 1.09] Dasgupta 2017 43 0.41 [-2,66]; 1.09] Feizolahzadeh 2014 70 0.43 [-2,66]; 1.09] Feizolahzadeh 2014 70 0.40 [-1,86]; 0.89] Malekmada 2018 45 0.40 [-1,86]; 0.81] Malekmada 2017 93 0.40 [-1,86]; 0.81] Norouzy 2012 83 0.40 [-1,86]; 0.81] Norouzy 2012 84 0.40 [-1,86]; 0.81] Norouzy 2012 84 0.40 [-1,86]; 0.81] Norouzy 2013 82 0.40 [-1,86]; 0.81] Norouzy 2012 84 0.40 [-1,86]; 0.81] Norouzy 2012 84 0.40 [-1,86]; 0.81] Norouzy 2013 82 0.40 [-1,86]; 0.81] Norouzy 2013 82 0.40		45		-0.10	[-2.27; 2.07]
logez-bueno 2021 62 -0.50 [2,51; 1,51] Common effect model Heterogenety; l ² = 0, p, t ² = 0, p = 1.00 -0.81 [2,66; 1,04] Miasginari 2017 42 -0.42 -0.81 [2,66; 1,04] Daguyta 2017 43 -0.42 -0.40 [1,18; 0,82] Eronhim 2018 42 -0.40 -1.40 [1,98; 0,82] Foizollatvadeh 2014 70 -0.40 [1,38; 0,81] 0.40 [1,38; 0,81] Malagkinakan 2017 93 -0.40 [1,38; 0,81] 0.40 [1,38; 0,81] Norouzy 2012 83 -0.40 [1,38; 0,81] 0.40 [1,38; 0,81] Norouzy 2012 84 -0.71 [1,28; 0,22] 0.71 [1,28; 0,22] Norouzy 2012 84 -0.76 [2,17; 0.67] 0.71 [1,28; 0,21] Norouzy 2013 82 -0.75 [2,17; 0.67] 0.75 [2,17; 0.67] Norouzy 2012 84 -0.75 [2,17; 0.67] 0.75 [2,17; 0.67] Norouzy 2012 64 -0.75 [2,17; 0.67] 0.75 [2,17; 0.67] Norouzy 2013 64					
Summan effect model Heterogeneity: h ² = 0%, t ² = 0, p = 1.0 -0.36 [6/.71; -0.02] Immediately after Ramadan Dissoupties 2017 -0.31 [2.66; 1.04] Dissoupties 2017 2.3 -0.31 [2.66; 1.04] Elfer 2018 2.01 -0.31 [2.66; 1.04] Homman 2018 4.5 -0.40 [1.18; 1.05] Malekmakan 2017 9.3 -0.40 [1.18; 0.16] Norouxy 2012 8.2 -0.40 [1.46; 0.43] Norouxy 2012 8.3 -0.40 [1.46; 0.43] Norouxy 2012 8.3 -0.40 [1.46; 0.43] Norouxy 2012 8.3 -0.40 [1.46; 0.43] Norouxy 2013 8.4 -0.40 [1.46; 0.43] Norouxy 2012 8.3 -0.40 [1.46; 0.43] Norouxy 2013 8.4 -0.40 [1.46; 0.43] Norouxy 2013 8.4 -0.40 [1.46; 0.43] Norouxy 2013 8.4 -0.40 [1.46; 0.43] Norouxy 2014 6.4 -0.40 [1.46; 0.43] Norouxy 2015 -0.40 -0.40 [1.46; 0.43] Norouxy 2017					
$Heterogeneity: f^{2} = 0\%, e^{2} = 0, p = 1.00$ $Immediately after Ramadan$ $Alasgyhar 2017 \\ Alasgyhar 2017 \\ Casgyhar 2017 \\ $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-0.36	[-0.71; -0.02]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Immediatelv	after Ramadan			
$ \begin{array}{c} \text{Dasg} upta 2017 & 43 & & & & & & & & 1.03 & [3.06; 102] \\ \text{Ebrahim 2018} & 42 & & & & & & & & 1.03 & [3.06; 104] \\ \text{Ericollarzadeh 2014} & 70 & & & & & & & & & & & & & & & & & $		7 42			
Effert 2011 210	Dasgupta 201	7 43 ←		-1.03	[-3.08; 1.02]
Feizollahzadeh 2014 Gholami 2019 Mulammad 2018 Mulakmakan 2017 Samaghi 2019 Norouzy 2012 Sahiri 2017 Sahiriapanahi 2017 Sabiriapanahi 2019 Sabiria 2017 Sabiriapanahi 2019 Sabiriapanahi 2019 Sabiriapan					
$ \begin{array}{c} \text{Gholami 2019} & 64 & & & - & - & - & 0.3 & [-1.86, -1.06] \\ \text{Mulekmakan 2017} & 93 & & - & - & 0.40 & [-1.33, -0.53] \\ \text{Namaghi 2019} & 80 & & - & 0.40 & [-1.84, -0.46] \\ \text{Bahmani 2013} & 191 & & - & 0.65 & [-1.66, -1.06] \\ \text{Nematy 2012} & 82 & & - & 0.70 & [-1.92, -0.52] \\ \text{Norouzy 2013} & 82 & & - & 0.40 & [-1.54, -0.74] \\ \text{Patel 2007} & 334 & & - & - & 0.26 & [-1.64, -0.90] \\ \text{Nariatpanahi 2012} & 65 & & - & 0.75 & [-2.17, -0.67] \\ \text{Shariatpanahi 2013} & 88 & & - & - & 0.65 & [-1.69, -0.69] \\ \text{Shariatpanahi 2012} & 65 & & - & 0.75 & [-2.17, -0.67] \\ \text{Shariatpanahi 2012} & 65 & & - & 0.75 & [-2.17, -0.67] \\ \text{Shariatpanahi 2012} & 50 & & - & 0.75 & [-2.17, -0.67] \\ \text{Gad 2022} & 40 & & - & - & 0.56 & [-2.03, -0.91] \\ \text{Gad 2022} & 40 & & - & - & 0.56 & [-2.03, -0.91] \\ \text{Herrogeneity: } P = 0.97 & & - & 0.139, p = 0.97 \\ \text{Long after Ramadan} \\ \text{Adanan 2020} & 68 & & - & 0.10 & [-1.51, -1.31] \\ \text{Bencharif 2017} & 72 & & 0.00 & [-1.96] & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.97 & & - & 0.00 & [-1.96, -1.59] \\ \text{Nachvak 2018} & 152 & & - & 0.00 & [-1.96, -1.96] \\ \text{Nachvak 2018} & 152 & & - & 0.00 & [-1.96, -1.96] \\ \text{Nachvak 2018} & 152 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.90 & P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.90 & P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.90 & P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.90 & P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.90 & P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.90 & P = 0.97 & & - & 0.02 & [-0.65, -0.61] \\ \text{Hetrogeneity: } P = 0.90 & P = 0.97 & & - & 0.$					
Muhammad 201845-0.20 $[1.69; 1.29]$ Malekmakan 201793-0.40 $[1.33; 0.53]$ Namaghi 201980-0.66 $[1.60; 0.20]$ Nematy 201282-0.28 $[1.46; 0.09]$ Norouzy 201382-0.20 $[1.69; 1.69; 0.76]$ Norouzy 201288-0.60 $[1.61; 3.39]$ Sahin 201384-0.66 $[1.61; 3.39]$ Shariatpanahi 201265-0.75 $[2.17; 0.67]$ Shariatpanahi 201265-0.75 $[2.17; 0.67]$ Shariatpanahi 201265-0.75 $[2.17; 0.67]$ Shariatpanahi 201265-0.75 $[2.17; 0.67]$ Al-rawi 202057-0.75 $[2.17; 0.66]$ Jahrami 202150-0.75 $[2.32; 1.32]$ Farag 2020120-0.47 $[2.33; 1.63]$ Urooj 202052-0.47 $[2.33; 1.63]$ Urooj 202052-0.47 $[2.36; 1.36]$ Vazdanyar 202068-0.47 $[2.03; 1.09]$ Heterogeneity: $I^2 = 0.96$, $r^2 = 0.0139, p = 0.97$ -0.00 $[-1.96; 1.96]$ Khaled and Beibraouet 2009276-0.00 $[-1.96; 1.66]$ Nachvak 2018152-0.00 $[-1.96; 1.66]$ Ongaara 201765-0.00 $[-1.86; 1.26]$ Nachvak 2018152-0.02 $[-0.67; 1.79]$ Das 202175-0.030, p = 0.66-0.07Harbuwono 202037-0.05 $[-0.65; 1.20]$ Nachvak 2018152-0.06-0.07Nachva					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Namaghi 201	80		-0.60	[-1.84; 0.64]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-0.65	[-1.50; 0.20]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Patel 2007 3340.0 [1.09; 0.69] Sahin 2013 880.61 [4.61; 3.39] Shariatpanahi 2012 650.75 [2.17; 0.67] LORANS 2019 1460.76 [1.81; 0.29] Al-rawi 2020 570.76 [1.81; 0.29] Al-rawi 2020 1201.60 [2.32; 1.32] Farag 2020 1201.61 [2.32; 1.32] Jahrami 2021 500.54 [3.06; 1.98] mohammadzadeh 2021 300.54 [3.06; 1.98] mohammadzadeh 2021 300.74 [2.03; 1.09] Urog 2020 52					
Sahin 2013 88 Shariatpanahi 2012 65 Shariatpanahi 2007 55 LORANS 2019 146 Al-rawi 2020 17 Farag 2020 120 Gad 2022 40 Jahrami 2021 50 Wrooj 2020 22 Yazdanyar 2020 40 Urooj 2020 40 Urooj 2020 40 Heterogeneity: $l^2 = 0\%$, $t^2 = 0.0139$, $p = 0.97$ Long after Ramadan Adanan 2020 66 Hadra 2020 66 Heterogeneity: $l^2 = 0\%$, $t^2 = 0.0300$, $p = 0.97$ Khaled and Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Harbuwono 2020 37 Harbuwono 2020 3					
Shariatpanahi 2012 65					
Shariatpanahi 2007 55 -0.75 [2.01; 0.51] LORANS 2019 146 -0.76 [1.81; 0.29] Al-rawi 2020 57 -0.56 [2.32; 1.32] Farag 2020 120 -0.56 [2.32; 1.32] Jahrami 2021 50 -0.56 [2.32; 1.32] Jahrami 2021 50 -0.54 [2.36; 1.98] mohammadzadeh 2021 30 -0.47 [2.30; 1.99] Urooj 2020 52 -0.24 [1.74; 1.26] Yazdanyar 2020 40 -0.47 [2.03; 1.09] Urooj 2020 52 -0.24 [1.74; 1.26] Yazdanyar 2020 40 -0.54 [2.06] (1.36] Common effect model Heterogeneity: $l^2 = 0\%, r^2 = 0.0139, p = 0.97$ Long after Ramadan Adaman 2020 68 Khan 2017 72 -0.08 [1.94] (1.94] Faris 2012 50 -0.08 [1.94] (1.76] Nachwak 2018 152 -0.08 [1.94] (1.76] Nachwak 2018 152 -0.02 [0.65] (0.67] (1.79] Das 2021 75 -0.018 [2.00] -0.02 [0.65] (0.67] (1.79] Das 2021 75 -0.018 [2.00] -0.02 [0.65] (0.67] (1.20] Mohamed 2021 300 -0.56 -0.014 [1.27; 1.19] Ongsara 2017 65 -0.016 [1.06] (0.01] (2.08] (0.61] [2.00] [2.08] [2.00] (0.61] [2.00] [2.08] (0.61] [2.00] [2.08] (0.61] [2.00] [2.08] (0.61] [2.00] [2.08] [2.09] (0.63] (0.61] [2.00] [2.08] [2.09] (0.63] (0.61] [2.00] [2.08] (0.61] [2.00] [2.08] (0.61] [2.00] [2.08] [2.00] (0.65] [2.00] (0.65] [2.00] (0.66] [2.0					
