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Adrenal neoplasms rarely occur in children. They can be diagnosed in the presence

of endocrine, metabolic or neurological problems, an abdominal mass, more rarely

an adrenal incidentaloma, or in the context of an adrenal mass discovered in the

evaluation of childhood cancer including hematologic malignancy. According to

standard medical practice, pediatric malignancies are almost always evaluated by
18F-fluorodeoxyglucose positron emission tomographywith computed tomography

([18F]FDG PET/CT). Nuclear imaging using specific radiotracers is also an important

tool for diagnosing and staging neuroblastoma, pheochromocytoma, hormone

hypersecretion, or indeterminate adrenal masses. The Hippocratic oath “primum

non nocere” encourages limitation of radiation in children per the ALARA concept (as

low as reasonably achievable) but should not lead to the under-use of nuclear

imaging because of the potential risk of inaccurate diagnosis or underestimation of

the extent of disease. As in adults, nuclear imaging in children should be performed

in conjunction with hormone evaluation and morphological imaging.
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Background

Adrenal gland neoplasms are rarely found in the pediatric population and are usually revealed

by abdominal pain or palpable mass. Adrenal lesions include a wide diversity of conditions such as

congenital, neoplastic, infectious, and traumatic lesions. Although a definitive diagnosis is

obtained by pathological analysis, anatomical imaging techniques such as ultrasonography

(US), magnetic resonance imaging (MRI) or computed tomography (CT) play a crucial role in

tumor characterization and staging. The age of the patient, clinical history, and laboratory findings

can further help to narrow down the differential diagnosis. Nuclear medicine studies are indicated

in select clinical scenarios regardless of secretion, hormonally active lesions or indeterminate large

adrenal masses. Recognition of the imaging features of these lesions are important because it can

guide the treatment approach and may eliminate unnecessary invasive procedures.
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Neuroblastomas

Neuroblastomas (NBs) are the most common extracranial solid

malignancy of childhood (1, 2), comprising approximately 85% of

pediatric adrenal malignancies. They are derived from neural crest

progenitor cells and can occur anywhere along the sympathetic

nervous system (3). The median age at presentation is 17 months

(3, 4), and up to 50% of cases occur in the first months of life.

Clinically, neuroblastoma patients who have localized disease are

often asymptomatic but may be detected incidentally on imaging (1).

It can present as a palpable mass and can cause abdominal distension

or pain (1). When symptomatic, children typically present with signs

related to direct tumor growth or invasion into the neighboring

structures or with symptoms secondary to metastatic disease (i.e.,

intradural or epidural extension and may cause neurologic

impairments or skeletal pain due to bone metastases) (1). In

addition, symptoms related to catecholamines, to vasoactive

inhibitory and other peptides overproduction, or to cerebellar

paraneoplastic syndrome can rarely be observed (1).

Imaging allows assessment of disease extension and resectability.

The initial suspicion for neuroblastoma arising from the adrenal gland

or retroperitoneum usually follows US or cross-sectional imaging. MRI

may be preferable, in principle, because it is free of ionizing radiation

and superior in evaluation of intraspinal and marrow involvement;

however, CT scan is more widely available and is a rapid technique

enabling sedation avoidance. Because NB cells express the cell

membrane norepinephrine transporter, patients with NB can be

evaluated by using [123I]I-metaiodobenzylguanidine ([123I]I-mIBG),

which is recommended as the first-choice radiopharmaceutical for

diagnosis, staging, and restaging (5, 6) (Figure 1). Skeletal extension

can be staged on [123I]I-mIBG according to the SIOPEN or Curie

scoring systems. L-3,4-Dihydroxy-6-[18F]fluorophenylalanine (6-[18F]

FDOPA) can surpass [123I]I-mIBG (7–11), but the latter is still required

before inclusion in therapeutic clinical trials. 6-[18F]FDOPA was found

to perform better than CT/MRI for assessing bone/bone marrow and
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nodal lesions but can be inferior to CT/MRI for assessing liver

metastases. A study included 21 children with advanced

neuroblastoma, mostly studied at restaging, who underwent 6-[18F]

