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The piRNA (PIWI-interacting RNA) is P-Element induced wimpy testis (PIWI)-

interacting RNA which is a small molecule, non-coding RNA with a length of 24-

32nt. It was originally found in germ cells and is considered a regulator of germ cell

function. It can interact with PIWI protein, a member of the Argonaute family, and

play a role in the regulation of gene transcription and epigenetic silencing of

transposable factors in the nucleus. More and more studies have shown that

piRNAs are abnormally expressed in a variety of cancer tissues and patient fluids,

and may become diagnostic tools, therapeutic targets, staging markers, and

prognostic evaluation tools for cancer. This article reviews the recent research

on piRNA and summarizes the structural characteristics, production mechanism,

applications, and its role in urological tumors, to provide a reference value for

piRNA to regulate urological tumors.
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Introduction

With the in-depth study of RNA, it is recognized that only 2% to 3% of the human

genome’s genes are transcribed and translated to proteins (1, 2). RNA transcribed from genes

can be divided into two types where one is messenger RNA (mRNA) which transcribes from

a strand of DNA as a template and thereby carries genetic information to guide protein

synthesis while another is non-coding RNA (ncRNA) (3–5). Although, ncRNA cannot

encode the synthesis of proteins still it has received extensive attention because of its role in

cell function as well as disease etiology (6–8).

The ncRNA has been shown to play a key role in human carcinogenesis, as evidenced by

several studies (9). Based on the molecular size of ncRNAs, they can be categorized into long-
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chain non-coding RNA (lncRNA) and short-chain (small non-coding

RNA, sncRNA). The transcript of lncRNA is longer than 200

nucleotides (10). Contrarily, sncRNAs consist of microRNAs

(miRNAs), short interfering RNAs(siRNAs), and PIWI-interacting

RNAs (piRNAs) and so on (11). At present, the sncRNAs that have

been deeply studied in tumors include miRNAs, siRNAs, and

piRNAs. The lengths of these three RNAs are not equal where the

length of miRNA is about 22nt, siRNA about 20-25nt, and piRNA is

the longest at about 24-32nt. Unlike miRNAs and siRNAs that are

derived from double-stranded RNA or RNA with folded structures,

piRNAs are derived from single-stranded RNA precursors (12–14).

Structurally, only siRNAs are double-stranded RNAs, piRNAs and

miRNAs are single-stranded RNAs, and piRNAs are not known to

have any conserved secondary structures or sequence motifs (15–17).

The piRNAs can bind to PIWI proteins and participate in transposon

control, germline development, spermatogenesis, and many other

roles. The miRNAs regulate mRNA degradation or translation

inhibition post-transcriptionally with partial mismatched sequences,

while siRNAs have a natural defense against viruses as well as

transposons and also aid in regulating post-transcriptional mRNA

degradation with sequences of perfect match (18–20)(Table 1).

Among the above three sncRNAs, the research on piRNA is getting

deeper and deeper at this stage. According to the current database

search, about 23439 piRNAs (21) have been identified from the

human genome, which less than the total number of miRNAs

currently studied (~ 35000) (22). This suggests that piRNAs may

have several significant functions in gene regulation making them

regarded as significant cell biology mediators.

Although various studies have been conducted on piRNA the

research on piRNA association with different diseases is still in its

earliest stages and more thorough work is needed to be done for

studying the biological functions as well as roles of piRNA in the field

of human health, disease, and its main role to regulate epigenetics, for

controlling various biological processes. The most studied role is its

relationship with tumor theories regulating tumor growth, and

invasive and distant metastasis. At present, a series of differentially

expressed piRNAs have been found in gastric cancer, liver cancer,

breast cancer, and lung cancer along with other tumors such as piR-

651, piR-Hep1, and piR-021285 (23–27). These piRNAs not only

regulate the proliferation, invasion, and migration of cancer cells by

affecting either upstream or downstream signaling pathways, protein

expression, epigenetic modification, and other pathways but also are
Frontiers in Endocrinology 02
expected to be used as markers for non-invasive diagnosis, drug

treatment targets and prognostic biomarkers in clinical aspects.

The function of piRNA in tumors is constantly proposed,

researchers have also found that piRNA is closely related to

urological tumors. Now, some studies on the relationship between

piRNA and urological malignancies have been carried out (28–31).