$\begin{array}{c} \text{Al-rawi 2020} & 57 & & & 0.50 \ [2.32] \ 1.32 \\ \text{Farag 2020} & 120 & & & 0.40 \ [2.72] \ -0.08 \\ \text{Gad 2022} & 40 & & & 0.54 \ [3.06] \ 1.98 \\ \text{mohammadzadeh 2021} & 30 & & & 0.47 \ [2.20] \ 1.09 \\ \text{Urooj 2020} & 52 & & & 0.44 \ [3.06] \ 1.98 \\ \text{Vazdanyar 2020} & 40 & & & & 0.47 \ [2.03] \ 1.09 \\ \text{Vazdanyar 2020} & 40 & & & & 0.90 \ [3.16] \ 1.36 \\ \text{Common effect model} \\ \text{Heterogeneity: } f^2 = 0.05, r^2 = 0.0139, p = 0.97 \\ \text{Long after Ramadan} \\ \text{Adanan 2020} & 68 \\ \text{Adanan 2020} & 68 \\ \text{Khan 2017} & 72 & & & 0.60 \ [-0.80; 2.00] \\ \text{Bouida 2017} & 98 & & & 0.110 \ [-1.51; \ 1.31] \\ \text{Bencharif 2017} & 72 & & & 0.60 \ [-0.80; 2.00] \\ \text{Bouida 2017} & 98 & & & 0.012 \ [-0.94; \ 1.14] \\ \text{Faris 2012} & 50 & & & 0.08 \ [-1.94; \ 1.78] \\ \text{Khaled and Belbraouet 2009} & 276 & & & & 0.02 \ [-0.65; \ 0.61] \\ \text{Nachvak 2018} & 152 & & & & & 0.04 \ [-1.27; \ 1.19] \\ \text{Shehab 2012} & 60 & & & & & & & & & & & & & & & & & $				-0.75	[-2.01; 0.51]
Farag 2020 Gad 2022 40 40 40 40 40 40 40 40 40 40					
$\begin{array}{c} \text{Gad} 2022 & 40 & & -1.50 \left[2.46; -0.54 \right] \\ \text{Jahrami 2021} & 50 & -0.54 \left[3.06; 1.88 \right] \\ \text{mohammadzadeh 2021} & 30 & -0.54 \left[3.06; 1.88 \right] \\ \text{Orgonical of the theorem offect model} \\ \text{Heterogeneity: } l^2 = 0\%, \tau^2 = 0.0139, p = 0.97 \\ \hline \\ \text{Long after Ramadan} \\ \text{Adaan 2020} & 68 & -0.10 \left[-1.51; 1.31 \right] \\ \text{Bencharif 2017} & 72 & -0.66 \left[-0.60; -0.63 \right] \\ \text{Bouida 2017} & 98 & -0.00 \left[-1.96; 1.96 \right] \\ \text{Nachwak 2018} & 152 & -0.02 \left[-0.65; 0.61 \right] \\ \text{Nachwak 2018} & 152 & -0.02 \left[-0.65; 0.61 \right] \\ \text{Nachwak 2018} & 152 & -0.02 \left[-0.65; 0.61 \right] \\ \text{Nachwak 2018} & 200 & -0.07 \left[-1.80; 1.66 \right] \\ \text{Toony 2018} & 200 & -0.07 \left[-1.80; 1.66 \right] \\ \text{Toony 2018} & 200 & -0.56 \left[-0.67; 1.79 \right] \\ \text{Brail 2021} & 30 & -0.56 \left[-0.67; 1.79 \right] \\ \text{Hatburous 02020} & 37 \\ \text{Harburous 02021} & 289 & -0.56 \\ -3 & -2 & -1 & 0 & 1 & 2 & 3 \end{array}$					
Jahrami 2021 50 -0.54 [-3.06; 1.98] -0.47 [-2.03; 1.09] -0.47 [-2.04; 1.03] -0.47 [-2.05					
$\begin{array}{c} \text{mohammadzadeh 2021} & 30 \\ \text{Urooj 2020} & 52 \\ \text{Yazdanyar 2020} & 40 \\ \text{Common effect model} \\ \text{Heterogeneity: } l^2 = 0.0139, p = 0.97 \\ \hline \\ \text{Long after Ramadan} \\ \text{Adanan 2020} & 68 \\ \text{Adanan 2020} & 68 \\ \text{Outo I 2017} & 98 \\ \text{Outo I 2017} & 98 \\ \text{Outo I 2017} & 98 \\ \text{Outo I 2017} & 50 \\ \text{Khale d and Belbraouet 2009} & 276 \\ \text{Khale d and Belbraouet 2009} & 276 \\ \text{Nachvak 2018} & 152 \\ \text{Outo I 2017} & 65 \\ \text{Outo I 2017} & 75 \\ \text{Harbuwono 2020} & 37 \\ \text$					
Urooj 2020 52 Yazdanyar 2020 40 Yazdanyar 2020 40 Gommon effect model Heterogeneity: $l^2 = 0\%, \tau^2 = 0.0139, p = 0.97$ Long after Ramadan Adanan 2020 68 Bencharif 2017 72 Bouida 2017 98 Chan 2017 35 Khaled and Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Toony 2018 200 José Lossi Ismail 2021 75 Harbuwono 2020 37 Ismail 2021 289 Heterogeneity: $l^2 = 0\%, \tau^2 = 0.0300, p = 0.56$ -3 - 2 - 1 0 1 2 3 RE 3					
Yazdanyar 2020 Yazdanyar 202					
Common effect model Heterogeneity: $l^2 = 0.0139$, $p = 0.97$ Long after Ramadan Adanan 2020 68 Haterogeneity: $l^2 = 0.0139$, $p = 0.97$ Long after Ramadan Adanan 2020 68 Haterogeneity: $l^2 = 0.0139$, $p = 0.97$ Long after Ramadan Adanan 2020 68 Haterogeneity: $l^2 = 0.0139$, $p = 0.97$ How the second					
Long after Ramadan Adanan 202068 68 9 $-0.10 [-1.51; 1.31]$ 0.60 $[-0.80; 2.00]$ Bouida 2017Bouida 201798 9 $0.10 [-0.94; 1.14]$ Faris 2012Faris 201250 0.00 $[-1.94; 1.37]$ Khaled and Belbraouet 2009 $0.08 [-0.80; 2.00]$ $0.00 [-1.96; 1.96]1.94; 1.78]-0.02 [-0.65; 0.61]Nachvak 2013Nchvak 2013152-0.02 [-0.65; 0.61]Nachvak 2013-0.02 [-0.65; 0.61]-0.07 [-1.80; 1.66]-0.07 [-1.80; 1.66]-0.07 [-1.80; 1.66]-0.01 [-2.10; 2.08]Ismail 2021Base 202175Harbuwono 202037Ismail 2021Base 2021289-6.3 [-1.20; -0.06]-0.37 [-1.36; 0.12]-0.37 [-1.36; 0.12]Common effect modelHeterogeneity: l^2 = 0\%, \tau^2 = 0.0300, p = 0.56-3 -2 -1 0 1 2 3$	Common effe	ect model	◆		
Adaran 2020 68 Adaran 2020 68 Bencharif 2017 72 Bouida 2017 98 Haris 2012 50 Khan 2017 35 Khaled and Belbraouet 2009 276 Nachwak 2018 152 Ongsara 2017 65 Toony 2018 200 Das 2021 75 Harbuwono 2020 37 Harbuwono	Heterogeneity:	$I^{c} = 0\%, \tau^{c} = 0.0139, p = 0.97$			
Bencharif 2017 Bouida 2017 Faris 2012 Khan 2017 Nachvak 2018 Ongsara 2017 Bouida 2017 Shehab 2012 Common effect model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ I = 0.56 I = 0.66 I = 0.80; 2.00 0.06 I = 0.80; 2.00 0.00 I = 0.40; 1.14 I = 0.75 I = 0.00 I = 2.10; 2.08 I = 0.56 -0.04 I = 0.12; $I = 0.56-3$ -2 -1 0 1 2 $3E 3$				0.10	[151.101]
Bouida 2017 98 0.10 $[-0.94; 1.14]$ Faris 2012 50 0.00 $[-1.96; 1.96]$ Khan 2017 35 0.00 $[-1.96; 1.78]$ Khaled and Belbraouet 2009 276 0.002 $[-0.65; 0.61]$ Nachvak 2018 152 0.02 $[-0.87; 0.83]$ Ongsara 2017 65 0.04 $[-1.27; 1.19]$ Shehab 2012 60 0.56 $[-0.67; 1.79]$ Das 2021 75 0.56 $[-0.67; 1.79]$ Das 2021 75 0.56 $[-0.67; 1.79]$ Harbuwono 2020 37 0.56 $[-0.63; [-1.20; -0.06]$ Ismail 2021 280 0.056 $[-0.63; [-1.20; -0.06]$ Mohamed 2021 280 0.057 $[-1.86; 0.12]$ Common effect model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0.0300$, $\rho = 0.56$ -3 -2 -1 0 1 2 3					
Faris 2012 50 Khan 2017 35 Khaled and Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Toony 2018 200 Das 2021 75 Harbuwono 2020 37 Harbuwono 2020 37 Harbuwono 2020 37 Gommon effect model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ -3 -2 -1 0 1 2 3 RE 3					
Khan 2017 35 Khaled and Belbraouet 2009 276 Nachvak 2018 152 -0.02 [-0.65; 0.61] Nachvak 2018 65 Ongsara 2017 65 Shehab 2012 60 Toony 2018 200 Das 2021 75 Harbuwono 2020 37 Harbuwono 2020 37 Harbuwono 2020 37 -0.01 [-2.10; 2.08] Ismail 2021 289 -0.03 [-1.20; -0.06] -0.07 [-1.80; 1.66] -0.07 [-1.80; 1.66] -0.08 [-1.94; 1.78] -0.02 [-0.65; 0.61] -0.07 [-1.80; 1.66] -0.07 [-1.80; 1.66] -0.08 [-1.94; 1.78] -0.02 [-0.65; 0.61] -0.07 [-1.80; 1.66] -0.07 [-1.80; 0.12] -0.08 [-1.94; 0.13] -0.01 [-2.10; 2.08] -0.08 [-1.94; 0.13] -0.01 [-2.10; 2.08] -0.08 [-1.94; 0.14] -0.14 [-0.43; 0.14] Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ -3 -2 -1 0 1 2 3					
Khaled and Belbraouet 2009 276 -0.02 [-0.65; 0.61] Nachvak 2018 152 -0.02 [-0.65; 0.61] Ongsara 2017 65 -0.04 [-1.27; 1.19] Shehab 2012 60 -0.07 [-1.80; 1.66] Toony 2018 200 -0.56 [-0.67; 1.79] Das 2021 75 -0.01 [-2.10; 2.08] Ismail 2021 300 -0.03 [-1.20; -0.06] Mohamed 2021 289 -0.63 [-1.20; -0.06] Mohamed 2021 289 -0.87 [-1.86; 0.12] Common effect model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ -0.14 [-0.43; 0.14] Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ -0.14 [-0.43; 0.14]					
Nachvak 2018 152 0 ngsara 2017 165 1004 [-1.27; 1.19] 105 hehab 2012 1007 [-1.80; 1.66] 1000 2018 100 [-0.13; 3.93] 100 [-1.20; -0.06] 100 [-1.20; -0	Khaled and B	elbraouet 2009 276	-+	-0.02	[-0.65; 0.61]
Shehab 2012 60 Toony 2018 200 Das 2021 75 Harbuwono 2020 37 Ismail 2021 289 Common effect model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ -3 -2 -1 0 1 2 3 RE 3			-+		
Toony 2018 200 $0.56 [-0.67; 1.79]$ Das 2021 75 $0.001 [-2.10; 2.08]$ Ismail 2021 300 $-0.63 [-1.20; -0.06]$ Mohamed 2021 289 $-0.63 [-1.20; -0.06]$ Mohamed 2021 289 $-0.63 [-1.20; -0.06]$ Common effect model Heterogeneity: $I^2 = 0\%, \tau^2 = 0.0300, p = 0.56$ -3 -2 -1 0 1 2 3 RE 3					
Das 2021 75 Harbuwono 2020 37 Harbuwono 2020 37 Ismail 2021 300 Mohamed 2021 289 Common effect model Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ -3 -2 -1 0 1 2 3 RE 3					
Harbuwono 2020 37 Ismail 2021 300 Mohamed 2021 289 Common effect model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ -3 -2 -1 0 1 2 3 RE 3					
Ismail 2021 3000.63 [-1.20; -0.06] Mohamed 2021 289 -0.87 [-1.86; 0.12] Common effect model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0.0300$, $\rho = 0.56$ 0.14 [-0.43; 0.14] -3 -2 -1 0 1 2 3 RE 3					
Mohamed 2021 289 -0.87 [-1.86; 0.12] Common effect model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0.0300$, $p = 0.56$ -3 -2 -1 0 1 2 3 RE 3					
Common effect model Heterogeneity: J ² = 0%, τ ² = 0.0300, p = 0.56 -3 -2 -1 0 1 2 3 RE 3					
-3 -2 -1 0 1 2 3	Common eff	ect model	-		
RE 3	Heterogeneity:	$I^{-} = 0\%, \tau^{-} = 0.0300, p = 0.56$			
		_3	-2 -1 0 1 2	3	
effect meta-analysis of RIF effect on BMI.		-5			
		-0			

