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Background: We aimed to construct and validate the esophageal squamous cell
carcinoma (ESCC)-related m6A regulators by means of machine leaning.

Methods:Weused ESCCRNA-seq data of 66 pairs of ESCC fromWest ChinaHospital
of Sichuan University and the transcriptome data extracted from The Cancer
Genome Atlas (TCGA)-ESCA database to find out the ESCC-related m6A
regulators, during which, two machine learning approaches: RF (Random Forest)
and SVM (Support Vector Machine) were employed to construct themodel of ESCC-
related m6A regulators. Calibration curves, clinical decision curves, and clinical
impact curves (CIC) were used to evaluate the predictive ability and best-effort
ability of the model. Finally, western blot and immunohistochemistry staining were
used to assess the expression of prognostic ESCC-related m6A regulators.

Results: 2 m6A regulators (YTHDF1 and HNRNPC) were found to be significantly
increased in ESCC tissues after screening out through RF machine learning methods
from our RNA-seq data and TCGA-ESCA database, respectively, and overlapping the
results of the two clusters. A prognostic signature, consisting of YTHDF1 and
HNRNPC, was constructed based on our RNA-seq data and validated on TCGA-
ESCA database, which can serve as an independent prognostic predictor.
Experimental validation including the western and immunohistochemistry staining
were further successfully confirmed the results of bioinformatics analysis.

Conclusion:We constructed prognostic ESCC-relatedm6A regulators and validated
the model in clinical ESCC cohort as well as in ESCC tissues, which provides
reasonable evidence and valuable resources for prognostic stratification and the
study of potential targets for ESCC.
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Highlights

1. Identified ESCC-related m6A regualtors (YTHDF1 and HNRNPC)
using machine learning methods

2. Build a risk prediction model with YTHDF1 and HNRNPC
3. High expression of YTHDF1 and HNRNPC is associated with poor

prognosis in ESCC patients

1 Introduction

Esophageal cancer (EC) ranks as the 7th malignancy worldwide in
terms of its mortality rate with a 5-year survival ratio of 15%–20% (Bray
et al., 2020). According to the National Central Cancer Registry of China
(NCCR) statistics, Chinese EC patients accounting for 70% of all over the
world 4), where esophageal squamous cell carcinoma (ESCC) takes up
88.84% of all Chinese EC patients, which is regarded as the predominant
histological subtype of esophageal cancer (Zeng et al., 2016). ESCC was
demonstrated to be associated with worse survival outcomes compared
with other cancers (Zeng et al., 2015; Li et al., 2017). Neoadjuvant
chemotherapy or chemoradiotherapy has been regarded as standard
treatment for ESCC with the benefit of improving surgical outcomes
(de Gouw et al., 2019), but actual clinical efficacy remains to be optimized.
Owing to the specific mechanisms lied in ESCC were poorly
demonstrated, meanwhile, drug resistance, and the low survival rate
especially for metastatic EC patients treated with chemotherapy
challenging the effectiveness of target therapies for EC, therefore,
taking the pathogenesis of ESCC as a starting point to find potential
diagnostic and therapeutic targets for ESCC is the current research
direction on ESCC (Abnet et al., 2018). Previous studies have reported
that abnormal N6-methyladenosine (m6A) methylation levels play an
important role in the progression of various cancers (Chen and Wong,
2020). However, the research of m6A in ESCC is still in its infancy,
therefore, from the perspective of m6A methylation modification, the
identification of new and reliable prognostic predictors is very important
for developing appropriate ESCC treatment strategies and improving the
poor prognosis of ESCC patients.

Numerous studies in recent years have shown RNAmethylation is
a common seen in human and it is also a key regulator of
transcriptional expression. N6-methyladenosine (m6A), occurs in
approximately 25% of genome-wide transcripts and occurs around
stop codons, 5′- and 3′-untranslated regions, and long intra-exon
enrichment, is regarded as one of the most frequent RNA methylation
(Dominissini et al., 2012; Meyer et al., 2012). RNAm6Amodifications
regulate RNA splicing, translocation, stability, and protein translation,
catalyzed by methyltransferase complexes, including
methyltransferase-like 3 and 14 proteins (METTL3 and METTL14)
and their co-factors: WTAP, RBM15, RBM15B, and ZC3H13 (Lan
et al., 2019). The demethylation is mediated by “eraser” proteins
(ALKBH5 and FTO) (Huang et al., 2019; Jin et al., 2020a). Finally,
m6A modifications show the biological functions by binding to m6A
“readers,” including YTH domain-containing proteins (YTHDC1-2),
YTH-family proteins (YTHDF1-3), insulin-like growth factor
2 mRNA-binding proteins (IGF2BP1-3), HNRNPA2B1, HNRNPC
and RBMX (Huang et al., 2018a; Jiang et al., 2021). Meanwhile,
aberrant global m6A abundance also provides more possibilities for
the early diagnosis and treatment of various cancers, such as bladder
cancer (Chen et al., 2019), liver cancer (Chen and Wong, 2020), lung
cancer (Zhang et al., 2020a), gastrointestinal cancer (Sun et al., 2019),