FDOPA PET/CT (12) and CT/MRI scans (37 paired studies). The

findings were concordant in 30 of 37 cases. CT/MRI showed false-

negative results in 2 patients with bone lesions that were positive on 6-

[18F]FDOPA PET/CT. Five false-positive CT/MRI results were

attributed to residual masses following surgery or end of treatment or

to lymph node enlargement not due to tumors. On a lesion-based

analysis, sensitivity of 6-[18F]FDOPA PET/CT was higher than that of

CT/MRI, 91% and 48%, respectively. The greatest differences in lesion

detection were within bone/bone marrow, where 6-[18F]FDOPA PET/

CT detected 95% of lesions and CT/MRI detected 7%. Additionally, 6-

[18F]FDOPA PET/CT detected more nodal sites (94%) than did CT/

MRI (72%). Liver metastases weremore accurately detected by CT/MRI

than by 6-[18F]FDOPA PET/CT, 100% and 63%, respectively. 6-[18F]

FDOPA PET/CT uptake in brain metastases has also been described,

and the method may detect bone and lymph node metastases that are

negative on diagnostic [123I]I-mIBG scintigraphy but confirmed on

post-treatment [131I]I-mIBG imaging. In another study, 55 patients

with neuroblastoma underwent 6-[18F]FDOPA PET (202 studies), [18F]

FDG PET (205 studies), and [123I]I-mIBG (80 scans) (13). 6-[18F]

FDOPA PET identified 41 of 42 tumors with viable tumor cells. One

false-negative result was identified: the patient had received induction

chemotherapy and their histology results showed only scattered tumor

cells. A false-positive result occurred in a patient following

chemotherapy. Sixteen patients had [123I]I-mIBG imaging. Three of

four tumors with negative [123I]I-mIBG imaging were positive on both

6-[18F]FDOPA PET and [18F]FDG PET images, whereas one false

negative was visualized only on 6-[18F]FDOPA PET images. The

sensitivity of 6-[18F]FDOPA PET imaging was higher than that of

[123I]I-mIBG imaging (100% vs. 75%, respectively). In 46 tumors, the

sensitivity of [18F]FDG PET was 87% and specificity was 63%. Four of

five false-negative tumors on [18F]FDG PET images were positive on 6-

[18F]FDOPA PET images.
FIGURE 1

Neuroblastoma. 2-week-old boy with neuroblastoma. [123I]I-mIBG posterior planar image (A), [123I]I-mIBG SPECT transverse image (B), CT for
attenuation correction (C), [123I]I-mIBG SPECT/CT fusion image (D), Diagnostic CT (E). Intense uptake in right adrenal mass on [123I]I-mIBG scan (arrows).
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18-Fluorine–labeled analogs of benzylguanidine hold great

promise for imaging neuroblastoma (14). [18F]FDG can be useful in

characterizing [123I]I-mIBG -negative or weakly positive tumors

characterization and prognostic assessment but can show nontumor

uptake. PET agents that target somatostatin receptors (SSTR) have

also shown some interesting results and may represent companion

agents to determine whether a patient is likely to benefit from peptide

receptor radionuclide therapy. Overall, [123I]I-mIBG SPECT/CT or 6-

[18F]FDOPA PET/CT should be performed as first-line imaging

investigations, depending on the therapeutic protocol’s requirements.
Pheochromocytomas

Pediatric pheochromocytomas (PHEOs) occur in children and

adolescents having a mean age at diagnosis of approximately 11 years

(15). Themost common presenting symptoms are headache, diaphoresis,

or palpitations (15). Sustained hypertension is seen more often in about

93% of pediatric cases whereas paroxysmal hypertension is observed only

in 7% of cases (15). Pediatric pheochromocytomas are most frequently

hereditary (up to 80%) and multifocal as compared to their adult-onset

PHEOs (15). The underlying genetic background typically contains

germline pathogenic variants of the VHL (27-32%), SDHB (39-44%),

SDHD (10-16%), RET (4%) or NF1 (1%) genes (15). Other genes are

mutated in less than 1% of cases. Approximately 50% of pediatric

pheochromocytoma and/or paraganglioma (PGL, together PPGL)