in Erdem et al. study was during daylight hours. Also, unlike RIF, no-calorie drinks were allowed in Erdem et al. study. RIF has no calorie restriction like ADF. In addition, the duration of exposure in LORANS (4 weeks) is not the same as in Erdem et al. (1 week, 6

weeks and 8 weeks). These differences make the direct comparison between RIF and the other three models of intermittent fasting (TRF-6 h, TRF-8 h and ADF) imprecise. However, the anthropometric measurements' reductions in LORANS were half or less than that

During the relation of the rel	Study	subjects	Mean difference in weight	MD	95%-CI
Beckhaff 2017 72			L	0.00	1 0 00. 4 071
Number 2013 00 1.00 1.20, 1.20, 2.3, 2.30 Number 2013 00 1.20, 1.20, 2.3, 2.30 Number 2014 00 1.20, 1.20, 2.3, 2.30 Number 2015 00 0.20, 1.20, 2.3, 2.30 Number 2016 00 0.20, 1.20, 2.3, 2.30 Number 2018 00 00, 1.20, 1.20, 2.3, 2.30 Number 2018 00 00,					
Nineled and Bebranet 2000 200 400 2.22 3.380 2.040 Nineled and Bebranet 2000 000 1.00 1.450 2.50 0.400 Nineled and Bebranet 2000 000 1.00 1.450 2.50 0.400 Nineled and Bebranet 2000 000 1.450 2.50 0.400 1.450 2.50 Nineled and Bebranet 2000 000 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 0.50 1.450 2.50 0.400 1.450 2.50 0.400 0.50 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 0.400 1.450 2.50 1.450 2.50	Khattak 2013	30		-1.00	[-5.23; 3.23]
Torvy 2018 200 -0.57 -0.52 -0.52 -0.52 -0.55					
Homegenergy P ⁴ - exp - 20 - 20 Amagenergy P ⁴ - exp - 20 - 20 Amagenergy P ⁴ - exp - 2	Toony 2018			-0.57	[-3.58; 2.44]
1000000000000000000000000000000000000		= 0.59	*	-1.55	[-2.65; -0.44]
Address 2014 35 Address 2017 35 Bounda 2017 35 Find 1019 41 Fords 2017 41 Fords 2018 41 F		/ = 0.00			
Abcorghool 2019 60 Berneid 2010 70 Berneid 2010 70 Berneid 2016 70 Berneid 2016 70 Berneid 2018 70 Madewid 2019 60 Nachwid 2019 60 Nachwid 2019 60 Nachwid 2019 60 Nachwid 2019 60 Status 2012 60 Status 2013 60 Status 2014 60 Status 2015 60 Status 2017 60 Status 2018 60 Status 2019 60 Status 2012 70 Status 2012 70 Status 2012 70 Status 2012 70 Status 2012		35		0.00	[-5.81; 5.81]
Bernik 2010 31 Find 2010 51 Find 2010 51 Find 2017 54 Find 2017 54 Find 2017 54 Find 2017 54 Find 2017 55 Find 2017 55 Find 2018 54 Find 2018 54 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Bounda 2017 98					
Find: 1986 41 -0.01 5.68, 6.69 Notation 12 35 -0.01 5.68, 6.64 Notation 12 35 -0.01 5.68, 6.64 Notation 12 56 -0.01 5.68, 6.64 Notation 12 56 -0.01 5.68, 6.64 Notation 12 56 -0.01 5.66, 5.67 Notation 2016 43 -0.07 5.66, 5.67 Trace, et al. 2014 -0.07 5.66, 5.67 Trace, et al. 2014 -0.07 5.66, 7.47 Notation 2016 43 -0.07 5.67, 4.73 Trace, et al. 2014 -1.01 1.00 1.01 1.00 Notation 2016 43 -1.01 1.03 1.01 1.03 Notation 2017 43 -1.01 1.01 1.01 1.01 1.01 Notation 2017 43 -1.01 1.01 <td></td> <td>98</td> <td></td> <td></td> <td></td>		98			
Immune 2016 34 -0.0 1.5.2.6 5.4.3.1 Nam 2017 35 -0.0 1.5.2.6 5.4.3.1 Nam 2017 56 -0.0 1.5.2.6 5.4.3.1 Nam 2017 56 -0.0 1.5.2.6 5.4.3.1 Nachvak 2018 1.5.2 -0.0 1.5.2.6 5.4.3.1 Shahaz 2012 6.0 -0.0 1.5.2.6 5.4.3.1 Shahaz 2012 6.0 -0.0 1.5.2.6 5.4.3.1 Shahaz 2012 6.0 -0.0 -1.2.2 1.6.2.7.4.4.5.1 Shahaz 2012 -0.0 -1.2.2 1.6.2.7.4.7.7.3.7.1 1.7.2.7.7.7.3.7.1 Field effect model -1.2.2 1.5.2.4.7.2.7.7.3.7.1 1.7.6.7.3.7.7.1 1.7.6.7.3.7.7.1 Basedra 2005 2.2.2.7.7.7.7.3.7.7.1 1.7.6.7.3.7.7.7.3.7.7.1 1.7.6.7.3.7.7.1 1.7.6.7.3.7.7.1 Basedra 2017 2.0 2.0 1.5.2.4.6.2.7.2.4.7.7.7.3.7.7.1 1.7.6.7.3.7.7.1 Basedra 2017 2.0 2.0 1.7.6.7.3.7.7.7.3.7.7.1 1.7.6.7.3.7.7.1 1.7.6.7.3.7.7.1 Basedra 2017 2.0 2.0 1.7.0.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.					
Kinn 2017 75 Mahammad 2010 76 Mahammad 2010 76 Mahammad 2010 46 Mahammad 2010 46 Shehab 2012 46 Organa 2017 65 Shehab 2012 46 Heingenety, r ¹ = 0, r ² = 0, r ² 472 Heingenety, r ¹ = 0, r ² = 0, r ² 472 Heingenety, r ¹ = 0, r ² = 0, r ² 472 Heingenety, r ¹ = 0, r ² = 0, r ² 472 Heingenety, r ¹ = 0, r ² = 0, r ² 472 Heingenety, r ¹ = 0, r ² 47					
Muhammad 2018 46 Mukaur 2019 96 Nachwa 2019 150 Spanba 2012 60 Syma 2016 43 Taroco, ettal 2014 25 Spanba 2012 60 Spanba 2012 60 Spanba 2012 60 Spanba 2012 60 Madiana 2016 40, 16 Marge 2001 60, 14, 20 Marge 2002 61, 27, 22, 23 Marge 2002 62, 12, 47, 72 Marge 2001 40, 14 Alargi 2001 42 Alargi 2001 42 Alargi 2001 42 Alargi 2001 42 Marge 2017 42 Paramiz 2018 753, 237 Paramiz 2018 754, 237 Paramiz 2018 754, 237 Marge 2017 42 Marge 2017 42 Marge 2018 754, 255, 253 Marge 2018 764, 266, 740 Marge 2018 764, 265, 740 Marge 2019 764, 265, 740 Marge 2019 764, 1456, 7460	Khan 2017			-0.03	[-7.00; 6.94]
Maddwor 2019 66 Organ 2017 66 Syma 2016 40 Tasse, et al. 2014 25 Lipse-buon 2021 62 Hernogenetic, $r^2 = 0, r = 1.0$ -1.10 Hernogenetic, $r^2 = 0, r = 1.0$ -1.21 Humediately after Ramadan -2.21 Allasghan 2017 42 Tasse, et al. 2014 2.24 Tasse, et al. 2014 2.25 Harrow 2007 42 Allasghan 2017 42 Tasse, et al. 2014 2.25 Participation 2017 42 Tasse, et al. 2014 2.25 Participation 2018 2.25 Mark 2018 -1.21 Casse 2017 42 Tasse, et al. 2014 2.25 Participation 2018 -1.26 Markanenada 201 Participation 2018 -1.26 Markane 2017 34 Markane 2018 -1.26 Markane 2018 -1.26 Markane 2017 34 Markane 2018 -1.26 Markane 2017 34					
Ongara 2017 65 Syen 2016 04 Syen 2017 04 Syen 2018 04 Syen 2016 04 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Shehab 2012 60 Shehab 2012 60 Trace, et al. 2014 25 Shepse-bane 2021 61 Heterogenery: $l^2 = 0$, $r^2 = 0$, $p = 1.0$ Inmediately after Ramadia Alasghan 2017 42 Dasgupt 2017 43 Fizical Intrace ($1 \le 0.0$, $1 \ge 0.0$					
Sym 201643 tope-bueno 2021-0.67[$6,51$; $8,57$]Fixed diffet model-1.01 $6,66$; $8,85$ Hetmogenety: $f^2 = 0$; $r^2 = 0$;					
$ \begin{array}{c} loge-bueno 2021 & 62 \\ Heterogeneity, f^2 = 00, r_s^2 = 0, p = 1.01 \\ Heterogeneity, f^2 = 00, r_s^2 = 0, p = 1.02 \\ Heteroregneity, f^2 = 00, r_s^2 = 0, p = $					
Fixed effect model -1.22 [-2.29; -0.15] Immediately after Ramadan -2.20 [-5.12; 4.72] Alasphan 2017 42 Devendra 2008 52 Benahimi 2018 42 Feizollahzadeh 2014 70 Kiyani 2015 80 Malekmakan 2017 -1.28 [-2.29; -0.15] Manaphan 2018 -1.24 [-4.80; 4.266] Malekmakan 2017 93 Namaghi 2019 80 Malekmakan 2017 94 Malekmakan 2017 93 Namaghi 2019 80 Malekmakan 2017 94 Malekmakan 2017 95 Paal 2007 94 Morouzy 2013 94 Malekmakan 2017 95 Malekmakan 2017 95 Bahmani 2018 94 Malekmakan 2017 94					
Heterogeneity: $l^2 = 05, t^2 = 0, p = 1.01$ Akanji 2000 Akanji 2007 Akanji 2007 Akanji 2017 Heterogeneity: $l^2 = 05, t^2 = 0, p = 1.01$ Kijani 2018 Malekmakar 2017 Shani 2018 Malekmakar 2017 Shani 2018 Shani 2013 Shani 2013 Barlimani 2021 Dagu 200 Kijani 2015 Shani 2013 Shani 2014 Shani 2017 Shani 2017 Sha		62			
Akanji 200064-205 $\{2,26,337\}$ Dasguta 201743-234 $\{7,67,337\}$ Devendra 200952-767-767Fazzilahzadah 201474-216 $\{7,67,337\}$ Fazzilahzadah 201474-716-7167Fazzilahzadah 201474-716-7167Kiyami 201580-716-7167Muhammad 201845-040-136Muhammad 201845-040-136Muhammad 201845-040-156Norcuzy 201282-160-553Patel 200711212-160Norcuzy 201283-160-576Bahmani 2013191-160-560Bahmani 2013191-160-746Bahradpanh 200755-160-160Frag 2020120-160-160I Coreal 202057-160-1746Frag 2020120-160-160Jurog 202057-160-1746Frag 201612-160-160Jurog 202057-160-1746Frag 201725-160-1746Hassanchi 2017136-160-1746Bahre 2018141-170-160Hassanchi 2017156-1777Shaha 2012160-176Frag 2020120-060-1276Frag 2020120-070Frag 2020120-070Frag 2017156 <td></td> <td>0 = 1.00</td> <td></td> <td>1 t da da</td> <td></td>		0 = 1.00		1 t da da	