and invasive malignant pleomorphic adenoma with different
methylation levels (Han H et al., 2021). In ESCC, Mettl3 promotes
esophageal cancer initiation and progression (Chen X et al., 2021; Han
Z et al., 2021b; Wang et al., 2021), followed by ALKBH5 (Nagaki et al.,
2020; Xu et al., 2020; Xiao et al., 2021), FTO (Liu et al., 2020),
YTHDC2 (Hu et al., 2020), HNRNPA2B1 (Guo et al., 2020) and
HNRNPC (Xu et al., 2020). These m6A regulators have all been
studied to regulate ESCC progression through m6A modification of
downstream target genes. However, most studies combined
bioinformatic analysis of open access databases to obtain m6A
RNA methylation regulators that may play an important role in
ESCA carcinogenesis, but lacked validation of large-scale clinical
sample whole-genome sequencing data. Thus, the regulators of
m6A methylation acting on ESCC are diverse and differ from
study to study.

Nowadays, precision medicine has become more and more
important in the diagnosis and treatment of diseases. However,
with the massive expansion of available genomic data, and novel
disease biomarkers, new analytical challenges arise to decipher
complex relationships between vast amounts of information and
multiple data types. Machine learning can detect indistinguishable
patterns from large, noisy or complex datasets. This capability is
particularly suitable for complex genomic data, especially in cancer
research (Simes, 1985; Cicchetti, 1992). At present, machine learning
is mostly used in Cancer Classification and Subtyping, Biomarker/
Signature Discovery, Drug Discovery for Cancer Therapy, Cancer
Driver Gene Discovery and Cancer Gene/Protein Interaction and
Networks (Huang et al., 2018b). The prediction of m6A
modification sites in disease is also found in glioma (Du et al.,
2021) Soft Tissue Sarcoma (Huang et al., 2021a), gastric cancer
(Zhang et al., 2020b), hepatocelluar carcinoma (Huang et al.,
2021b) etc. However, in ESCC, no machine learning algorithm has
been applied to find out ESCC related m6a regulators.

In this study, we identified differentially expressed m6A RNA
methylation regulators between normal and tumor samples using
whole-genome transcriptome sequencing data from 66 patients
diagnosed with esophageal squamous cell carcinoma at our
hospital. Modeling was performed using machine learning
methods, the prediction effect of the model was evaluated, and the
most important m6A genes that could distinguish ESCC from normal
groups were screened. RNA-sequencing data from The Cancer
Genome Atlas (TCGA)-ESCA dataset was then screened for
differentially expressed m6A RNA methylation regulators between
normal and tumor samples using the same machine learning and
modeling approach. After taking the intersection between the two data
sets, a risk prediction model is established. Finally, our results were
validated in tissue samples and an independent clinical ESCC cohort.

2 Meterials and methods

2.1 Patients and datasets collection

We used the RNA-seq data of 66 pairs of ESCC samples collected
from the Department of Thoracic Surgery, West China Hospital of
Sichuan University between 2020 and 2021 as the training cohort,
which contained complete clinical characteristic data, including gender,
age, tumor differentiation, TNM stage, and surgical method. In addition,
we downloaded expression profiles of 159 ESCC samples from the
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TCGA-ESCA database (https://portal.gdc.cancer.gov/) as the validation
cohort. Normalization of transcriptome counts was performed by the
edgeR package (version 3.26.8).

In terms of experimental validation, a total of 5 pairs of ESCC
tissues and adjacent normal tissues (8–10 cm from the original tumor
boundary) were collected from patients who underwent radical
esophagectomy at our hospital from June 2022 to July 2022 were.
All patients were informed of the risks of the operation. Permission to
use resected specimens and written consent were obtained from the
study participants preoperatively.

2.2 Machine learning methods

We employed two machine learning approaches: RF (Random
Forest) and SVM (Support Vector Machine) to screen ESCC-related
m6A regulators. The RF modeling adopts the “Repeatedcv”method in
the R language train function, and the SVM modeling adopts the
“svmRadial” method. The outcome variables were normal group and
ESCC group, and differential genes were put into the model as
independent variables. Plot the boxplots and cumulative residual
distributions of the two models to determine which model
performs better. If the gene importance score is greater than 2, it is
regarded as a characteristic gene (Watson et al., 2019).

A nomogram was constructed using the eigengenes screened by
machine learning to visualize the predictive power of the eigengenes for
the control group and the ESCC group. The nomogram formulates the
scoring standard according to the size of the regression coefficients of all
independent variables, and assigns a score to each independent variable;
for each patient, a total score can be calculated, and then through the
conversion between the score and the probability of the outcome,
probability of each patient’s outcome happening can be calculated.
Calibration curves, clinical decision curves, and clinical impact curves
(CIC) were used to evaluate the predictive ability and best-effort ability of
themodel. Statistics and graphics were performed using R-Studio (version
4.2.1). Two-sided p < .05 was considered statistically significant.