patients have a malignant tumor, more specifically in the presence of

SDHB mutations (15). Recurrences can be observed in up to 30% in the

pediatric population (15). In rare cases, PPGL can occur in children in the

setting of NF1; Carney triad (young females with no familial trait in

whom 2 to 3 of the classical tumors [i.e., gastric GIST, pulmonary

chondroma, PGL] develop); Carney-Stratakis syndrome (SDHx-related

PPGL including GIST and PGL); or Pacak-Zhuang syndrome (young

females with no familial trait in whom polycythemia develops at an early

age, multiple PPGL and duodenal somatostatinoma, presence of somatic

HIF2A mutation in tumors) (15). In patients with VHL, PHEO usually

develops and can be bilateral (15) and associated with extra-adrenal PGL

that can arise in a synchronous or asynchronous manner. VHL type 2,

which is predominantly associated with VHL missense mutations, is

defined by the occurrence of PPGL, either alone (type 2C) or with

hemangioblastomas (type 2A) or with hemangioblastomas and renal cell

carcinomas (type 2B). SDHB-mutations typically give rise multiple extra-

adrenal and/or PHEO (15). In the setting of SDHD mutations,

retroperitoneal PGLs are rare and often associated with head and neck

PGL. Extra-adrenal PGL can be found in the organ of Zuckerkandl, at the

level of the inferior mesenteric artery. Multiple endocrine neoplasia

(MEN) type 2B is due to Met918Thr RET mutation in >95% cases and

includes medullary thyroid carcinoma, PHEO, and extra-endocrine

features (16). Penetrance for PHEO is lower (about 40-50%) than for

medullary thyroid carcinoma (90%) (16). Bilateral PHEOs are frequent

(60-70% of cases), occurring in a synchronous or metachronous manner.

VHL PHEOs typically arise in younger patients, as low as 2-years of age,

than other subtypes do (15).

Information from the family history, assessment of serum

calcitonin, and metanephrines secretion profile can be combined to

identify the genetic background (17). Metanephrine secretion (plasma

and urine) is low in extra-adrenal locations or VHL-related PHEO. In
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the presence of PHEO, an adrenergic phenotype is most likely to be

associated with MEN2 or NF1.

There is no reliable histological system predicting the biological

behavior of PPGL, and malignancy is—as for adults— defined by the

presence of nodal, bone, or visceral metastasis (17). Metastases are

more commonly seen in children compared to adults (15). Overall,

malignancy risk is increased in SDHB compared to other subtypes

and increases with tumor size (17).

The aim of imaging is to determine whether the disease is

resectable, unifocal, or multifocal and to identify metastatic

recurrences and association with non-PPGL tumors (18–20).

PHEOs typically exhibit an attenuation density on unenhanced CT

>10 HU (often > 20 HU) (21, 22). They frequently contain a central

area of necrosis and may have a “ring sign” (23), which is peripheral

contrast enhancement at the edge of the lesion (observed in 40% of

cases compared to 2-3% for other tumors). On contrast-enhanced CT

or MR images, PPGLs have increased vascularity and strong

enhancement, which can be homogeneous in small tumors or

heterogeneous in larger ones due to cystic, necrotic, and/or

hemorrhagic components (22). They can exhibit a classical but

inconsistently increased signal intensity on T2-weighted images (22,

24). Due to their rarity, a retroperitoneal mass in children can be

suspicious for Wilms tumor or neuroblastoma rather than for PPGL.

Nuclear imaging often has limited clinical impact in MEN2 and NF1

despite high sensitivities and specificities. By contrast, it complements

morphological imaging in VHL- and SDHx-patients for multifocality

screening and detection of metastases. Head-to-head comparative

studies of radiopharmaceuticals are lacking in children, but it is

widely accepted that imaging phenotype is driven mostly by tumor

location and genetic background. Thus far, two functional imaging

studies have been performed in pediatric PPGL patients (25, 26). In

the first study, SSTR PET/CT, with a detection rate of 93.5%

performed significantly better than [18F]FDG (79.4%) and CT/MRI

(73.8%) in 9 metastatic SDHx-related PPGL patients (25). In the

second study in 32 pediatric PPGL patients, SSTR PET/CT as well as

CT had a detection rate of 100% and performed better than [123I]I-

mIBG (82.4%), [18F]FDG (66.7%) in detecting primary tumors (26).