Aliasghari 2017 42 Devendra 2009 52 Erahimi 2018 42 Feizolainzadeh 2014 70 Feizolainzadeh 2018 45 Feizolainzadeh 2017 45 Shariatganahi 2017 55 Feizolainzade 201 100 Feizolainzadeh 2018 45 Feizolainzadeh 2017 55 Feizolainzadeh 2017 55 Feizolainzadeh 2018 417 Feizolainzadeh 2018 45 Feizolainzadeh 2018 45					
Description 2017 Bernalmin 2017 Feizolalhzadeh 2014 Feizolalhzadeh 2015 Feizolalhzadeh 2014 Feizolalhzadeh 2014 Feizolalhzadeh 2015 Feizolalhzadeh 2014 Feizolalhzadeh 2014 Feizolalhzadeh 2015 Feizolalhzadeh 2014 Feizolalhzadeh 2015 Feizolalhzadeh 2014 Feizolalhzadeh 2015 Feizolalhzadeh 2014 Feizolalhzadeh 2015 Feizolalhzadeh 2				-0.20	[-5.12; 4.72] [7.67: 3.37]
Devendra 2009 52 Eprahim 2018 42 Feizollatzadeh 2014 70 Fizicollatzadeh 2018 40 Hategonetizicollatzadeh 2018 40 Fizicollatzadeh 2017 55 Fizicollatzadeh 2017 55 Fizicollatzadeh 2018 40 Fizicollatzadeh 2018 75 Fizicollatzadeh 2018 40 Fizicollatzadeh 2018 75 Fizicollatzadeh 2018 75 Fiz					
Feicolaitzadeh 2014 Karatoprak 2015 Kiyani 2015 Kiyani 2015 Malakimakan 2017 Namaghi 2019 Norouzy 2012 Patel 2007 Patel 2007 Pat	Devendra 2009	52		0.60	[-2.59; 3.79]
Karatoprak 20137600Kyani 201580-0.40 $[-3.46; 2.46]$ Laajan 199039-0.40 $[-3.46; 2.36]$ Muhammad 201645-0.40 $[-4.46; 2.66]$ Mulakimakan 201793-1.50 $[-5.53; 2.53]$ Nematy 201282-1.50 $[-5.76; 2.16]$ Pattal 2007334-0.50 $[-2.56; 2.90]$ Norouzy 201382-1.70 $[-5.46; 2.05]$ Pattan and Patil 2017334-0.74 $[-5.76; 4.27]$ Shariatpanahi200755-1.66 $[-6.50; 2.56]$ Bahmani 2013191-0.88 $[-2.46; 0.89]$ LORANS 2019146-1.99 $[-4.46; 0.89]$ al-raw 202057-1.66 $[-7.44; 0.44]$ Jahrami 202150-1.66 $[-7.44; 0.44]$ Jahrami 202150-1.66 $[-7.44; 0.44]$ Jahrami 202052-0.66 $[-7.45; 0.57]$ Jurog 2020120-1.44 $[-4.52; 3.07]$ Jurog 2020120-1.57 $[-7.65; 3.77]$ Jurog 2020120-0.92 $[-3.21; 3.61]$ Benchari 2017126-0.92 $[-5.76; 5.37]$ Prixed effect model-1.92-0.22 $[-3.21; 3.61]$ Hessonein 20191749-0.02 $[-3.25; 5.37]$ Finch 198841-0.22 $[-3.21; 3.61]$ Bouida 201798-0.22 $[-3.21; 3.61]$ Hessonein 20191749-0.22 $[-4.52; 5.50]$ Nachwak 2018152<					
Kyani 201580Lajam 199039Muhammad 201845Muhammad 201793Nameghi 201980Norouzy 201282Norouzy 201284Pattel 2007344Pattel 2007345Pattel 2007104Pattel 2013114Pattel 2013114Pattel 201311			-		
Muhammad 201845	Kiyani 2015			-0.40	[-3.16; 2.36]
Malekmakan 201793					
Nemaiy 2012 82 Norouzy 2013 82 Norouzy 2012 88 Horouzy 2013 191 LORANS 2019 146 Horouzy 2015 77 Horouzy 2020 57 Horouzy 2020 57 Horouzy 2020 57 Horouzy 2020 57 Horouzy 2020 57 Horouzy 2020 52 Horouzy 2020 52 Horouzy 2020 120 Horouzy 2020 52 Horouzy 2020 120 Horouzy 2015 120 Horouzy 2018 117 Horouzy 2019 1749 Horouzy 2017 98 Horouzy 2019 1749 Horouzy 2019 175 Horouzy 2019 175 Horouzy 2019 175 Horouzy 2019 17				-1.20	[-4.71; 2.31]
Noreaxy 2013 82 Noreaxy 2012 88 Patel 2007 334 Pathan and Patil 2010 30 Sahin 2013 88 Bahmani 2013 191 LORANS 2019 146 1-328 2.268 Bahmani 2013 191 LORANS 2019 146 1-328 2.269 1-68 6.50 2.289 Bahmani 2013 191 LORANS 2019 146 1-99 14.96; 0.89 1-68 6.50 2.289 Bahmani 2020 57 farag 2020 120 Urosj 2020 20 yazdanyar 2020 40 Fixed affect model Heterogenety; $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Hassanei 2017 98 Khan 2012 75 Khaled and Belbraouet 2009 276 Nachwak 2018 415 Hassanei 2019 1749 Khan 2017 55 Hassanei 2011 59 Fixed affect model Heterogenety; $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Hassanei 2019 1749 Khan 2017 65 Shehab 2012 60 Hassanei 2019 1749 Khan 2017 65 Hassanei 2019 1749 Hassanei 2011 59 Fixed affect model Heterogenety; $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Hassanei 2019 1749 Khan 2017 75 Hassanei 2019 1749 Khan 2017 75 Hassanei 2019 1749 Khan 2017 75 Hassanei 2011 59 Fixed affect model Heterogenety; $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Hassanei 2019 1749 Hassanei 2019 1749 Khan 2017 65 Hassanei 2011 59 Fixed affect model Heterogenety; $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Hassanei 2011 59 Toony 2018 200 Hassanei 2011 79 Hassanei 2011 59 Toony 2018 200 Hassanei 2011 75 Hassanei 2011 75 Hassa					
Norouzý 2012 88 Patel 2007 334 Patha and Patil 2010 30 Sahin 2013 88 John 2013 88 John 2013 191 LORANS 2019 146 al-raw 2020 57 Iarag 2020 57 Fixed affect model Heterogenety: $t^2 = 0$ %, $\tau^2 = 0$, $p = 1.00$ Long after Ramadan Al-Awadi 2020 136 Bashine 2018 417 Bencharfi 2017 72 Bernieh 2010 31 Bouida 2017 85 Fixed affect model Hassanein 2019 1749 Khan 2017 65 Nachwak 2018 121 Cong after Ramadan Al-Awadi 2020 136 Bashine 2018 417 Finch 1998 41 Hassanein 2019 1749 Khan 2017 65 Shehab 2017 65 Finch 1998 41 Hassanein 2019 1749 Khan 2017 65 Shehab 2017 65 Finch 1998 41 Hassanein 2019 1749 Khan 2017 65 Nachwak 2018 152 Ongsara 2017 65 Nachwak 2018 202 Hassanein 2011 59 Finch 1998 401 Hassanein 2019 1749 Khan 2017 65 Nachwak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 259 Toony 2018 200 Hatbumono 2020 37 Das 2021 75 Finch 1998 401 Hassanein 2019 1749 Khan 2017 65 Shehab 2012 60 Traore, et al. 2014 259 Toony 2018 200 Hatbumono 2020 37 Das 2021 75 Finch 1998 400 Hatbumono 2020 37 Das 2021 75 Finch 1998 401 Hassanein 2019 1749 Hassanein					
Pathar and Patil 2010 30 Shain 2013 88 Shain 2013 13 191 LORANS 2019 146 al-rawi 2020 57 farag 2020 57 farag 2020 57 farag 2020 52 Urooj 2020 40 Heterogeneity: $l^2 = 0$, $p = 1.00$ Long after Ramadan Al Awadi 2017 50 Faich 2017 72 Bernieh 2010 31 Bouida 2017 50 Faich 2018 411 Hassanein 2019 1749 Khan 2017 55 Khaled and Belbraouet 2009 276 Khaled and Belbraouet 2009 27					
Sahini 2013 88 Shariapanahi 2007 55 Bahmani 2013 191 LORANS 2019 146 al-rawi 2020 57 farag 2020 120 Jahrami 2021 50 Urooj 2020 52 yazdanyar 2020 40 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Long after Ramadan Al Awadi 2020 50 Finch 1998 41 Hassanein 2019 1749 Khan 2017 55 Khane 2017 65 Khane 2017 65 Khane 2017 65 Khane 2017 65 Khane 2017 75 Khaled and Belbraouet 2009 276 Nedhvak 2018 152 Ongsara 2017 65 Khane 2017 75 Khaled and Belbraouet 2009 276 Nedhvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Hatsument 2017 75 Khaled and Belbraouet 2009 276 Nedhvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Hatsument 2017 75 Khaled and Belbraouet 2009 276 Nedhvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Hatsument 2011 59 Toony 2018 200 Hatsument 2011 59 Toony 2018 200 Hatsument 2019 1749 Khaled and Belbraouet 2009 276 Nedhvak 2018 152 Ongsara 2017 65 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Hatsument 2019 1749 Khaled and Belbraouet 2009 276 Nedhvak 2018 152 Ongsara 2017 65 Traore, et al. 2014 25 Hassanein 2019 1749 Khaled and Belbraouet 2009 276 Nedhvak 2018 152 Ongsara 2017 65 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Hatsument 2017 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$					
Sharinatipanahi 2007 55 Bahmani 2013 191 LORANS 2019 146 al-awi 2020 57 farag 2020 120 Jurogi 2020 52 Jurogi 2					
LORANS 2019 146 al-rawi 2020 57 farag 2020 120 Urocj 2020 52 yazdanyar 2020 52 yazdanyar 2020 52 yazdanyar 2020 52 yazdanyar 2020 40 Fixed effect model Heterogenetiy: $f^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Long after Ramadan Al Awadi 2020 136 Bashier 2018 417 Bencharif 2017 72 Bernieh 2010 31 Hassanein 2019 1749 Khan 2017 35 Khana 2017 55 Khana 2017 55 Khana 2017 55 Khana 2017 55 Khana 2017 55 Khana 2017 55 Khana 2017 65 Shehab 2017 65 Shehab 2017 65 Shehab 2017 65 Shehab 2012 60 Tracer, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harburono 2020 37 Das 2021 75 Kit of effect model Heterogenety: $f^2 = 0\%$, $r^2 = 0$, $p = 1.00$	Shariatpanahi 2007	55		-1.96	[-6.50; 2.58]