2.3 Western blotting

After washing with cold phosphate-buffered saline (PBS) and
pelleting, the protein concentration was determined using a
bicinchoninic acid assay. After electrophoresis on SDS-PAGE, proteins
were transferred onto PVDF membranes. The membranes were blocked
with 5% nonfat milk and incubated with primary antibodies at 4°C
overnight. The corresponding horseradish peroxidase (HRP)-conjugated
secondary antibody was added and incubated at room temperature for
2 h. Signals were visualized using an enhanced chemiluminescence
reaction with an HRP substrate. The primary antibodies against
YTHDF1 (1:150, A18126) and HNRNPC (1:200, A19137) were
purchased from Abclonal, China. The antibody against β-actin was
purchased from Sigma-Aldrich Co. (St Louis, MO, United States).

2.4 Immunohistochemistry staining and
scoring

The ESCC tissue sections included 120 cases of ESCC from
February 2016 to June 2017 with complete clinical information

were collected and produced by our team. Immunohistochemical
staining was performed subsequently. The tissue sections were
first kept at 60°C for 24 h. Xylene deparaffinization and hydration
were then carried out with an ethanol gradient (100%–60%).
Antigen retrieval was performed by heating sections in 10 mM
citrate (pH 6.0) boiling buffer for 15 min. ESCC tissue sections
were incubated overnight at 4°C with rabbit monoclonal anti-
YTHDF1 antibody (1:1,000, A18126, Abclonal, China) and anti-
HNRNPC (1:2000, A19137, Abclonal, China). Incubation with the
corresponding secondary antibody (Rabbit IgG, 1:5,000, Santa
Cruz Biotechnology) was performed the next day at room
temperature (25°C) for 30 min, followed by staining with 3, 3′-
diaminobenzidine (DAB) and hematoxylin. The results of ESCC
tissue sections were viewed and photographed with the Olympus
BX53 fluorescence microscope (Tokyo, Japan). A composite score
was determined using a previously described method (Laffitte
et al., 2001).

2.5 Statistical analysis

The clinicopathological characteristics of the patients were
analyzed by Pearson’s chi-square test or Fisher’s exact test to
compare the dichotomous variables. Student’s t-test was applied for
the mean values of continuous variables that conformed to a normal
distribution; the others were analyzed using the Mann-WhitneyU test.
Overall survival (OS) in patients was analyzed using Kaplan-Meier
curves, and log-rank tests were used to determine the statistical
significance. Multivariate survival analysis was carried out with the
Cox proportional hazard regression model, in which the covariates
that met the proportional hazards assumption of the covariate
interaction test were considered to pass. All statistical tests were
two-sided. A p-value of less than .05 was considered statistically
significant.

3 Results

3.1 Expression of m6A RNA methylation
regulators in esophageal squamous cell
carcinoma

We used the transcriptome data of 66 ESCC samples collected
from the Department of Thoracic Surgery, West China Hospital of
Sichuan University to analyze the mRNA expression levels of m6A
RNAmethylation regulators. A heatmap was generated to visualize the
expression of 21 m6A regulators that were significantly different
between ESCC and normal tissues (Figure 1A). The mRNA
expression levels of 18 m6A regulators (METTL3, METTL16,
WTAP, VIRMA, RBM15, CBLL1, YTHDF1, YTHDF3, HNRNPC,
FMR1, LRPPRC, HNRNPA2B1, IGFBP3, RBMX1, ELAV1, IGF2BP1,
FTO, and ALKBH5) were significantly increased in ESCC compared
with normal tissues. The other 3 regulators (RBM15B, YTHDC1,
YTHDC2) were downregulated in ESCC (Figure 1B). We then used
the same approach to analyze the mRNA expression levels of m6A
RNA methylation regulators using transcriptome data from the
TCGA-ESCA database. Similarly, we found that the mRNA
expression of 7 m6A regulators (YTHDF1, HNRNPC, FMR1,
HNRNPA2B1, IGFBP3, ELAVL1, and IGF2BP1) was significantly
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upregulated in ESCC compared to normal tissues, while METTL3,
RBM15B, YTHDC2, and IGFBP2 were significantly downregulated
in ESCC.

3.2 Screening esophageal squamous cell
carcinoma-related m6A regulators using
machine learning

We first used the RF (random forest) and SVM (support vector
machine) machine learning methods on the transcriptome data of
our hospital to take the expression of the above 21 m6A genes as
independent variables, and the normal group and ESCC group as the
outcome variables into RF and SVM models. We analyzed the
boxplots and cumulative residual distributions of both models to
determine which model had better performance. Figure 2A shows
that the mean residual value for RF is .00467 and SVM is .00471. The
residual inverse cumulative distribution line of RF lies mostly within
the residual line of SVM (Figure 2B), indicating that the difference
between the predicted value of RF and the true value is smaller, and
the model is more accurate. Therefore, we chose the RF model to
predict ESCC-related m6A genes. As can be seen from Figure 2C, the
cross-validation minimum error point for ESCC group error (red),
normal group error (green) and total sample error (black) is .076,
corresponding to 233 optimal random forest trees. The importance
score of ESCC-related m6A genes was further obtained by RF model.
The higher the meanDecreaseGini score, the more important the
gene is. Finally, we obtained that IGFBP3, HNRNPA2B1, YTHDF1,
YTHDC1, HNRNPC, YTHDF3, WTAP, FTO, and RBM15 were

m6A regulators significantly associated with ESCC (Figure 2D).
Similarly, we imported the above 11 m6A regulators screened
from the TCGA-ESCA database into the RF and SVM models,
where the mean residual value of RF was .00122 and SVM was
.00198 (Figure 3A). The residual inverse cumulative distribution line
of RF lies mostly within the residual line of SVM (Figure 3B), and we
chose the RF model to predict the eigengenes of ESCC. The cross-
validation minimum error point of ESCC group error (red), normal
group error (green) and total sample error (black) is .076,
corresponding to 18 optimal random forest trees (Figure 3C).
Through meanDecreaseGini score, HNRNPC, FMR1, as well as
YTHDF1 were m6A regulators significantly associated with ESCC
(Figure 3D).