The tumors of the urinary system mainly include renal carcinoma,

bladder cancer, prostate cancer and testicular cancer. The incidence

rate of prostate cancer among elderly men is higher where the PSA

level needs to be closely detected (32, 33). Presently, castration-

resistant prostate cancer still possess difficulty in treatment. There is

also a lack of specific tumor markers for kidney and bladder cancers.

At present, the non-invasive diagnosis and patient prognosis

evaluation of urological tumors are still a hot topic in basic research

and clinical transformation where piRNA is expected to become a

sensitive and reliable marker for diagnosis and prognosis of urological

tumors. This paper reviews the research performed on piRNA in the

past 10 years while summarizing the structural characteristics,

biosynthetic process, its role in urological tumors, and possible

clinical significance.
PiRNA

PiRNA and PIWI proteins

The piRNA is a class of 24-32nt ncRNAs isolated from

mammalian germ cells. In mammalian systems, they were formally

designated as piRNA in 2006 due to their association with the PIWI

subfamily of Argonaute proteins (34–38). The piRNA accumulates at

the beginning of meiosis or during spermatogenesis thus ensuring

their involvement in reproduction as well as in regulating fertility (36,

37, 39, 40). piRNA forms a piRNA/PIWI complex by binding with

PIWI proteins, and then plays a series of roles. It also plays a gene

silencing role via PIWI-dependent transposon silencing, epigenetic

control, gene and protein regulation, genome rearrangement as well

as maintaining germ stem cells (41–43).

The PIWI proteins have been identified first in Drosophila (44)

and are also reported to be involved in germline stem cell

maintenance as well as self-renewal (45). PIWI proteins belong to

the PIWI subfamily, which further belongs to the Argonaute protein

family. Five Argonaute proteins identified in Drosophila are Ago1,
TABLE 1 Comparison of the three sncRNAs.

Charateristics piRNA miRNA siRNA

Length About 24-32nt About 22nt About 20-25nt

Source Single-stranded RNA precursor
Double-stranded RNA or RNA with folded
structure

Double-stranded RNA or RNA with folded structure

Space structure Single stranded RNA Single stranded RNA Double stranded RNA

Secondary
structure

NA Yes Yes

Effects
It binds to PIWI protein and participates in
transposon control, germline development,
spermatogenesis, etc.

Post-transcriptional regulation of mRNA
degradation or translational repression with
partially mismatched sequences

Natural defense against viruses and transposons,
regulating mRNA degradation post-transcriptionally
with perfectly matched sequences

NA means Not Available.
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Ago2, Ago3, PIWI, and Aubergine (Aub). In addition, the PIWI

subfamily shows highly conserved structural and functional

properties in Drosophila, mouse (MILI, MIWI, and MIWI2),

human (HILI (PIWIL2), HIWI (PIWIL1), HIWI2 (PIWIL4), and

HIWI3 (PIWIL3)). There are three Argonaute proteins in germ cells,

namely Ago3, PIWI, and Aub (46, 47). As a nuclear protein, PIWI is

crucial for retrotransposon silencing as well as regulation of male

germ line migration (48). In addition, PIWI is also involved in the

formation of germ cells (45, 49). Knockout or mutation of PIWI

protein may lead to sperm development defects (48). Many studies

have established the PIWI protein’s function in cancer, such as

PIWIL2 can affect tumor development by inhibiting apoptosis and

promoting cell proliferation (50). Many studies have found PIWI

proteins can affect the occurrence and development of a variety of

cancers (50–52).
Structural characteristics of piRNA

The piRNA is a kind of small RNA with a single-stranded length

of 24-32nt, most of which are 29-30nt (53, 54). About 76% of

miRNAs have uracil at the 5′ ends, while piRNAs also have a

strong tendency to uracil at the 5′ ends (about 86%) (55). The

distribution of piRNAs on chromosomes is extremely uneven. In

mice, they are mainly distributed on chromosomes 17, 5, 4, and 2 but

rarely on chromosomes 1, 3, 16, 19, and X also basically not on

chromosome Y (36). In addition, piRNA mainly exists in the gene

spacer region, but rarely in the gene region or repeat sequence region.