al-rawi 2020 57 farag 2020 120 Jahrami 2021 50 Urooj 2020 52 Urooj 2020 40 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Long after Ramadan Al Awadi 2020 136 Bashier 2018 417 Benchari 2017 72 Bernieh 2010 31 Bouida 2017 98 Faris 2012 50 Fixed effect model Hassanein 2019 1749 Khan 2017 65 Shehab 2012 60 Tracre, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Khad effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$					
Jahrami 2021 50 Urooj 2020 52 yazdanyar 2020 40 Fixed effect model Heterogeneity: $f^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ Long after Ramadan Al Awadi 2020 136 Bashier 2018 417 Berniah 2017 72 Berniah 2017 79 Finch 1998 41 Hassanein 2019 1749 Khan 2017 75 Khaled and Bebraouet 2009 276 Nachwak 2018 152 Ongsara 2017 65 Shehab 2012 165 Nachwak 2018 152 Ongsara 2017 65 Shehab 2012 17 Troore, et al. 2014 25 Hassanein 2011 59 Toory 2018 200 Heterogeneity: $f^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ Heterogeneity: $f^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$					
Urocj 2020 52 yazdanyar 2020 40 Fixed effect model Heterogeneity: $l^2 = 0\%, s^2 = 0, p = 1.00$ Long after Ramadan Al Awai 2020 136 Bashier 2018 417 Bencharif 2017 72 Bernieh 2010 31 Bouida 2017 98 Faris 2012 50 Fixed effect model Khan 2017 35 Khaled and Belbraouet 2009 276 Nachtvak 2018 152 Ongsara 2017 653 Shelab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Trixed effect model Heterogeneity: $l^2 = 0\%, s^2 = 0, p = 1.00$ -10 - 5 0 5 10 -0.66 [-4.15; 4.77] -1.90 [-7.55; 3.75] -1.12 [-1.83; -0.36] -1.12 [-1.23; -2.2; 5.4] -1.12 [-1.23; -2.2] -1.12 [-2.2; 5.4] -1.12 [-2.2; 5.4] -1.12 [-2.2; 5.4] -1.12 [-2.2; 5.4] -1.12 [-2.2; 5.4] -1.12 [-3.8]; -3.6] -1.12				-3.50	[-7.44; 0.44]
yazdaryar 2020 40 Fixed effect model Heterogeneity: $l^2 = 0\%, e^2 = 0, p = 1.00$ Long after Ramadan Al Awadi 2020 136 Bashier 2018 417 Bencharf 2017 72 Bernieh 2010 31 Bouida 2017 98 Faris 2012 50 Finch 1998 41 Hassanein 2019 1749 Khale dand Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Nachvak 2018 152 Ongsara 2017 65 Nachvak 2018 202 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harburono 2020 37 Fixed effect model Heterogeneity: $l^2 = 0\%, e^2 = 0, p = 1.00$ -10 - 5 0 5 10 -10 - 5 0 5 10					
Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Long after Ramadan Al Awadi 2020 136 Bashier 2018 417 Bencharif 2017 72 Bernieh 2010 31 Bouida 2017 98 Faris 2012 50 Finch 1998 41 Hassanein 2019 1749 Khan 2017 35 Khaled and Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$					
Long after Ramadan Al Awadi 2020 136 Bashier 2018 417 Bencharlf 2017 72 Bernieh 2010 31 Bouida 2017 98 Faris 2012 50 Finch 1998 41 Hassanein 2019 1749 Khan 2017 75 Khaled and Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$	Fixed effect model		*		
Al Awadi 2020 Bashier 2018 Bashier 2018 Bashier 2017 Bencharif 2017 Bencharif 2017 Bouida 2017 Finch 1998 Harbis 2012 Khan 2017 Khaled and Belbraouet 2009 Khaled and Belbraouet 2009 Bashaw 2017 Khaled and Belbraouet 2009 Traore, et al. 2014 Bashaw 2017 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ Al Awadi 2020 Bashier 2018 Bashier 2018 Bashier 2018 Bashier 2019 Bashier 2018 Bashier 2018 Bashier 2019 Bashier 2018 Bashier 2019 Bashier 2018 Bashier 2018 Bashier 2019 Bashier 2018 Bashier	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p	p = 1.00			
Bashier 2018 417 Benchaff 2017 72 Bernieh 2010 31 Bouida 2017 98 Faris 2012 50 Finch 1998 41 Hassanein 2019 1749 Khan 2017 35 Khaled and Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 2000 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%, r^2 = 0, p = 1.00$		126		0.00	[2 21: 2 61]
Bencharif 2017 72 Bernieh 2010 31 Bouida 2017 98 Faris 2012 50 Finch 1998 41 Hassanein 2019 1749 Khan 2017 35 Khan 2012 75 Khaled and Belbraouet 2009 276 Nachwak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $J^2 = 0\%$, $x^2 = 0$, $p = 1.00$ -10 -5 0 5 10 1.70 (-2.02; 5.42] -0.70 (-2.06; 8.26] -0.70 (-2.06; 8.26] -0.70 (-2.06; 8.26] -0.70 (-2.06; 8.26] -0.70 (-2.06; 8.26] -0.217; (0.31] -0.32 (-7.17; 6.53] -0.32 (-7.17; 6.53] -0.32 (-7.17; 6.53] -0.32 (-7.17; 6.53] -0.32 (-7.17; 6.53] -0.32 (-7.17; 6.53] -0.008 (-2.45; 4.55] -0.008 (-2.45; 4.55] -0.008 (-2.45; 4.55] -0.008 (-2.45; 4.55] -0.24 (-4.52; 5.56] -0.32 (-0.95; 0.31]					
Bouida 2017 98 Faris 2012 50 Finch 1998 41 Hassanein 2019 1749 Khan 2017 35 Khaled and Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ -10 -5 0 5 10 -10 -5 0 5 10 -0.30 [-3.82; 3.22] -0.30 [-3.82; 3.22] -0.30 [-3.82; 3.22] -0.30 [-3.82; 3.22] -0.30 [-3.82; 3.22] -0.30 [-3.82; 3.22] -0.30 [-3.82; 3.22] -0.20 [-5.54; 5.14] -0.32 [-7.17; 6.53] -0.32 [-7.17; 6.53] -0.32 [-7.17; 6.53] -0.06 [-2.17; 0.85] -0.06 [-2.17; 0.85] -0.06 [-2.17; 0.85] -0.08 [-4.58; 4.42] -0.00 [-4.58; 4.42] -0.00 [-4.58; 5.48] -0.32 [-0.95; 0.31]	Bencharif 2017	72		1.70	[-2.02; 5.42]
Faris 2012 50 Finch 1998 41 Hassanein 2019 1749 Khan 2017 35 Khan 2012 75 Khaled and Belbraouet 2009 276 Nachvak 2018 152 Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$					
Finch 1998 41 Hassanein 2019 1749 Khan 2017 35 Khan 2012 75 Khaled and Belbraouet 2009 276 Nachvak 2018 152 -0.32 [-7.17; 6.53] Congsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $z^2 = 0$, $p = 1.00$					
Khan 201735 Khaled and Belbraouet 2009-0.32 $i-7.17$; $(-5.3]$ -1.27 Khaled and Belbraouet 2009276 Nachvak 2018-0.66 $i-2.17$; $(-5.61; 3.07]$ -0.66 Nachvak 2018152 Ongsara 2017-0.66 $i-2.17$; $(-5.61; 3.07]$ $-0.02Shehab 201260Traore, et al. 201425Hassanein 2011-0.08i-4.58; 4.42]-1.10Toony 2018200Description0.04i-6.18; 5.36]-1.10i-6.75; 4.55]0.24Harbuwono 202037Das 202175Fixed effect modelHeterogeneity: J^2 = 0\%, \tau^2 = 0, p = 1.00i-0.5i-0.5-10-50510$	Finch 1998	41		-0.20	[-5.54; 5.14]
Khan 201275Khaled and Belbraouet 2009276Nachvak 2018152Ongsara 201765Shehab 201260Traore, et al. 201425Hassanein 201159Toony 2018200Harbuwono 202037Das 202175Fixed effect modelHeterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$					
Khaled and Belbraouet 2009276Nachvak 2018152Ongsara 201760Traore, et al. 201425Hassanein 201159Toony 2018200Harbuwono 202037Das 202175Fixed effect modelHeterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$					
Ongsara 2017 65 Shehab 2012 60 Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ -10 -5 0 5 10 -10 -5 0 5 10 -0.08 [-4.58]; 4.42] -0.08 [-4.58]; 4.42] -0.08 [-4.58]; 4.42] -0.08 [-4.58]; 4.42] -0.08 [-4.58]; 4.42] -0.08 [-4.58]; 4.42] -0.08 [-4.58]; 4.42] -0.24 [-4.52]; 5.00] 0.25 [-5.08]; 5.58] -0.32 [-0.95]; 0.31]	Khaled and Belbraouet 2009	276		-0.66	[-2.17; 0.85]
Shehab 201260 Traore, et al. 2014-0.41 $[-6.18]; 5.36]$ -1.10Hassanein 201159 Toony 2018-0.41 $[-6.18]; 5.36]$ -1.10Harbuwono 202037 Das 20210.05 $[-2.79]; 2.89]$ 0.05Fixed effect model Heterogeneity: $I^2 = 0\%, \tau^2 = 0, p = 1.00$ -0.50.5					
Traore, et al. 2014 25 Hassanein 2011 59 Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ -10 -5 0 5 10 -10 -5 0 5 10					
Toony 2018 200 Harbuwono 2020 37 Das 2021 75 Fixed effect model -0.32 [-0.95; 0.31] Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$	Traore, et al. 2014	25		-1.10	[-6.75; 4.55]
Harbuwono 2020 37 Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ -10 -5 0 5 10					
Das 2021 75 Fixed effect model Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $p = 1.00$ -10 -5 0 5 10					
Heterogeneity: $f^2 = 0\%$, $\tau^2 = 0$, $\rho = 1.00$ -10 -5 0 5 10	Das 2021		├ • • • •	4.35	[-0.49; 9.19]
-10 -5 0 5 10		0 = 1.00	4	-0.32	[-0.95; 0.31]
			-10 -5 0 5 10		
meta-analysis of RIF effect on weight.					