3.3 Validation of esophageal squamous cell
carcinoma-related m6A regulators predictive
proficiency

Through Venn diagrams, the m6A regulators significantly
related to ESCC screened in our RNA-seq data and TCGA-
ESCA database based on machine learning were overlapped, and
then the final ESCC related m6A regulators in this study were
screened: YTHDF1 and HNRNPC (Figure 4A). We constructed
nomograms to visually demonstrate the predictive power of ESCC-
related m6A regulators for normal and ESCC groups (Figure 4B).
The nomogram showed that YTHFD1 made the largest
contribution to risk of ESCC, followed by HNRNPC. The
coefficients are used to assign the score of these independent

FIGURE 1
The expression of different m6A RNAmethylation regulators in RNA-seq data andin TCGA-ESCA data. (A) The heatmap showed 21 significantly different
expression of m6A regulators in each sample extracted from our RNA-seq data. (B) The heatmap of 11 differentially expressed m6A regulators in each sample
extracted from TCGA-ESCA database. (C) The expression of 21 differentially expressed m6A regulators between normal and ESCCtissues in our RNA-seq
cohort. (D) The expression of 11 differentially expressedm6A regulators between normal and ESCC tissues in TCGA-ESCA cohort. Data are shown as the
means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001; m6A, N6-methyladenosine; ESCA, esophageal squamous cell carcinoma; TCGA, The Cancer Genome Atlas.
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factors. Finally, the sum of these scores can be used to predict the
risk of ESCC (Figure 4B). From the ROC curve we obtained the
AUC of the model was .877 (Figure 4C). A calibration plot of the
nomogram is shown in Figure 4D, which shows that the predicted
risk of ESCC probability agrees well with real-world observations.
At the same time, we also established a clinical decision curve
prediction model. The results showed that patients had a higher net
gain when YTHDF1 and HNRNPC were used as signature genes to
predict the occurrence of ESCC, suggesting that the model is worth
using (Figure 4E). Finally, based on the clinical decision curve, we
further draw the clinical impact curve (CIC). The red curve
(numeric high risk) represents the number of people classified as

positive (high risk) by the model at each threshold probability. The
blue curve (high-risk numbers with outcomes) is the number of true
positives at each threshold probability. The results show that the
blue curve is within the red curve, indicating that the model has
excellent classification ability. This also suggests that YTHDF1 and
HNRNPC can be considered as biomarkers significantly associated
with the pathogenesis of ESCC. At the same time, we also
performed the PPI analysis based on our RNA-seq data in terms
of YTHDF1 and HNRNPC, and we found ⅩⅩⅩ may potentially
interact with HNRNPC and ⅩⅩⅩ may potentially interact with
YTHDF1, however, the specific mechanism of interaction still need
further study.

FIGURE 2
Using machine learning to find ESCC-related m6A regulators in our RNA-seq data. (A) Boxplots of residual values of RF (Random Forest) and SVM
(Support Vector Machine) models. Red dot represents the mean residual value. (B) Cumulative residual distribution plots of RF (Random Forest) and SVM
(Support Vector Machine) models. (C) The error value of the random forest. The red line represents the error of the ESCC group, the green line represents the
error of the Normal group, and the black line represents the total sample error. The minimum error point of the three-group cross-validation is 0.076,
corresponding to 233 optimal random forest trees. (D)Mean Decrease Gini score of 21 differentially expressed m6A regulators extracted from RNA-seq data.
RF, Random Forest; SVM, Support Vector Machine; m6A, N6-methyladenosine.
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3.4 Prognostic and clinicopathological
significance of risk grouping in esophageal
squamous cell carcinoma

Regarding the AUC value was .877, the heatmap showing the
difference in terms of clinicopathological features, HNRNPC, and
YTHDF1 in mRNA expression levels in high- and low-risk groups
was generated in TCGA-ESCA database. Notably, the high-risk
group was significantly associated with advanced N stage (p < .05)
and M stage (p < .05) (Figure 5A). Meanwhile, the univariate and

multivariate COX analysis were conducted, in which risk grouping
as well as TNM stage were significantly correlated with OS during
univariate analysis in TCGA-ESCA database. When put the statistic
significant signatures into the multivariate analysis, finally, risk
grouping and TNM stage were identified as the independent
prognostic factor of ESCC patients as well (Figures 5B,C). We
then validate the prognostic role of risk grouping through Kaplan-
Meier survival analysis in TCGA-ESCA cohort, which showed the
patients in high-risk group got the significant worse overall survival
than those in low-risk group (Figure 5D).