They are mainly clustered at relatively short genomic loci of 1-100kb

and contain 10-4500 small RNAs (55). Because piRNAs are

distributed in clusters, and each of them has almost the same

orientation, it indicates that the same cluster of piRNAs may

originate from the same long initial transcript, but some clustered

piRNAs will suddenly change orientation, which indicates that these

bidirectional clustered piRNAs may be transcribed from the same

promoter in different ways (55).
Biosynthesis of piRNA

Since the discovery of piRNA, the source of such small RNAs has

been one of the research focuses of researchers. A current study shows

that the synthesis of mature piRNA needs to go through two steps,

namely transcriptional production of piRNA precursors and post-

transcriptional production of mature piRNA.

Production of piRNA precursors
The vast majority of precursors of piRNA generate from the

piRNA cluster’s genetic regions that are divided into single-stranded

clusters and double-stranded clusters. The piRNA clusters in

Drosophila ovarian somatic cells is a single-stranded clusters which

generate precursors localized to only one strand, while piRNA clusters

in germ cells is the double-stranded clusters which generate

precursors localized to two genomic strands. The precursors of

piRNA are generated by single-stranded clusters produced by

conventional unidirectional transcription in all animals that
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produce piRNA being detected so far. By definition, double-

stranded cluster piRNAs create both sense and antisense piRNA

precursors independent of transposon orientation (56, 57). At

present, double-stranded clusters transformed from two DNA

strands have only been found in some insects (58–60), but they are

likely to exist in other organisms. Protein coding genes can generate

some piRNA precursors from their 3’UTRs (61).

Transcription of Drosophila single-stranded piRNA clusters is

achieved through the formation of RNA polymerase II pre-initiation

complexes in inhibitory heterochromatin. The single-stranded cluster

transcription is identical to classical mRNA transcription. The single-

stranded cluster contains a transcription-related H3K4me2 marker at

the promoter. In addition, the piRNA precursors of single-stranded

clusters are those with a “cap” at the 5’ end and a “tail” at the 3’ end

(60, 62).

Several proteins like RNA Pol II, Rhino-Deadlock-Cutoff complex

(RDC complex), Moonshiner, TATA-box binding protein-related

factor 2 (Trf2), and UAP56 participate in the transcription of

double-stranded clusters into sense and antisense piRNA

precursors. Among these, the H3K9me3 inhibitory marker on the

double-stranded cluster was recognized by Rhino (63). It also forms a

complex with Deadlock (Del) as well as Cutoff (Cuff) [48]. To initiate

promoter-independent transcription, Rhino-Del recruits as well as

Trf2 to the pyrimidin purine (YR) element (64), in a process that does

not require RNA polymerase to bind the promoter. The RDC

complex ensures the elongation of the transcriptional precursor

piRNA by inhibiting the splicing and termination of the

polyadenylation signal sequences (PAS) within the cluster. After

that, the piRNA precursor is transferred to the Nuage outside the

nucleus through UAP56. Although the precursor obtained in this way

has no polyadenylate tail, Cuff can also prevent the exonuclease from

cutting the 3’ tail of the precursor (Figure 1).
FIGURE 1

Biosynthesis of piRNA. (A) Production of piRNA precursors (B) Primary
synthesis after transcription (C) ”Ping-pong” amplification mechanism.
Trf2, TATA box-binding protein-related factor 2; Del, Deadlock; Cuff,
Cutoff; YR, pyrimidin purine; PAS, polyadenylation signal sequence;
Armi, Armitage; Zuc, Zucchini; Hen 1, methyltransferase Hen1; Nbr,
Nibbler; MeO, methoxyl.
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Production of mature piRNA
Following transcription, mature piRNAs are produced by two

main mechanisms: the primary synthesis of piRNAs and the “ping-

pong” amplification mechanism (Figure 1).

Primary synthesis after transcription

The piRNA precursor delivered to the outside of the nucleus

enters a membrane-free electron-dense structure in the cytoplasm

(65), which contains most of the proteins that process piRNA

precursors. It is named Nuage (66) in Drosophila germ cells and

Yb body (67) in Drosophila ovary somatic cells. It also exists in the

outer mitochondrial membrane of piRNA-producing cells at all

stages. This membrane-free electron-dense structure may aid in the

localization of certain proteins or the protection of piRNA precursors

from nucleases. Its function might potentially block mRNA as well as

lncRNA to enter the piRNA synthesis pathway.