reduced in the other three models after 6 weeks. Furthermore, a systematic review and meta-analysis (24) compared the effect of RIF on anthropometric and body composition indices to that of

non-RIF (all other types of intermittent fasting) combined. This review reported that both reduced the indices, but the non-RIF had a greater effect.

Study	subjects	Mean difference in WC	MD	95%-CI
2nd or 3rd week of ramadan				
Ghania 2015	80			[-2.79; 3.61]
Bencharif 2017	72			[-1.47; 2.67]
Khaled and Belbraouet 2009	276			[-1.75; 0.93]
Toony 2018	200		-0.15	[-2.71; 2.41]
Faris 2012	50		-0.93	[-5.15; 3.29]
Common effect model			-0.11	[-1.07; 0.84]
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p	= 0.93			
4th week of Ramadan				
Abdullah 2020	98		-0.13	[-3.29; 3.03]
Adanan 2020	68			[-5.42; 2.02]
Alzoughool 2019	60			[-3.92; 4.12]
Faris 2019	57			[-5.59; 3.59]
Khan 2017	35			[-4.96; 4.64]
Khan 2012	75			[-3.42; 2.78]
Muhammad 2018	45			[-3.92; 4.12]
Madkour 2019	56	~ •		[-7.68; 1.48]
Ongsara 2017	65			[-6.85; 0.11]
Shehab 2012	60	· · · · · · · · · · · · · · · · · · ·		[-7.53; 2.73]
lopez-bueno 2021	62			[-5.07; 3.67]
Common effect model				[-2.26; 0.11]
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, p	= 0.94		1.00	L =.=0, 0.11]
Immediately after Ramadan				
Aliasghari 2017	42		-0.95	[-5.63; 3.73]
Dasgupta 2017	43			[-6.89; 2.27]
Ebrahimi 2018	42			[-5.63; 3.73]
Gholami 2019	54			[-3.10; 4.44]
Muhammad 2018	45			[-3.53; 4.33]
Malekmakan 2017	93			[-4.79; 1.59]
Nematy 2012	82			[-4.35; 1.15]
· · · · · · · · · · · · · · · · · · ·	82			[-4.67; 2.01]
Norouzy 2013 Norouzy 2012	88			[-4.67, 2.01]
Sahin 2013	88			
	00 55			[-5.29; 3.47]
Shariatpanahi 2007				[-5.73; 0.07]
Shariatpanahi 2012	65	-		[-5.14; -0.08]
LORANS 2019	146			[-4.92; 0.80]
Al-rawi 2020	57			[-6.30; 3.50]
Farag 2020	120			[-5.06; 0.06]
Jahrami 2021	50			[-4.59; 3.43]
Yazdanyar 2020	40			[-6.03; 4.23]
Common effect model		~	-1.54	[-2.37; -0.71]
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p	= 0.99			
Long after Ramadan				
Adanan 2020	68			[-4.37; 3.37]
Al Awadi 2020	136			[-4.42; 3.22]
Bencharif 2017	72			[-0.03; 4.03]
Faris 2012	50			[-5.16; 3.28]
Hassanein 2019	1749			[-2.05; -0.15]
Khan 2017	35		-0.48	[-5.41; 4.45]
Khan 2012	75			[-2.40; 3.68]
Khaled and Belbraouet 2009	276	— •		[-1.39; 1.29]
Ongsara 2017	65			[-6.00; 1.06]
Shehab 2012	60			[-6.41; 3.69]
Toony 2018	200			[-2.90; 2.20]
Common effect model		<		[-1.08; 0.18]
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0.40$	52, p = 0.47		0.40	L
		-6 -4 -2 0 2 4 6		
E 5				

Although this review is the only one that investigated effects on the general population and didn't focus on a particular group of participants, most of our findings are consistent with other reviews. The significant reduction observed in weight during the fourth week and immediately after Ramadan is compatible with four of the previous systematic reviews (21–24, 27). Likewise, the decrease

10.3389/fnut.2023.1082217

in WC was similar to the decrease reported by Faris et al. (26). For BMI, however, a meta-analysis by Aydin et al. (25) reported no significant decrease in BMI, whereas we observed a significant decrease immediately after Ramadan. This difference is due to the fact that the pooled estimate from Aydin et al. included a wide range of measurement times from the last week of Ramadan up to 6 weeks after Ramadan. We also reported that the differences were not significant long after Ramadan. It is possible that the overall effect estimates are diluted in Aydin et al. and did not reach the significance level. Another review (27) that reported a meta-analysis of data from studies on healthy and overweight/obese individuals showed a significant decrease in FM and FP during the fourth week and immediately after Ramadan followed by a return to baseline levels long after Ramadan. In that meta-analysis, the authors included more studies on overweight/obese individuals than studies on individuals with a healthy weight. This suggests that, compared to normal weight people, overweight/obese individuals lose more FM and FP during Ramadan. However, this was not the case in LORANS.

The bioelectrical impedance analyser depends on tissues electrical conductivity which varies based on their water content (92). It requires information for each participant (i.e., sex and age) to use an appropriate equation to predict body composition parameters (93). However, BIA uses constant values for density and hydration of FFM and assumes that they are similar in all individuals when estimating FFM (94), then it predicts FM based on the estimated FFM (92). Also, calculated parameters by BIA are not identical to some other reference methods that have higher precision such as DEXA (93). Although BIA may underestimate or overestimate FP (30), it's precision is high enough to be used in epidemiological studies (95). Using DEXA in *LORANS* would be impractical, and BIA appeared to be the best method to be used due to the study nature, being operator-independent and its high precision (30, 95–98).

This study has several strengths. LORANS is a community-based study while all previous studies didn't target the general population. Also, this is the only systematic review and meta-analysis conducted to observe the effect of RIF on anthropometric measurements and body composition in the general population rather than in specific groups such as healthy individuals (21-23, 26, 27) or T2D patients (25). For the first time, we conducted a meta-analysis on the effect of RIF at four different time points of follow-up which allowed us to make conclusions on the reversibility of the changes in anthropometry and body composition after Ramadan. Moreover, LORANS allowed us to investigate the anthropometric and body composition changes independent of changes in energy intake as well as physiological changes such as TBW and FM. A number of limitations should also be acknowledged. First, the second visit in LORANS was 8-12 days after Ramadan, meaning that the lifestyle changes during these days interfered with the effect of RIF. Another limitation in LORANS is the 41.7% drop-out in the baseline sample. Also, in the meta-analysis, we did not find many studies that have studied indices such as MM, so it was not possible to conduct separate meta-analyses at different time points. Moreover, not all indices were measured at all time points. Thus, the meta-analysis for various time points included different studies which reduced the comparability of the time points. Finally, we observed an indication of smallstudies bias in six of the subgroups. However, applying the trim and fill method on these subgroups showed that the effect of bias is minimal.

In the general population, RIF is associated with reductions in weight, BMI, WC and HC. These reductions tend to start at the second/third week of Ramadan, become significant in the fourth week, reach their maximum immediately after Ramadan, and fade away 3–6 weeks after Ramadan. Reductions in TBW and FM might drive the changes in anthropometric and body composition changes during and after Ramadan.

Author contributions

RA-J, AD, and KT conceptualized the paper and interpreted data analysis. RA-J and AD collected data. RA-J, NW, KB, ME, ZB, ZA, and AA screened abstracts and full-texts. RA-J, NW, ME, and ZB extracted data and assessed the quality of reviewed studies. AD, KT, and PE critically reviewed the manuscript and provided feedback. RA-J is the guarantor, wrote the manuscript, and attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. All authors contributed to the article and approved the submitted version.

Funding

This project was partially funded by the Saudi Arabia Cultural Bureau in London. The funder had no role in either the study design, data collection, data analysis, data interpretation or the decision to publishing the study. RA-J was a PhD student sponsored by the funder, and all other researchers are independent of the funder.

Acknowledgments

PE was Director of the MRC Centre for Environment and Health and acknowledges support from the Medical Research Council (MR/L01341X/1, MR/S019669/1). PE also acknowledges support from the National Institute for Health Research NIHR Imperial Biomedical Research Centre, Imperial College London; and the British Heart Foundation Imperial College Centre for Research Excellence. PE was a UK DRI Professor at the UK Dementia Research Institute, Imperial College London, which receives funding from the Medical Research Council, Alzheimer's Society and Alzheimer's Research UK.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2023. 1082217/full#supplementary-material

SUPPLEMENTARY MATERIAL 1

Characteristics of individuals who did not attend the second visit after Ramadan compared to LORANS participants.

SUPPLEMENTARY MATERIAL 2 PRISMA checklist.

SUPPLEMENTARY MATERIAL 3 Newcastle-Ottawa quality assessment scale (Adapted).

SUPPLEMENTARY MATERIAL 4 Quality assessment of potential.

SUPPLEMENTARY MATERIAL 5 Characteristics of LORANS' participants (n = 146).

SUPPLEMENTARY MATERIAL 6

Effect of adjustments on mean difference in anthropometric and body composition parameters from LORANS.

SUPPLEMENTARY MATERIAL 7

Effect of RIF on anthropometric and body composition parameters on LORANS participants grouped by baseline BMI classes.

SUPPLEMENTARY MATERIAL 8

The included studies in the meta-analysis with measured parameters and time-point of measurement.

SUPPLEMENTARY MATERIAL 9 Fixed effect meta-analysis of RIF effect on fat percentage.

SUPPLEMENTARY MATERIAL 10 Fixed effect meta-analysis of RIF effect on fat mass.

SUPPLEMENTARY MATERIAL 11 Fixed effect meta-analysis of RIF effect on muscle mass during the fourth week of Ramadan.

SUPPLEMENTARY MATERIAL 12 Fixed effect meta-analysis of RIF effect on total body water.

SUPPLEMENTARY MATERIAL 13 Fixed effect meta-analysis of RIF effect on hip circumference.

SUPPLEMENTARY MATERIAL 14 Fixed effect meta-analysis of RIF effect on the waist to hip ratio.

SUPPLEMENTARY MATERIAL 15 Risk of bias tests.

References

1. Michalsen A, Hoffmann B, Moebus S, Bäcker M, Langhorst J, Dobos GJ. Incorporation of fasting therapy in an integrative medicine ward: evaluation of outcome, safety, and effects on lifestyle adherence in a large prospective cohort study. *J Altern Complement Med.* (2005) 11:601–7. doi: 10.1089/acm.2005.11.601

2. Cleveland Clinic. *Intermittent Fasting: 4 Different Types Explained*. (2019). Available online at: https://health.clevelandclinic.org/intermittent-fasting-4-differenttypes-explained/ (accessed December 22, 2020).

3. Duren DL, Sherwood RJ, Czerwinski SA, Lee M, Choh AC, Siervogel RM, et al. Body composition methods: comparisons and interpretation. *J Diabetes Sci Technol.* (2008) 2:1139–46. doi: 10.1177/193229680800200623

4. Osborne G, Wu F, Yang L, Kelly D, Hu J, Li H, et al. The association between gut microbiome and anthropometric measurements in Bangladesh. *Gut Microbes*. (2020) 11:63–76. doi: 10.1080/19490976.2019.1614394

5. Akkoca M, Metin Z, Topaloglu O, Tokgöz S, Cihan G, San I. An evaluation of the effects of Ramadan fasting and sahur meal on anthropometric, metabolic and endocrine parameters. *Clin Nutr.* (2018) 37:S270. doi: 10.1016/j.clnu.2018.06.1950

6. Iqbal M, Jamea AA, Alonso-Alonso M, Al-Regaiey KA, Bashir S. Cortical thickness, neurocognitive, and body composition effects of fasting during Ramadan. *J Res Med Sci.* (2019) 24:50. doi: 10.4103/jrms.JRMS_783_18

7. Adanan NIH, Md Ali MS, Lim JH, Zakaria NF, Lim CTS, Yahya R, et al. Investigating physical and nutritional changes during prolonged intermittent fasting in hemodialysis patients: a prospective cohort study. *J Ren Nutr.* (2020) 30:e15– 26. doi: 10.1053/j.jrn.2019.06.003

8. Ebrahimi S, Gargari BP, Izadi A, Imani B, Asjodi F. The effects of Ramadan fasting on serum concentrations of vaspin and omentin-1 in patients with nonalcoholic fatty liver disease. *Eur J Integr Med.* (2018) 19:110–4. doi: 10.1016/j.eujim.2018.03.002

9. Faris MAE, Madkour MI, Obaideen AK, Dalah EZ, Hasan HA, Radwan H, et al. Effect of Ramadan diurnal fasting on visceral adiposity and serum adipokines in overweight and obese individuals. *Diabetes Res Clin Pract.* (2019) 153:166–75. doi: 10.1016/j.diabres.2019.05.023

10. Adnan WAHWM, Zaharan NL, Wong MH, Lim SK. The effects of intermittent fasting during the month of Ramadan in chronic haemodialysis patients in a tropical climate country. *PLoS ONE*. (2014) 9:e114262. doi: 10.1371/journal.pone.0114262

11. Alzoughool F, Hourani HM, Atoum M, Abdelgader R, Alanagreh L. Irisin, leptin and adiponectin levels are reduced significantly during fasting. *Med J Nutrition Metab.* (2019) 12:389–96. doi: 10.3233/MNM-190322

12. Devendra D, Gohel B, Bravis V, Hui E, Salih S, Mehar S, et al. Vildagliptin therapy and hypoglycaemia in Muslim type 2 diabetes patients during Ramadan. *Int J Clin Pract.* (2009) 63:1446–50. doi: 10.1111/j.1742-1241.2009.02171.x

13. Gholami S, Hazar N, Shafiei S, Hemmati M, Rahmanian M. Biochemical and anthropometric changes during Ramadan among type 2 diabetes mellitus patients. *Int J Diabetes Dev Ctries.* (2019) 39:160–5. doi: 10.1007/s13410-018-0656-8

14. Karatoprak C, Yolbas S, Cakirca M, Cinar A, Zorlu M, Kiskac M, et al. The effects of long term fasting in Ramadan on glucose regulation in type 2 diabetes mellitus. *Eur Rev Med Pharmacol Sci.* (2013) 17:2512–6.