FIGURE 3
Using machine learning to find ESCC-related m6A regulators in TCGA-ESCA database. (A) Boxplots of residual values of RF (Random Forest) and SVM
(Support Vector Machine) models. Red dot represents the mean residual value. (B) Cumulative residual distribution plots of RF (Random Forest) and SVM
(Support Vector Machine) models. (C) The error value of the random forest. The red line represents the error of the ESCC group, the green line represents the
error of the Normal group, and the black line represents the total sample error. The minimum error point of the three-group cross-validation is is 0.076,
corresponding to 18 optimal random forest trees. (D) Mean Decrease Gini score of 11 differentially expressed m6A regulators extracted from TCGA-ESCA
database. RF, Random Forest; SVM; Support Vector Machine; m6A, N6-methyladenosine; TCGA, The Cancer Genome Atlas.
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FIGURE 4
Identify ESCC-related m6A regulators, build risk models, and validate model predictive capabilities (A) Venn diagrams determined YTHDF1 and HNRNPC
as ESCC risk factors after overlapping m6A regulators with higher meanDecreaseGini score in both RNA-seq data and TCGA-ESCA database. (B) Nomogram
was constructed using YTHDF1 and HNRNPC to visualize the predictive ability of ESCC-related m6A regulators for Normal group and ESCC group. (C)
Calibration curve with nomogram predicted probabilities on the x-axis and actual probabilities on the y-axis. The dashed line represents the true value,
and the solid line is bias-corrected by Bootstrapping (1000 repetitions). (D) ROC curve was applied to assess the predictive efficiency of the model. (E)Clinical
decision curve. The red line represents the outcome predicted by the model, the grey line represents “all positive diagnosis (ESCC)” and the black line
represents “all negative diagnosis (Normal)”. The horizontal axis is Threshold Probability, and the vertical axis is the net profit rate after subtracting the
disadvantages. (F) Clinical Impact Curve (CIC). The red curve (Number of high risk) represents the number of people classified as ESCC by the model at each
threshold probability; the blue curve (Number high risk with outcome) represents the number of true ESCC at each threshold probability. AUC, Area Under
Curve; CIC, Clinical Impact Curves; ESCC/ESCA, Esophageal quamous cell carcinoma; HNRNPC, RNA-binding protein, is a member of the heterogeneous
ribonucleoproteins C; m6A, N6-methyladenosine; TCGA, The Cancer Genome Atlas; YTHDF1, YTH N6-methyladenosine RNA-binding protein 1.
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3.5 Experimental validation of YTHDF1 and
HNRNPC in esophageal squamous cell
carcinoma tissues and a clinical esophageal
squamous cell carcinoma cohort

Owing to the expression of YTHDF1 and HNRNPC in mRNA
level have been showed in Figure 1, in which, the results from both our
RNA-seq data and TCGA-ESCA database showed the expression of
YTHDF1 and HNRNPC were significantly higher than that of normal
tissue samples. Then, the protein level of YTHDF1 and HNRNPC in
ESCC tissue were validated in 5 pairs of fresh frozen ESCC specimens
with related adjacent normal tissues collected from West China
Hospital by western blot. Compared with adjacent normal tissues,
the protein level of both YTHDF1 and HNRNPC in ESCC tissue were
significantly higher (Figure 6A). To examine the expression of
YTHDF1 and HNRNPC in ESCC more precisely, we performed
immunohistochemistry on ESCC tissue sections (Figure 6B). The
clinicopathological characteristics of YTHDF1 and HNRNPC
expression in ESCC tissue sections are listed in Table 1 and
Table 2. In terms of survival, the median follow-up time was
20.6 months, which ranged from 1.0 to 61.6 months in our
study. According to the Kaplan-Meier curves, the prognosis of
ESCC patients with higher HNRNPC (p = .003, Figure 6C) and
YTHDF1 expression (p = .017, Figure 6D) was significantly worse,
respectively. After Cox multivariate regression analysis,
YTHDF1 and HNRNPC expression were shown to be the
independent prognostic factor related to ESCC, respectively
(Table 3). The protein–protein interactions (PPI) were analyzed
via our RNA-seq data in order to find out the potential correlated
genes with YTHDF1 or HNRNPC (Figure 6E). Correlation analysis
demonstrated that all the regulators were positively correlated with
each other, among which, METTL3, DDX5, DDX3X, ALKBH5 and
FTO were all significantly associated with HNRNPC.