However, in the overall detection rate of both primary and metastatic

PPGL, SSTR PET/CT (95.2%) performed better than [123I]I-mIBG

(65.0%), [18F]FDG (80.0%), and CT (91.4%) did (26). However, in

both studies, two soft-tissue metastatic abdominal lesions were missed

by SSTR PET/CT but detected by [18F]FDG. Further, based on adult

experience, 6-[18F]FDOPA (or [123I]I-mIBG, if 6-[18F]FDOPA is not

available) should be performed as first choices in VHL disease rather

than SSTR PET or [18F]FDG for SDHx-related PPGL including

metastatic disease (18, 19, 25) (Figures 2, 3). [18F]FDG is sensitive

in SDHx-PPGL, but images can be degraded by brown adipose tissue

activation due to catecholamines oversecretion (25).
Cushing syndrome

Cushing disease represents 75-80% of Cushing syndrome (CS) in

older children; however, before 10 years of age, adrenocorticotrophic

hormone (ACTH)-independent causes of CS are more common (27).

McCune-Albright syndrome and primary pigmented nodular

adrenocortical disease (PPNAD) are the two causes of ACTH-
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independent CS that are typically seen in children or young adults

(27). The most common presentation of CS in children is growth

retardation despite an increase in weight, except in patients with

virilizing adrenal tumors, which may show growth acceleration (27–

29). Hypertension and striae as well as other virilizing signs such as

acne and hirsutism are seen in approximately 50% of patients (27–

30). In children, headaches and fatigue are common. Whereas
Frontiers in Oncology 04
psychiatric and cognitive changes may affect school performance,

these patients may show “compulsive diligence” and do quite well

academically (27, 30, 31). McCune-Albright syndrome (post-zygotic

mutations in the guanine nucleotide binding protein, alpha

stimulating [GNAS] gene) can cause bilateral adrenocortical

hyperplasia and represents the most common etiology of CS in

neonates and young infants. Suspicion for the diagnosis can be
FIGURE 2

Pheochromocytoma. 11-year-old boy with pheochromocytoma. [123I]I-mIBG anterior planar image (A), transverse [123I]I-mIBG SPECT (B), [123I]I-mIBG
posterior planar image (C), Fusion [123I]I-mIBG SPECT/CT (D), Diagnostic CT (E). Intense uptake of [123I]I-mIBG in right adrenal mass (arrows).
FIGURE 3

Metastatic pheochromocytoma. The maximum intensity projection images of [68Ga]Ga-DOTATATE PET (A), [18F]FDG PET (B), 18F-fluorodopamine ([18F]
FDA) PET (C), 6-[18F]FDOPA PET (D), and [123I]I-mIBG SPECT/CT (E, F) of a 16-year-old boy with metastatic PPGL carrying a germline mutation in SDHB
gene demonstrates a 5.7-cm left lesion in the adrenal/periadrenal region abutting the left upper renal pole along with lesions in the abdomen,
mesentery, left peri-rectal and precarinal (red arrows) regions, and skull (green arrow). The [68Ga]Ga-DOTATATE PET detects an additional lesion in skull
bone (blue arrow); however, 6-[18F]FDOPA failed to detect any lesions.
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raised by the presence of fibrous dysplasia of bone, café-au-lait spots,

and the development of precocious puberty in girls (27, 32). This

disorder is caused by an activating mutation of the a-subunit of the G
protein–stimulating cyclic adenosine monophosphate (cAMP)

formation at codon 201 (27).

The signs of endocrine excess manifesting as precocious puberty,

CS, or virilization in the very young (<4 years) suggest adrenal

carcinoma (ACC) (27, 33). ACC is a rare, aggressive, and malignant

tumor arising from the adrenal cortex, and incidence of ACC is

estimated to be three times more common than that of adenoma in

childhood (ACC represents 5-6% of pediatric adrenal malignancies)

(34, 35). These tumors have bimodal peaks (one at <5 years old and

the other at 30-50 years old), and tumor size at the time of

presentation is usually large (2.5–20 cm) (33). ACC should raise

suspicion for Li-Fraumeni syndrome, Carney complex, Beckwith-

Wiedemann syndrome, familial adenomatous polyposis coli, and

MEN type 1 (33). Histopathologic examination cannot reliably

differentiate between an adrenal adenoma and ACC, necessitating

long-term follow-up even for histologically benign adrenal tumors

(34, 36).