15. Sulu B, Öztürk B, Güven A, Kilic K. The effect of long-term controlled fasting (the Ramadan model) on body mass index, blood biochemistry and oxidative stress factors. *Turkiye Klinikleri Tip Bilimleri Dergisi.* (2010) 30:855–63. doi: 10.5336/medsci.2008-9981

16. Nachvak SM, Pasdar Y, Pirsaheb S, Darbandi M, Niazi P, Mostafai R, et al. Effects of Ramadan on food intake, glucose homeostasis, lipid profiles and body composition composition. *Eur J Clin Nutr.* (2018) 73:594–600. doi: 10.1038/s41430-018-0189-8

17. Ongsara S, Boonpol S, Prompalad N, Jeenduang N. The effect of Ramadan fasting on biochemical parameters in healthy thai subjects. *J Clin Diagn Res.* (2017) 11:Bc14–bc8. doi: 10.7860/JCDR/2017/27294.10634

18. Bouida W, Baccouche H, Sassi M, Dridi Z, Chakroun T, Hellara I, et al. Effects of Ramadan fasting on platelet reactivity in diabetic patients treated with clopidogrel. *Thromb J.* (2017) 15:15. doi: 10.1186/s12959-017-0138-0

19. Dasgupta A, Garg S, Pal B, Maharana SP, Bandhopadhayay L, Mallick N Jr. Is ramadan fasting cardio-protective? a study in a village of West Bengal. *Ind J Commun Health*. (2017) 29:203–8. doi: 10.47203/IJCH.2017.v29i02.015

20. Faris MAIE, Kacimi S, Al-Kurd RA, Fararjeh MA, Bustanji YK, Mohammad MK, et al. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. *Nutr Res.* (2012) 32:947-55. doi: 10.1016/j.nutres.2012.06.021

21. Jahrami HA, Alsibai J, Clark CCT, Faris MAE. A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on body weight in healthy subjects aged 16 years and above. *Eur J Nutr.* (2020) 59:2291–316. doi: 10.1007/s00394-020-02216-1

22. Kul S, Savaş E, Öztürk ZA, Karadag G. Does Ramadan fasting alter body weight and blood lipids and fasting blood glucose in a healthy population? A meta-analysis. *J Relig Health.* (2014) 53:929-42. doi: 10.1007/s10943-013-9687-0

23. Sadeghirad B, Motaghipisheh S, Kolahdooz F, Zahedi MJ, Haghdoost AA. Islamic fasting and weight loss: a systematic review and meta-analysis. *Public Health Nutr.* (2014) 17:396-406. doi: 10.1017/S13689800120 05046

24. Correia JM, Santos I, Pezarat-Correia P, Silva AM, Mendonca GV. Effects of Ramadan and non-Ramadan intermittent fasting on body composition: a systematic review and meta-analysis. *Front Nutr.* (2020) 7:625240. doi: 10.3389/fnut.2020.625240

25. Aydin N, Kul S, Karadag G, Tabur S, Araz M. Effect of Ramadan fasting on glycaemic parameters and body mass index in type II diabetic patients: a meta-analysis. *Indian J Med Res.* (2019) 150:546–56. doi: 10.4103/ijmr.IJMR_1380_17

26. Faris MAE, Jahrami HA, Alsibai J, Obaideen AA. Impact of Ramadan diurnal intermittent fasting on metabolic syndrome components in healthy, non-athletic muslim people aged over 15 years: a systematic review and meta-analysis. *Br J Nutr.* (2019) 123:1–22. doi: 10.1017/S000711451900254X

27. Fernando HA, Zibellini J, Harris RA, Seimon RV, Sainsbury A. Effect of Ramadan fasting on weight and body composition in healthy non-athlete adults: a systematic review and meta-analysis. *Nutrients.* (2019) 11:478. doi: 10.3390/nu11020478

28. Elliott P, Vergnaud A-C, Singh D, Neasham D, Spear J, Heard A. The airwave health monitoring study of police officers and staff in great britain: rationale, design and methods. *Environ Res.* (2014) 134:280–5. doi: 10.1016/j.envres.2014.07.025

29. Nichols J, Going S, Loftin M, Stewart D, Nowicki E, Pickrel J. Comparison of two bioelectrical impedance analysis instruments for determining body composition in adolescent girls. *Int J Body Compos Res.* (2006) 4:153–60.

30. Sun G, French CR, Martin GR, Younghusband B, Green RC, Xie YG, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. *Am J Clin Nutr.* (2005) 81:74–8. doi: 10.1093/ajcn/81.1.74

31. Wang JG, Zhang Y, Chen HE Li Y, Cheng XG, Xu L, et al. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition. *J Strength Cond Res.* (2013) 27:236–43. doi: 10.1519/JSC.0b013e31824f2040

32. Nutritics. Research Edition, v5.09. Dublin: Nutritics (2019).

33. Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. *The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses.* The Ottawa Hospital Research Institute (2019). Available online at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed May 5, 2020).

34. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. (1997) 315:629. doi: 10.1136/bmj.315.7109.629

35. Ahmadinejad Z, Ziaee V, Rezaee M, Yarmohammadi L, Shaikh H, Bozorgi F, et al. The effect of ramadan fasting on thyroid hormone profile: a cohort study. *Pakistan J Biol Sci.* (2006) 9:1999–2002. doi: 10.3923/pjbs.2006.1999.2002

36. Al Awadi FF, Echtay A, Al Arouj M, Sabir Ali S, Shehadeh N, Al Shaikh A, et al. Patterns of diabetes care among people with type 1 diabetes during Ramadan: an international prospective study (DAR-MENA T1DM). *Adv Ther.* (2020) 37:1550–63. doi: 10.1007/s12325-020-01267-4

37. Aliasghari F, Izadi A, Gargari BP, Ebrahimi S. The effects of Ramadan fasting on body composition, blood pressure, glucose metabolism, and markers of inflammation in NAFLD patients: an observational trial. *J Am Coll Nutr.* (2017) 36:640–5. doi: 10.1080/07315724.2017.1339644

38. Akanji AO, Mojiminiyi OA, Abdella N. Beneficial changes in serum apo A-1 and its ratio to apo B and HDL in stable hyperlipidaemic subjects after Ramadan fasting in Kuwait. *Eur J Clin Nutr.* (2000) 54:508–13. doi: 10.1038/sj.ejcn.1601047

39. Bahmani A. Islamic fasting and its effect on pre-diabetic population. *Sci J Kurdistan Univ Med Sci.* (2013) 18:40–6.

40. Bashier A, Khalifa AA, Abdelgadir EI, Al Saeed MA, Al Qaysi AA, Bayati MBA, et al. Safety of sodium-glucose cotransporter 2 inhibitors (SGLT2-I) during the month of Ramadan in muslim patients with type 2 diabetes. *Oman Med J.* (2018) 33:104–10. doi: 10.5001/omj.2018.21

41. Bernieh B, Al Hakim MR, Boobes Y, Abu Zidan FM. Fasting Ramadan in chronic kidney disease patients: clinical and biochemical effects. *Saudi J Kidney Dis Transpl.* (2010) 21:898–902.

42. Bencharif M, Chaima B, Amal F, Youcef B. Effect of pre-Ramadan education on dietary intake and anthropometry-comparison between two groups of diabetic patients. *Romanian J Diabet Nutr Metab Dis.* (2017) 24:295–307. doi: 10.1515/rjdnmd-2017-0035

43. Elfert AA, AbouSaif SA, Abdel Kader NA, AbdelAal E, Elfert AY, Moez A, et al. A multicenter pilot study of the effects of Ramadan fasting on patients with liver cirrhosis. *Tanta Med Sci J.* (2011).

44. Feizollahzadeh S, Rasuli J, Kheirouri S, Alizadeh M. Augmented plasma adiponectin after prolonged fasting during Ramadan in men. *Health Promot Perspect.* (2014) 4:77–81. doi: 10.5681/hpp.2014.010

45. Finch GM, Day JE, Razak, Welch DA, Rogers PJ. Appetite changes under free-living conditions during Ramadan fasting. *Appetite.* (1998) 31:159–70. doi: 10.1006/appe.1998.0164

46. Hassanein M, Al Awadi FF, El Hadidy KES, Ali SS, Echtay A, Djaballah K, et al. The characteristics and pattern of care for the type 2 diabetes mellitus population in the MENA region during Ramadan: an international prospective study (DAR-MENA T2DM). *Diabetes Res Clin Pract.* (2019) 151:275–84. doi: 10.1016/j.diabres.2019.02.020

47. Hassanein M, Hanif W, Malik W, Kamal A, Geransar P, Lister N, et al. Comparison of the dipeptidyl peptidase-4 inhibitor vildagliptin and the sulphonylurea gliclazide in combination with metformin, in Muslim patients with type 2 diabetes mellitus fasting during Ramadan: results of the VECTOR study. *Curr Med Res Opin.* (2011) 27:1367–74. doi: 10.1185/03007995.2011.579951

48. Khan N, Rasheed A, Ahmed H, Aslam F, Kanwal F. Effect of Ramadan fasting on glucose level, lipid profile, HbA1c and uric acid among medical students in Karachi, Pakistan. *East Mediterr Health J.* (2017) 23:274–9. doi: 10.26719/2017. 23.4.274

49. Khattak MMAK, Mazlan Mamat N, Azdie Mohd Abu Bakar W, Firdaus Nazri Shaharuddin M. Does religious fasting affect energy and macro-nutrients intakes? *Nutr Food Sci.* (2013) 43:254–60. doi: 10.1108/00346651311327909

50. Kiyani MM, Memon AR, Amjad MI, Ameer MR, Sadiq M, Mahmood T. Study of human biochemical parameters during and after Ramadan. *J Relig Health.* (2017) 56:55–62. doi: 10.1007/s10943-015-0084-8

51. Muhammad H, Latifah FN, Susilowati R. The yo-yo effect of Ramadan fasting on overweight/obese individuals in Indonesian: a prospective study. *Med J Nutrition Metab.* (2018) 11:127–33. doi: 10.3233/MNM-17188

52. Madkour MI, A TE-S, Jahrami HA, Sherif NM, Hassan RE, Awadallah S, et al. Ramadan diurnal intermittent fasting modulates SOD2, TFAM, Nrf2, and sirtuins (SIRT1, SIRT3) gene expressions in subjects with overweight and obesity. *Diabet Res Clin Pract.* (2019) 155:107801. doi: 10.1016/j.diabres.2019.107801

53. Malekmakan L, Sayadi M, Pakfetrat M, Moosavi B, Mousavinezhad H. The effect of fasting on anthropometric parameters and blood pressure levels: a report from Southern Iran. *Int Cardiovasc Res J.* (2017) 11:143–7.

