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Pediatric obesity has become in the last forty years the most common metabolic

disease in children and adolescents affecting about 25% of the pediatric population

in the western world. As obesity worsens, a whole-body insulin resistance (IR)

occurs. This phenomenon is more pronounced during adolescence, when youth

experience a high degree of insulin resistance due the production of growth

hormone. As IR progresses, the blunted control of insulin on adipose tissue lipolysis

causes an increased flux of fatty acids with FFA deposition in ectopic tissues and

organs such as the liver, leading to the development of NAFLD. In this brief review,

we will discuss the clinical implications of IR and NAFLD in the context of pediatric

obesity. We will review the pathogenesis and the link between these two entities,

the major pathophysiologic underpinnings, including the role of genetics and

metagenomics, how these two entities lead to the development of type 2 diabetes,

and which are the therapeutic options for NAFLD in youth.

KEYWORDS

NAFLD, type 2 diabetes, youth, insulin resistance, genetics
1 Introduction

Nonalcoholic fatty liver (NAFL) is defined as the presence of biopsy-proven fat

accumulation in more than 5% of hepatocytes without other causes of intrahepatic fat

accumulation (i.e., excessive alcohol assumption, infectious diseases, autoimmunity, and

metabolic diseases) (1). The gold standard for diagnosis is liver biopsy, as it allows a more

accurate quantitative assessment of hepatocyte fat content. However, in clinical practice, less

invasive methods, such as magnetic resonance imaging and liver ultrasound, are performed

in pediatric age (1). Nonalcoholic fatty liver disease (NAFLD) refers to a variety of

clinicopathological entities, ranging from simple hepatic steatosis (NAFL) to

steatohepatitis (NASH), cirrhosis, and end-stage liver disease even at a young age (1).

Children and adolescents with overweight and obesity present an increased risk for
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developing NAFLD early on, with higher rates in male adolescents.

Moreover, NAFLD is characterized by ethnic differences, with

Hispanic youth showing higher rates than - Non-Hispanic White

(NHW) and Non-Hispanic Black (NHB), and the latter group having

the lowest prevalence even when severe obesity is present (2).

Early autoptic reports (3) in 742 youth show that in the general

pediatric population between age 2 and 19 years the prevalence of

NAFLD is about 9.6%, and is the lowest (0.7%) between 2 and 4 years

of age and the highest (17.3%) between 15 and 19 years of age (3).

NAFLD prevalence increases with the increase of the degree of

adiposity, being about 38% in youngsters with obesity (2–4).

NAFLD prevalence changes among different ethnicities/races being

about 40% among Hispanics, 13% in Non-Hispanic Black (NHB) and

30% in Non-Hispanic White (NHW) (4, 5). Data from Trico’ et al.

show that in NHB individuals with diagnosis of NAFLD show the

same degree of disease as NHW and H (2), and a more pronounced

degree of insulin resistance as well as higher prevalence of prediabetes

and type 2 diabetes (2). The reason for these ethnic/race differences is

unknown and may be due to differences in metabolic pathways

involved in the pathogenesis of NAFLD (such lipogenesis, adipose

tissue lipolysis etc.) or to differences in adipose tissue distribution.

Differences in the risk of developing NAFLD exist also between boys

and girls, with girls showing a lower risk (3, 5), probably due to the

estrogens, that seem to have a protective effect against intrahepatic fat

accumulation (6, 7).

There are very few studies assessing the natural history of

pediatric onset NAFLD and most of them are retrospective. Despite

that, all show that early onset NAFLD has deleterious long-term

effects. A landmark retrospective study by Feldstein et al. carried out

reviewing the charts of 66 youth (average age 13.9+/-3.9 years)

showed that youth with early onset NAFLD have standardized

mortality ratio of 13.6 during the second decade of life compared to

the general population of same age and gender (8). The long-term

effects of NAFLD also affect insulin action worsening insulin

resistance occurring in youth with obesity (9).
2 Methods

We performed a literature search in the PubMed database

including the terms: “NAFLD”, “children and adolescents”,

“insulin-resistance”, “type 2 diabetes mellitus”. These terms were

used in different combinations. Only English language papers were

included. Articles were evaluated for scientific relevance and

pertinence to the topic. Relevant references from selected papers

were included.
3 Pathogenesis of NAFLD

Hepatic fat accumulation represents the main feature of NAFLD

(1). Triglyceride’s accumulation in the hepatocyte results from the

excessive flux of adipose tissue-derived free fatty acids (FFA),

enhanced hepatic de novo lipogenesis, chylomicron remnants

accumulation, and impaired hepatic beta-oxidation (10, 11). The

resulting imbalance between FFA intrahepatic concentration and

esterification with glycerol to form triglycerides promotes
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intrahepatic fat deposition and IR. Not only quantitative fat