PPNAD, also known as micronodular adrenal disease, is

characterized by small- or normal-sized adrenal glands with cortical

micronodules (average 2–3 mm) that may be dark or black in color

(27). PPNAD is often familial and associated with MEN syndrome

and Carney complex. CS occurs only in 30% of cases of Carney

complex and is caused by germline PRKAR1Amutations in up to 70%

of cases (27). PRKAR1A (chromosome 17q22-24) encodes the protein

kinase A (PKA) regulatory subunit type IA, an important regulator of

cAMP signaling in most cells. PPNAD is usually diagnosed before the

age of 30 years, with 50% of patients being younger than 15 years at

diagnosis (37). In isolated PPNAD, germline mutations in PRKAR1A

and in the phosphodiesterase 11A (PDE11A) gene have been

demonstrated (38). In the pediatric population, ectopic ACTH

secretion occurs rarely and is usually due to bronchial or thymic

carcinoids (27, 39). Rare cases of adrenal oncocytomas have

been reported.

Nuclear imaging studies are not needed for patients who have

ACTH-dependent CS but are often required for those with the

diagnosis of ACTH-independent CS. The studies are used mainly to

distinguish unilateral from bilateral adrenal disease (40, 41) and to

characterize large masses. Adrenal gland imaging is the mainstay in

differentiating between the various types of ACTH-independent CS

(27). In PPNAD, morphological imaging can show normal adrenal
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glands, bilateral micronodules, or eventual unilateral abnormality

(micronodules with or without coexistence of macronodules) (42).

Adrenal cortex functional imaging using NP-59 can be useful and

typically shows a bilateral adrenal uptake, with possible asymmetrical

uptake in patients with macronodules. The successful synthesis of

PET-based NP-59 radiopharmaceutical, 18F-NP-59, and its superior

imaging characteristics and reduced radiation dose compared to

that of 131I-NP-59 will likely lead to NP-59’s adoption for adrenal

cortex imaging in the future (43). In this situation, PET

radiopharmaceuticals that target the CYP11B enzyme family are of

interest and can reduce radiation dose exposure but have limited

availability (44, 45).

The presence of a unilateral adrenal mass on CT/MRI should raise

suspicion for ACC, especially if the lesion is >5 cm in diameter (27).

ACC is typically a large heterogeneous tumor with necrosis and

calcifications and can behave aggressively, with encasement of

localized vascular structures and widespread metastasis. Signs of

necrosis, hemorrhage, and calcification are characteristics of ACC

and, less commonly, of PHEO, which can also co-secrete ACTH (46).

In smaller tumors (<3 cm), MRI cannot accurately establish the

benignity of adrenocortical tumors in pediatric patients. Criteria such

as washout thresholds on CT scan and drop of signal on out-of-phase

MRI cannot reliably predict the benignity of these tumors in children,

as it does in the adult counterparts (34). [18F]FDG can be used for

disease characterization and preoperative evaluation, and its

revelations change the management plan in about 5% of ACC adult

patients (47) (Figures 4 and 5). [18F]FDG can exhibit moderate to

high uptake and has been shown useful for management of metastatic

disease (48). A highly elevated tumor-to-liver uptake ratio can be

observed in ACC with an oncocytic component or oncocytoma.
Virilization or feminization

Adrenal virilism is due to an androgen-secreting adrenal tumor or

adrenal hyperplasia (49). Virilization is more noticeable in girls (49).

Clinical and auxological features cannot clearly distinguish

adrenarche (e.g., onset of adrenal androgen secretion) from the

other entities. Laboratory and imaging investigations are necessary

to make a definite diagnosis (49). Adrenocortical tumors are rarely

responsible for virilization and are most often characterized by rapid

onset of clinical signs together with secretion of both glucocorticoids

and androgens. Feminizing adrenal tumors (e.g., estrogen-secreting)
FIGURE 4

Adrenocortical adenoma. 5-year-old girl with history of neuroblastoma 4 years earlier. Suspected recurrence of neuroblastoma. Adrenal lesion noted on
ultrasound as part of an evaluation of the urinary tract. [18F]FDG PET shows uptake in a right adrenal mass. Surgical resection of 2.5-cm adrenal
adenoma. Transverse PET (A), CT (B), PET/CT fusion image (C). Intense [18F]FDG uptake in a right adrenal mass (arrows).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1081783
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fargette et al. 10.3389/fonc.2022.1081783
are even more rare in childhood and can be caused by an oncocytoma