4 Discussion

ESCC is a highly malignant tumor, and in the pathogenesis of ESCC,
genetic and epigenetic modifications play a key role in the occurrence and
development of ESCC (Cheung and Liu, 2009; Fatehi Hassanabad et al.,
2020). At present, surgery combined with radiotherapy, chemotherapy
and targeted therapy is the main treatment method for ESCC. However,
its high recurrence and metastasis rates make the survival outcome of
ESCC unsatisfactory (Siegel et al., 2019; Chen et al., 2020). Therefore,
there is an urgent need to find new diagnostic biomarkers and potential
therapeutic targets for ESCC patients. m6A methylation is the most
common form of mRNA modification and has been shown to play an
important role in the formation of a variety of tumors (Su et al., 2019), and
the discovery of m6A opens up a new way for the study of epigenetics and
tumor-related diseases. Previous literature reported that the expression
levels of intracellular “writer” and “eraser” genes determined the
methylation level of m6A, while the protein expressed by the “reader”
gene can bind to m6A methylation sites to execute biological functions
(Sun et al., 2019). At present, the study of m6A in ESCC is still in its
infancy, but in other tumors, m6A-related genes have been confirmed as
potential tumor diagnostic markers. Therefore, this study used machine
learning methods to find out ESCC-related m6A regulators, providing
new targets for the development of clinical molecular targeted therapeutic
drugs in the future.

In this study, we first analyzed the expression of 21 m6A regulators
that were significantly different between ESCC and normal tissues using
RNA-seq transcriptional data from 66 pairs of ESCC and normal tissues
from our hospital. The expression profiles of 11 m6A methylation
regulators were also analyzed using RNA-seq transcriptional data from
the TCGA-ESCA database. Subsequently, we assessed them6A regulators
most significantly associated with ESCC occurrence by means of machine
learning. Before applying machine learning for analysis, the best machine
learning model should be identified firstly. In terms of our hospital RNA-

FIGURE 5
Clinical significance of risk grouping in TCGA-ESCA database (A) The heatmap shows the clinicopathological featureswere compared between the high-
and low-risk groups. (B) Univariate Cox analysis of the risk score and clinicopathological features. (C) Multivariate Cox analysis of the risk score and
clinicopathological features to identify the independent prognostic predictors in TCGA-ESCA database. (D) Kaplan-Meier analysis for patients of TCGA-ESCA
database in high- and low-risk group. Data are shown as the means ± SD. *p < 0.05. ESCA, esophageal squamous cell carcinoma; TCGA, The Cancer
Genome Atlas; HNRNPC, RNA-binding protein, is a member of the heterogeneous ribonucleoproteins C; YTHDF1, YTH N6-methyladenosine RNA-binding
protein 1.
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seq data, we applied RF and SVM models to evaluate the accuracy of
model predictions. Through boxplots and cumulative residual
distributions, we determined that the RF model’s predicted values
differed less from the true values and the model was more accurate.
Therefore, we chose the RF model to predict ESCC-related m6A genes.
Finally, we screened out IGFBP3, HNRNPA2B1, YTHDF1, YTHDC1,
HNRNPC, YTHDF3, WTAP, FTO and RBM15 as m6A regulators
significantly associated with ESCC according to the meanDecreaseGini
score. We then used the same approach to model the RNA-seq
transcription data of TCGA-ESCA, and also found that the RF model
was more accurate for prediction. HNRNPC, FMR1, YTHDF1 were
confirmed as them6A regulators significantly associatedwith ESCC in the

RNA-seq transcription data of TCGA-ESCA bymeanDecreaseGini score.
After overlapping the machine learning results of the two databases, we
generated a two-gene risk assessment model consisting of YTHDF1 and
HNRNPC, and showed good performance in predicting the occurrence of
ESCC. Finally, we analyzed the relationship between the two-gene risk
assessment model of YTHDF1 and HNRNPC and clinicopathological
features, and validated the expression of YTHDF1 and HNRNPC in
clinical tissues by WB and IHC staining. The prognostic significance of
YTHDF1 and HNRNPC were also identified through IHC staining,
which not only indicated that YTHDF1 and HNRNPC were involved
in the development of ESCC, but also affected the prognosis of ESCC
patients.

FIGURE 6
Experimental validation of YTHDF1 and HNRNPCwithWestern blot, immunohistochemical staining and PPI network analysis. (A)Western blot analysis of
YTHDF1 and HNRNPC expression in 5 pairs of fresh frozen ESCC specimens with related adjacent normal tissues. (B) Representative immunohistochemical
images of YTHDF1 and HNRNPC expression in ESCC tissues (scale bar: 50 μm). (C) Kaplan-Meier analysis for patients with high or low expression levels of
YTHDF1 and HNRNPC from ESCC tissue sections. (D) PPI network showed the interactions between HNRNPC and other m6A RNA methylation
regulators. Data are shown as the means ± SD. *p < 0.05. ESCA, esophageal squamous cell carcinoma; TCGA, The Cancer Genome Atlas; HNRNPC, RNA-
binding protein, is a member of the heterogeneous ribonucleoproteins C; YTHDF1, YTH N6-methyladenosine RNA-binding protein 1; METTL3,
Methyltransferase-like 3.
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YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1)
belongs to the YTH domain family and is a “reader” for m6A-
modified mRNA. Recent studies have shown that YTHDF1 is
involved in the occurrence and development of various cancers.
YTHDF1 promotes lung cancer progression through its
involvement in the m6A demethylase ALKBH5 pathway (Jin et al.,
2020b). In bladder cancer, YTHDF1 promotes bladder cancer growth
and progression through the ITGA6-METTL3 pathway (Jin et al.,
2019). In colorectal cancer, YTHDF1 plays an important oncogenic
role in cellular self-renewal and differentiation through the Wnt/β-
catenin pathway (Bai et al., 2019). In esophageal cancer, only Wang
et al. reported that HCP5 can directly interact with YTHDF1 to
promote the binding of YTHDF1 to m6A-modified HK2 mRNA,
enhancing the stability of HK2, thereby promoting the progression of
ESCC (Wang et al., 2022). In our study, YTHDF1 was highly expressed
in ESCA tissues, and higher expression of YTHDF1 was associated
with poorer survival, suggesting that YTHDF1 may act as a tumor-
promoting gene in ESCC, but the specific tumor-promoting
mechanism still needs further study.