deposition, but also qualitative lipid composition is a relevant

determinant of liver injury progression and NAFLD-related

metabolic comorbidities occurrence (12, 13). In fact, excess of

omega-6 polyunsaturated fatty acids have been sown to be

detrimental for the liver health (14, 15).

Along with nutritional factors, the role of genetic, microbial,

metabolic, and other environmental factors has been investigated

(16–19). Several common genetic variants have been associated with

NAFLD in adults and youth. The I148M variant in the PNPLA3 gene

is the most important genetic determinant of NAFLD (20). It interacts

with nutrients, insulin resistance, and visceral adiposity (21–24) to

convey susceptibility to the disease. The PNPLA3 gene encodes for the

adiponutrin, a protein expressed in the adipose tissue and the liver

with a strong lipolytic activity on phospholipids (20). The I148M

substitution causes a loss-of-function with impaired lipase activity,

hepatic fat accumulation, and macrovescicular steatosis (25, 26). This

variant displays a geographical distribution heterogeneity, being less

frequent in individuals of African descents (27). This finding might

explain the lower prevalence/incidence of NAFLD in this ethnic

group even in presence of severe obesity and IR (27, 28). Another

relevant genetic variant is the E167K allele in the Transmembrane 6

superfamily member 2 (TM6SF2) gene (29). TMS6F2 is a 7-domain

transmembrane transporter involved in VLDL secretion from the

liver (29). When the aminoacid change occurs, the VLDL secretion is

impaired leading to hepatic fat accumulation and at the same time

conferring a lower cardiovascular risk, given to the lower

concentrations of pro-atherogenic lipoproteins (30, 31). The P446L

variant in the GCKR gene is another recognized common genetic

variant associated with NAFLD (32). The GCKR encodes for the

GCKRP (glucokinase regulatory protein) that binds the glucokinase

(GCK) in the nucleus of the hepatocytes. When the GCKR the P446L

occurs, the mutated protein shows an impaired ability to bind the GK,

the consequence being that more GK is available in the cytoplasm to

convert the glucose in glucose-6-phosphate, its active form (33). This

leads to an enhanced glycolysis and hepatic de novo lipogenesis (34).

Other variants have been reported in MBOAT7 (35, 36) and

HSD17B13 (37, 38) genes with minor effect size, but interestingly

enough only the variant in theMBOAT7 gene has been associated also

with IR in youth (35).

Gut-liver axis is another important player in the pathogenesis of

NAFLD and its progression. The liver may affect the composition of

gut microbiota via the bile acids and the secretion of antimicrobial

compounds in the intestine (39, 40). At the same time, the gut

microbiota is involved in nutrient absorption and gut permeability.

Therefore, gut dysbiosis might induce hepatic fat deposition and

inflammatory insults to the liver. It has been shown that an altered gut

microbiota composition and reduced microbiota variety in subjects

with NAFLD compared to those without NAFLD. A relative

prevalence of Gram-negative to Gram-positive bacteria has been

described in NAFLD compared to healthy controls, with an

increase of Proteobacteria in more severe NAFLD (41). Another

study reported a reduction of Bacteroides in pediatric NAFLD

compared to non-affected subjects (42). Moreover, lower microbiota

a-diversity has been described in pediatric NAFLD (42–45). The

microbiota composition is associated with higher expression of genes

encoding inflammatory compounds thus leading to more severe
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forms (43). In a recent shotgun metagenomic study of gut microbiota

involving youth with obesity with and without NAFLD, the authors

found a higher prevalence of genes coding for branched chain

aminoacids and short chain fatty acids in the group with NAFLD (46).
4 Mechanisms underlying the
association between NAFLD and IR