that can be either benign or malignant. Although boys present with

contrasexual pseudopuberty signs, girls present with isosexual

pseudopuberty. Certain causes of virilization, such as true

precocious puberty, testicular tumors, and congenital adrenal

hyperplasia, can be excluded by history and physical examination

(50). The major diagnostic problem often encountered is to

preoperatively distinguish between adrenal and ovarian tumors in

virilized females (50). Sustained elevation of ACTH in patients with

congenital adrenal hyperplasia has been postulated to cause adrenal

rest cells to grow and become functionally active. The so-called

adrenal rest tissue may be seen at several sites throughout the body,

including the celiac plexus region, broad ligaments, normal ovaries,

and testes (51). In three pediatric series, more than half of the

virilizing adrenal tumors were found to be carcinomas, indicating

that such tumors may metastasize widely. Therefore, when an adrenal

tumor is suspected, it is important to establish the correct diagnosis

promptly (50).

Guided by the clinical findings and first laboratory results,

imaging studies should be performed to exclude androgen-secreting

adrenal tumor. Imaging techniques used for various clinical

indications can detect incidental adrenal enlargement, and this may

alert clinicians to the underlying subclinical conditions. The imaging

modality of choice depends on the age of the child. Initial diagnosis of

an adrenal mass can be made with ultrasound; however, it is operator

dependent (52). Adrenal glands in patients with classical congenital

adrenal hyperplasia are often enlarged (one limb >4 mm) and
Frontiers in Oncology 06
cerebriform (52, 53). The diagnosis of congenital adrenal

hyperplasia is mainly based on clinical features and hormonal and

genetic analysis. Morphological imaging has an important role in the

diagnosis and management of these patients. It provides important

information for the diagnosis, follow-up, compliance with treatment,

and surgical planning. Ectopic adrenocortical masses should be

considered in the differential diagnosis of other tumors, particularly

when associated with hyperandrogenism in females. [18F]FDG PET

imaging could help, too, for a precocious diagnosis of the adrenal

tumor and its metastases, especially when other explorations fail to

show the adrenal tumor (54).
Adrenal incidentaloma

Adrenal incidentalomas are a rare finding in children. They can

be revealed by calcification seen in the subdiaphragmatic regions or

an adrenal mass on a US, CT, or MRI. Although common in adults,

adrenal adenomas are very uncommon in children. Tumors are more

likely to be derived from sympathetic ganglionic cells (neuroblastoma,

ganglioneuroblastoma, and ganglioneuroma). Cysts, teratomas, or

hematomas are very rare findings.

As for adults, hormone evaluations should be performed. Imaging

should orient towards the diagnosis to avoid any unnecessary surgery. It

is important to exclude potential pitfalls that could disguise an adrenal

mass (e.g., prominent crus of diaphragm or lipoma of diaphragmatic

crus, fat in suprarenal fossa, subdiaphragmatic extralobular pulmonary
FIGURE 5

Adrenocortical carcinoma. 13-year-old girl with hyperandrogenism (secondary amenorrhea, hirsutism). Large adrenal mass on US and CT scan. [18F]FDG
PET shows uptake in a left adrenal mass without metastasis. After surgery, pathological analysis confirmed the diagnosis of ACC with Wieneke score 3
(55), Ki-67 index 5.3% and p53-negative status. Complete remission 5 years after surgery. Maximum intensity projection image (A) Transverse CT (B), PET
(C), PET/CT fusion image (D). (Courtesy of Drs. Catherine Ansquer and Morgane Cleirec from Nantes University Hospital/Hôtel-Dieu).
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sequestration, and extramedullary hematopoiesis that may occur in

children with ineffective RBC production) (34).

Sympathetic tumors cannot be distinguished from each other via

imaging alone, and the diagnosis must be established based on

histopathological analysis. Nuclear medicine studies using specific

radiopharmaceuticals are most useful in endocrine active lesions or,

in select cases, for tumor characterization and to exclude metastases.

Conclusion

The adrenal glands in pediatric patients can be affected by a

variety of neoplasms. Imaging plays a crucial role in identifying and

differentiating malignant and benign adrenal neoplasms. The

diagnosis of adrenal lesions can be challenging; however, knowledge

about clinical presentations and the multimodality imaging

characteristics of different adrenal neoplasms can lead to an

accurate diagnosis and may direct biopsy or surgery. Multimodality

imaging helps to define the origin, extent, and relationship of these

lesions to adjacent structures and to guide treatment management.
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