54. Khaled BM, Belbraouet S. Effect of Ramadan fasting on anthropometric parameters and food consumption in 276 type 2 diabetic obese women. *Int J Diabetes Dev Ctries.* (2009) 29:62–8. doi: 10.4103/0973-3930.53122

55. Namaghi MA, Eslami S, Nematy M, Khoshnasab A, Rezvani R, Philippou E, et al. Intermittent fasting during ramadan and its effects in individuals with metabolic syndrome. *Br J Nutr.* (2019) 54:159–64. doi: 10.1097/NT.00000000000351

56. Nematy M, Alinezhad-Namaghi M, Rashed MM, Mozhdehifard M, Sajjadi SS, Akhlaghi S, et al. Effects of Ramadan fasting on cardiovascular risk factors: a prospective observational study. *Nutr J.* (2012) 11:69. doi: 10.1186/1475-2891-11-69

57. Norouzy A, Salehi M, Philippou E, Arabi H, Shiva F, Mehrnoosh S, et al. Effect of fasting in Ramadan on body composition and nutritional intake: a prospective study. *J Hum Nutr Diet.* (2013) 26(Suppl. 1):97–104. doi: 10.1111/jhn.12042

58. Norouzy A, Mohajeri SM, Shakeri S, Yari F, Sabery M, Philippou E, et al. Effect of Ramadan fasting on glycemic control in patients with Type 2 diabetes. *J Endocrinol Invest.* (2012) 35:766–71. doi: 10.3275/8015

59. Patel P, Mirakhur A, El-Magd KMA, El-Matty ANA, Al-Ghafri D. Type 2 diabetes and its characteristics during Ramadan in Dhahira Region, Oman. *Oman Med J.* (2007) 22:16–23.

60. Sahin SB, Ayaz T, Ozyurt N, Ilkkilic K, Kirvar A, Sezgin H. The impact of fasting during Ramadan on the glycemic control of patients with type 2 diabetes mellitus. *Exp Clin Endocrinol Diabetes*. (2013) 121:531–4. doi: 10.1055/s-0033-1347247

61. Shariatpanahi ZV, Shariatpanahi MV, Shahbazi S, Hossaini A, Abadi A. Effect of Ramadan fasting on some indices of insulin resistance and components of the metabolic syndrome in healthy male adults. *Br J Nutr.* (2008) 100:147-51. doi:10.1017/S000711450787231X

62. Shehab A, Abdulle A, El Issa A, Al Suwaidi J, Nagelkerke N. Favorable changes in lipid profile: the effects of fasting after Ramadan. *PLoS ONE*. (2012) 7:e47615. doi: 10.1371/journal.pone.0047615

63. Syam AF, Suryani Sobur C, Abdullah M, Makmun D. Ramadan fasting decreases body fat but not protein mass. *Int J Endocrinol Metab.* (2016) 14:e29687. doi: 10.5812/ijem.29687

64. Ghania T, Boumediene Meghit K, Mustapha D, Sarah S, Ghizlane B. Effect of Ramadan fasting on serum glucose and lipid profile among algerian type 2 diabetes patients. *Romanian J Diabet Nutr Metab Dis.* (2015) 22:385–92. doi: 10.1515/rjdnmd-2015-0045

65. Toony LFE, Hamad DA, Omar OM. Outcome of focused pre-Ramadan education on metabolic and glycaemic parameters in patients with type 2 diabetes mellitus. *Diabetes Metab Syndr.* (2018) 12:761–7. doi: 10.1016/j.dsx.2018.04.036

66. Yarahmadi S, Larijani B, Bastanhagh MH, Pajouhi M, Baradar Jalili R, Zahedi F, et al. Metabolic and clinical effects of Ramadan fasting in patients with type II diabetes. *J Coll Physicians Surg Pak.* (2003) 13:329–32.

67. Shariatpanahi MV, Shariatpanahi ZV, Shahbazi S, Moshtaqi M. Effect of fasting with two meals on BMI and inflammatory markers of metabolic syndrome. *Pak J Biol Sci.* (2012) 15:255–8. doi: 10.3923/pjbs.2012.255.258

68. Imtiaz S, Salman B, Dhrolia MF, Nasir K, Abbas HN, Ahmad A. Clinical and biochemical parameters of hemodialysis patients before and during islamic month of Ramadan. *Iran J Kidney Dis.* (2016) 10:75–8.

69. Laajam MA. Ramadan fasting and non-insulin-dependent diabetes: effect on metabolic control. *East Afr Med J.* (1990) 67:732–6.

70. Pathan M, Patil R. Effect of Ramadan fasting on body weight and lipid profile. *Biomed Pharmacol J.* (2010) 3. Available online at: http://biomedpharmajournal.org/?p=1278

71. Traoré M, Lemieux S, Galibois I. Metabolic and clinical profiles before, during and after Ramadan in Malians with type 2 diabetes. *Nutrition Clinique et Metabolisme*. (2014) 28:83–9. doi: 10.1016/j.nupar.2013.12.006

72. Abdullah K, Al-Habori M, Al-Eryani E. Ramadan intermittent fasting affects adipokines and leptin/adiponectin ratio in type 2 diabetes mellitus and their first-degree relatives. *Biomed Res Int.* (2020) 2020:1281792. doi: 10.1155/2020/1281792

73. Al-Rawi N, Madkour M, Jahrami H, Salahat D, Alhasan F, BaHammam A, et al. Effect of diurnal intermittent fasting during Ramadan on ghrelin, leptin, melatonin, and cortisol levels among overweight and obese subjects: a prospective observational study. *PLoS ONE.* (2020) 15:e0237922. doi: 10.1371/journal.pone.0237922

74. Das A, Hasmat N, Kumar Ghosh S, Sahu S. Effects of Ramadan intermittent fasting and pattern of nutrients intake on BMI and MUAC of a population consisting of Indian Muslims. *Biol Rhythm Res.* (2021) 52:1260–9. doi: 10.1080/09291016.2019.17 00328

75. Farag HAM, Baqi HR, Qadir SA, El Bilbeisi AH, Hamafarj KK, Taleb M, et al. Effects of Ramadan fasting on anthropometric measures, blood pressure, and lipid profile among hypertensive patients in the Kurdistan region of Iraq. *SAGE Open Med.* (2020) 8. doi: 10.1177/2050312120965780

76. Gad AI, Abdel-Ghani HA, Barakat AAEA. Effect of Ramadan fasting on hepatic steatosis as quantified by controlled attenuation parameter (CAP): a prospective observational study. *Egyptian Liver J.* (2022) 12:22. doi: 10.1186/s43066-022-00187-y

77. Harbuwono DS, Sazli BI, Kurniawan F, Darmowidjojo B, Koesnoe S, Tahapary DL. The impact of Ramadan fasting on Fetuin-A level in type 2 diabetes mellitus. *Heliyon.* (2021) 7:e06773. doi: 10.1016/j.heliyon.2021.e06773

78. Ismail AAE, Megallaa MH, Badrah MH, Farghaly MAA. Study of the metabolic effects of ramadan fasting on patients with type 2 diabetes. Relation to glycemic control, hypoglycemic events and diabetic complications. *Clin Diabetol.* (2021) 10:161–8. doi: 10.5603/DK.a2020.0004

79. Jahrami H, BaHammam AS, Haji EA, Bragazzi NL, Rakha I, Alsabbagh A, et al. Ramadan fasting improves body composition without exacerbating depression in males with diagnosed major depressive disorders. *Nutrients*. (2021) 13:2718. doi: 10.3390/nu13082718

80. López-Bueno M, Fernández-Aparicio Á, González-Jiménez E, Montero-Alonso M, Schmidt-RioValle J. Self-care by muslim women during ramadan fasting to protect nutritional and cardiovascular health. *Int J Environ Res Public Health*. (2021) 18:12393. doi: 10.3390/ijerph1823 12393

81. Mohamed H, Abbas AM, Huneif MA, Alqahtani SM, Ahmed AM, Babker AMA, et al. Influence of ramadan fasting on hemoglobin a1c, lipid profile, and body mass index among type 2 diabetic patients in najran city, saudi arabia. *Open Access Macedonian J Med Sci.* (2021) 9:318–25. doi: 10.3889/oamjms.20 21.6084

82. Mohammadzadeh A, Roshanravan N, Mesri Alamdari N, Safaiyan A, Mosharkesh E, Hadi A, et al. The interplay between fasting, gut microbiota, and lipid profile. *Int J Clin Pract.* (2021) 75:e14591. doi: 10.1111/ijcp.14591

83. Urooj A, Pai Kotebagilu N, Shivanna LM, Anandan S, Thantry AN, Siraj SF. Effect of ramadan fasting on body composition, biochemical profile, and antioxidant status in a sample of healthy individuals. *Int J Endocrinol Metab.* (2020) 18:e107641. doi: 10.5812/ijem.107641

84. Yazdanyar T, Sohrab M, Ramezani A, Aliabadi PK, Bahar A, Shirzad M, et al. The impact of fasting on metabolic and anthropometric parameters in type II diabetic patients: a prospective observational study. *J Clin Diagnos Res.* (2020) 14:OC18–23. doi: 10.7860/JCDR/2020/44868.14369

85. Poh B, Zawiah H, Ismail M, Henry C. Changes in body weight, dietary intake and activity pattern of adolescents during Ramadan. *Malays J Nutr.* (1996) 2:1–10.

86. Lessan N, Saadane I, Alkaf B, Hambly C, Buckley AJ, Finer N, et al. The effects of Ramadan fasting on activity and energy expenditure. *Am J Clin Nutr.* (2018) 107:54–61. doi: 10.1093/ajcn/nqx016

87. Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous AG, et al. Flipping the metabolic switch: understanding and applying the health benefits of fasting. *Obesity*. (2018) 26:254–68. doi: 10.1002/oby.22065

88. Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. *J Transl Med.* (2016) 14:290. doi: 10.1186/s12967-016-1044-0

89. van Norren K, Rusli F, van Dijk M, Lute C, Nagel J, Dijk FJ, et al. Behavioural changes are a major contributing factor in the reduction of sarcopenia in caloric-restricted ageing mice. *J Cachexia Sarcopenia Muscle*. (2015) 6:253–68. doi: 10.1002/jcsm. 12024

90. de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. (2019) 381:2541–51. doi: 10.1056/NEJMra1905136

91. Erdem NZ, Bayraktaroglu E, Samanci RA, Geçgil-Demir E, Tarakçi NG, Mert-Biberoglu F. The effect of intermittent fasting diets on body weight and composition. *Clin Nutr ESPEN*. (2022) 51:207–14. doi: 10.1016/j.clnesp.2022.08.030

92. Pichard C, Kyle UG, Gremion G, Gerbase M, Slosman DO. Body composition by xray absorptiometry and bioelectrical impedance in female runners. *Med Sci Sports Exerc.* (1997) 29:1527–34. doi: 10.1097/00005768-199711000-00021

93. Beestone C. *Bioelectrical Impedance Analysis (BIA)*. (2018). Available online at: https://www.scienceforsport.com/bioelectrical-impedance-analysis-bia/ (accessed December 9, 2020).

94. Statement NIOHTAC. Bioelectrical impedance analysis in body composition measurement. *Am J Clin Nutr.* (1996) 64:524s-32. doi: 10.1093/ajcn/64. 3.524S

95. Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. *Am J Clin Nutr.* (2003) 77:331–40. doi: 10.1093/ajcn/77.2.331

96. Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. *Am J Clin Nutr.* (1988) 47:7–14. doi: 10.1093/ajcn/47.1.7

97. Lukaski HC. Methods for the assessment of human body composition: traditional and new. *Am J Clin Nutr.* (1987) 46:537–56. doi: 10.1093/ajcn/46.4.537

98. Deurenberg P, Weststrate JA, van der Kooy K. Body composition changes assessed by bioelectrical impedance measurements. *Am J Clin Nutr.* (1989) 49:401–3. doi: 10.1093/ajcn/49.3.401