NAFLD is commonly associated with other metabolic

comorbidities including dyslipidemia, and type 2 diabetes mellitus

(T2D), with insulin resistance (IR) being the main pathogenic link

between these conditions (2, 8). A bidirectional effect between

NAFLD and IR has been postulated. In fact, IR is a predictor of

NAFLD development in youth, and patients with T2D display higher

rates of NAFL, nonalcoholic steatohepatitis (NASH), and advanced

fibrosis compared to non-diabetic subjects (47). It has been estimated

that about 30% of children with NAFLD might present with

prediabetes or T2D (47). Studies investigating IR have

demonstrated that NAFL per se is a risk factor for IR independent

of the effect of other ectopic fat depots (i.e., visceral adipose tissue and

intramyocellular fat depots (48). A study focusing on youth with

obesity and NAFLD reported also a decrease in beta-cell function

paralleling with hepatic steatosis severity degree (49). The association

between NAFLD and IR is mediated by intracellular compounds,

namely diacylglycerols (DAG) and ceramides that affect insulin

transcription. Early studies by the Shulman lab at Yale University

have shown in mice and humans that DAG accumulation impact

insulin action in the liver, muscle and adipose tissue, the consequence

being higher fasting glucose availability in tissues and plasma (50, 51).

In fact, adipose tissue insulin resistance will result in an increased

adipose tissue lipolysis with increased glycerol flux to the liver, where

it serves as substrate for the gluconeogenesis (accounting for about

40% of neo-gluconeogenesis) (51). IR in the liver will result in an

increased glucose production and in the muscle in a reduce glucose

uptake. Overall, the increased availability of FFA and glucose in the

liver will provide more substrate for the Acetyl-CoA formation and

for the hepatic de novo lipogenesis, a pathway enhanced in the context

of IR (52). From a clinical standpoint the consequence is a higher risk

of T2D over time.
5 Therapeutic options for NAFLD
in youth

The discovery of GLP-1 has resulted in the development of GLP-1

analogues, initially used to treat T2D in adults and youth and then

approved also for the treatment of obesity as they have a strong

anorexigenic effect. However, despite evidence showing an effect of

semaglutide (53)on NAFLD, this class of medications is not approved

for NAFLD, but for obesity (54) and type 2 diabetes (55) in youth.

Even though the GLP-1 analogues are indeed game changer in the

therapy of obesity and its complications, lifestyle intervention

represent the first line of treatment. Nutritional approaches are, in

fact, effective in ameliorating NAFDL and IR. A study testing the

effect of 8-week low sugar diet (56) and a study testing a low omega 6
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to omega 3 PUFA ratio for 12 weeks (12) showed that these

nutritional interventions reduced MRI assessed intrahepatic fat of

about 30% and had a similar effect on IR. Western diet is

characterized by excess of free sugars and imbalance of high omega

6 and low omega 3 PUFA. The increased hepatic uptake of omega 6

PUFA leads to oxidized linoleic acid metabolites production and

finally fatty acids accumulation (57, 58). Therefore, modification of

dietary fat intake play an important role in NAFLD treatment. In

addition, increased intake of certain dietary sugar, in particular

fructose, have been associated with increased risk of NAFLD.

Fructose is highly lipogenic and is added in processed foods and

beverages (59). Low sugar diets are a promising tool for NAFLD

therapy. Finally, preclinical studies have suggested that gut

microbiome modulation might represent a therapeutic option for

NAFLD. Several clinical studies have reported that NAFLD is

associated with less microbiome diversity and relative prevalence of

Gram-negative bacteria compared to non-NAFLD subjects (60).

More recently, systematic review and metanalysis have investigated

the effectiveness of probiotics in the treatment of NAFLD. The

available RCT are highly heterogeneous in terms of probiotics

supplementation, outcome measures, and diagnostic tools for

NAFLD. Therefore, even if a decrease in liver enzymes and NAFLD

severity has been reported, there is no sufficient evidence to

recommend the use of probiotics for NAFLD treatment (60).
6 Conclusions

NAFLD is an important complication of childhood obesity

strongly linked to IR and T2D in youth. Given the long-term

implications that it can have on the mortality and the morbidity of

young individuals it is imperative to find new and more effective

preventive and therapeutic strategies for this disease.
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