HNRNPC, an RNA-binding protein, is a member of the
heterogeneous ribonucleoproteins (hnRNPs). HNRNPC contains

only one RNA-recognition motif (RRM), which must interact with
its RNA target after oligomerization into tetramers (Cieniková
et al., 2015). It can selectively recognize m6A mRNA sites that
mediate mRNA degradation (Berlivet et al., 2019), and it has also
been identified as a “reader” for m6A modifications (Nettersheim
et al., 2019). HNRNPC can regulate non-specific RNA export, RNA
expression, stability, and 3′-end processing and translation of RNA
splicing sequences (Wu et al., 2018). It plays an important role in
the occurrence and development of various cancers. Huang et al.
(Huang et al., 2020) reported that HNRNPC was overexpressed in
oral squamous cell carcinoma (OSCC), and higher HNRNPC
expression levels were positively associated with poor overall
survival. Meanwhile, HNRNPC was shown to promote the
proliferation, migration and invasion of OSCC cell lines. Wu
et al. (Wu et al., 2018) and Huang et al. (Huang et al., 2016)
reported that higher expression of HNRNPC was significantly
associated with worse OS in both breast and gastric cancers. In
esophageal cancer, there are few studies on HNRNPC. Among
them, Xu et al.’s bioinformatics analysis combined with ESCC
independent cohort studies found that higher expression of
HNRNPC in ESCC tissue was associated with poorer prognosis

TABLE 1 Clinicopathological characteristics of YTHDF1 expression on ESCC tissue sections.

YTHDF1 low expression YTHDF1 high expression P

64 (%) 56 (%)

Gender Male 47 (55.3) 38 (44.7) .319

Female 17 (48.6) 18 (51.4)

Age <55 12 (48.0) 13 (52.0) .353

≥55 52 (54.7) 43 (45.3)

Tumor location Upper thoracic 4 (57.1) 3 (42.9) .574

Middle thoracic 48 (55.8) 38 (44.2)

Lower Thoracic 12 (44.4) 15 (55.6)

T stage T1 4 (66.7) 2 (33.3) .004*

T2 20 (83.3) 4 (16.7)

T3 40 (45.5) 48 (54.5)

T4 0 (.0) 2 (100.0)

N stage N0 38 (64.4) 21 (35.6) .054

N1 17 (48.6) 18 (51.4)

N2 6 (30.0) 14 (70.0)

N3 3 (50.0) 3 (50.0)

TNM stage I 5 (71.4) 2 (28.6) .006*

II 37 (68.5) 17 (31.5)

III 20 (36.4) 35 (63.6)

IV 2 (50.0) 2 (50.0)

Differentiation High 9 (69.2) 4 (30.8) .114

Moderate 52 (54.2) 44 (45.8)

Low 3 (27.3) 8 (72.7)

ESCC, esophageal squamous cell carcinoma; YTHDF1: YTH N6-methyladenosine RNA-binding protein 1; * Meaningful p-value.
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TABLE 2 Clinicopathological characteristics of HNRNPC expression on ESCC tissue sections.

HNRNPC low expression HNRNPC high expression P

62 (%) 58 (%)

Gender Male 42 (49.4) 43 (50.6) .285

Female 20 (57.1) 15 (42.9)

Age <55 11 (44.0) 14 (56.0) .262

≥55 51 (53.7) 44 (46.3)

Tumor location Upper thoracic 4 (57.1) 3 (42.9) .431

Middle thoracic 47 (54.7) 39 (45.3)

Lower Thoracic 11 (40.7) 16 (59.3)

T stage T1 3 (50.0) 3 (50.0) <.001*

T2 22 (91.7) 2 (8.3)

T3 37 (42.0) 51 (58.0)

T4 0 (.0) 2 (100.0)

N stage N0 23 (39.0) 36 (61.0) .041*

N1 22 (62.9) 13 (37.1)

N2 14 (70.0) 6 (30.0)

N3 3 (50.0) 3 (50.0)

TNM stage I 6 (85.7) 1 (14.3) <.001*

II 40 (74.1) 14 (25.9)

III 15 (27.3) 40 (72.7)

IV 1 (25.0) 3 (75.0)

Differentiation High 7 (53.8) 6 (46.2) .566

Moderate 51 (53.1) 45 (46.9)

Low 4 (36.4) 7 (63.6)

ESCC, esophageal squamous cell carcinoma; HNRNPC: heterogeneous nuclear ribonucleoprotein C; * Meaningful p-value.

TABLE 3 Univariate and multivariate Cox regression analyses of clinical factors associated with 5-year overall survival on ESCC tissue sections.

Univariate cox regression analysis Multivariate cox regression analysis Multivariate cox regression
analysis

HR 95%CI P HR 95% CI P HR 95% CI P

Gender .823 .358, 1.892 .646

Age 1.890 .665, 5.371 .232

Tumor location 1.247 .745, 1.683 .445

T stage 1.933 1.136, 3.288 .015* 1.799 1.048, 3.085 .033* 1.813 1.063, 3.091 .029*

N stage 1.722 1.219, 2.434 .002* 1.605 1.125, 2.290 .009* 1.693 1.189, 2.413 .004*

TNM stage 1.716 1.290, 2.281 <.001* 1.615 1.088, 2.398 .017* 1.589 1.093, 2.310 .015*

Differentiation 1.459 .710, 2.997 .303

YTHDF1 expression 1.630 1.158, 2.296 .019* 1.549 1.098, 2.186 .013*

HNRNPC expression 1.921 1.453, 5.872 .003* 1.563 1.311, 5.349 .007

95% CI, 95% Confidence Interval; ESCC, esophageal squamous cell carcinoma; HR: hazard ratio; YTHDF1: YTH N6-methyladenosine RNA-binding protein 1; HNRNPC: heterogeneous nuclear

ribonucleoprotein C; * Meaningful p-value.
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of patients, furthermore, HNRNPC and ALKBH5 have been shown
to be prognostic indicators associated with ESCC survival outcomes
(Xu et al., 2020). In this study, HNRNPC was confirmed to be
significantly related to the pathogenesis of ESCC, and HNRNPC
was highly expressed in ESCC tissues. At the same time, IHC
confirmed that HNRNPC was an independent prognostic factor
of ESCC, which was consistent with the previous studies’ results
and further confirmed that HNRNPC promotes ESCC progression.
However, both YTHDF1 and HNRNPC act as m6A readers, and
they need to identify methylated genes or m6A writers to promote
tumor development, therefore, we next performed a PPI analysis of
both YTHDF1 and HNRNPC in the transcriptome data of our
hospital, respectively, where the connection between HNRNPC and
METTL3 has been constructed. Methyltransferase-like protein 3
(METTL3) is the most important component of the m6A MTC and
is highly conserved in eukaryotes from yeast to humans (Chen Z
et al., 2021). METTL3 has also been confrimed to be highly
expressed in ESCC and is associated with poor prognosis in
esophageal cancer (Xia et al., 2020). At the same time, regarding
the relationship between ESCC and YTHDF1, Lin et al. once
reported that METTL3 induced epithelial-mesenchymal
transition (EMT), which was an early metastasis event of
YTHDF1-mediated m6A-increased Snail mRNA translation (Lin
et al., 2019). Our study established the association between
METTL3 and HNRNPC as well, meanwhile, our group has also
been studying the specific mechanism of m6A lied in the
progression of ESCC, we hope the current results will make
contribution to all the scholars for future in-depth research.

The advantages of our research lie in the following aspects: 1) We
used large sample RNA-seq data to find ESCC-related m6A regulators,
and used the TCGA database for verification. We then performed
further analysis on the overlapped genes to ensure the reliability and
authenticity of our results. 2) For the above searched ESCC-relatedm6A
regulators, we performed WB experiments in clinical tissues, and
validated the results of bioinformatics analysis with ESCC
independent cohorts using IHC methods. The experimental results
are consistent with the results predicted by bioinformatics. 3) This study
is different from previous studies because we used machine learning
methods to find m6A regulators related to ESCC occurrence. Machine
learning has been widely used in the diagnosis, classification and
prognosis of ESCC, and these studies have shown that machine
learning is more accurate than logistic regression (Chen X et al.,
2021; Li et al., 2021; Zhang et al., 2022). In clinical statistics, the
traditional classification model is Logistic regression analysis. The
disadvantage of this model is that when the feature space is large,
the performance of logistic regression is not very good. Meanwhile, it is
prone to underfitting, the accuracy is not very high, and it is unable to
handle a large number of multi-class features or variables well. Based on
these, more and more machine learning methods are used in the field of
medical statistics (Watson et al., 2019), (Darst et al., 2018). In this study,
we also directly chose machine learning instead of logistic regression
analysis as the main method to screen ESCC-related m6A regulators.
After reviewing the machine learning studies related to ESCC, there are
no studies using machine learning to screen ESCC-related m6A
regulators. In addition, this study performed a visual analysis of the
nomogram of the model, and further used calibration curves, clinical
decision curves, and clinical impact curves to evaluate the predictive
ability of the model and the ability to maximize its benefits, which all
showed that the model has a good classification advantage.

7 Conclusion

In this study, we used transcriptome data of our hospital and
TCGA-ESCC database to screen out two ESCC-related m6A RNA
methylation regulators through machine learning: YTHDF1 and
HNRNPC. The association of the expression of YTHDF1 and
HNRNPC with the prognosis and clinicopathological characteristics
of ESCC patients was verified by WB and IHC. Based on our
constructed risk prediction model of m6A RNA methylation
regulators, this may provide important information for developing
diagnostic and therapeutic strategies in the future.
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