In Drosophila ovarian germ cells, piRNA precursors are

transported by Armitage (Armi) in Nuage to the mitochondrial

surface and cleaved to pre-piRNA containing 5’ monophosphate by

mitochondrial associated endonuclease Zucchini (Zuc) (68). The pre-

piRNA was then loaded onto the PIWI protein and trimmed at the 3’

end with the exonuclease Nibbler (Nbr). Meanwhile, the short RNA

2’-O-methyltransferase Hen1 methylates the newly produced 2’

hydroxyl group at the 3’ end (69). This process is known as

primary piRNA biogenesis, and the piRNA produced in this

manner are known as primary piRNA.
“Ping-pong” amplification mechanism

The amplification of piRNA is initiated by primary piRNA and

progresses via the involvement of Ago3 and Aub proteins. A piRNA/

Aub complex is formed by bind of Aub to the antisense strand piRNA

precursor and also cleaves the use strand piRNA precursor to generate

a sense piRNA bound to Ago3. Subsequently, Ago3 binds the sense

strand piRNA precursor to form piRNA/Aog3 and cleaves the

antisense strand piRNA precursor to generate antisense piRNA

loaded onto Aub (42, 70, 71). This round of repeat cutting creates a

huge number of piRNAs in a short period. This mode is called the

secondary biogenesis of piRNA or the “ping-pong” amplification

mechanism. PIWI proteins then bind to these piRNAs and

transport them back to the nucleus, where they silence target genes.
Biological functions of piRNA

The piRNA sequences and functions vary greatly among different

species. According to current research, its possible biological

functions include mediating transposon silencing, epigenetic control

(72), gene as well as protein regulation (73), and participating in

spermatogenesis (74). However, at present, only the mechanism that

piRNA can mediate transposable elements (TEs) silencing has been

studied in depth and has become a consensus (75–78).

At the transcriptional level, piRNA regulates TEs silencing

through DNA methylation modification. In the nucleus, piRNA

and PIWI regulate DNA methyltransferase (DNMT) directly

modifying chromatin structure and histones where transcriptional

initiation is inhibited by the methylation of CpG islands by DNMT
Frontiers in Endocrinology 04
(79). DNMT guided by PIWI proteins binds to transposons or target

genes, thus completing transposon or target gene silencing. However,

the precise mechanism via which piRNA and PIWI proteins regulate

the expression of DNMT protein in this process is poorly understood.

piRNA and PIWI proteins also interact with histone methylation

processes and influence histone lysine methylation (H3K and H4K).

They recruit histone methyltransferases to target transcripts to inhibit

transcription (80, 81). But so far, the relationship between histone

modification and piRNA has not been solved.

The piRNA can also silence TEs through chromosomal

heterochromatinization. piRNA can recruit PIWI, HP1a, and Su

(var) 3-9, but also make H3K9me2/3 enrichment and RNA

polymerase II association reduced (82). It was found that PIWI

specifically interacts with heterochromatin protein 1a (HP1a),

which is the main participant in heterochromatin gene silencing. Its

main binding interaction involves HP1a binding to the PxVxL type

motif of the PIWI N-terminal domain. The PxVxL type motif is

necessary for Drosophila for normal silencing of transgenes

embedded in heterochromatin (83). This study shows that the

combination of piRNA, PIWI protein, and heterochromatin protein

plays a direct role in determining the epigenetic state of the

Drosophila genome.

piRNA and PIWI proteins stimulate mRNA degradation at the

post-transcriptional phase via mRNA degradation pathways. The

main way to attenuate mRNA and hinder translation involves

shortening of mRNA polyadenylation tail, in a process named

deadenylation (84).

In addition to transposon silencing, piRNA has also become a hot

spot in gene regulation recently. For example, Gao et al. (73) found

cardiac hypertrophy associated with piRNA (CHAPIR), which can

promote cardiac pathological hypertrophy and remodeling through the

regulation of genes and proteins. A loss of CHAPIR considerably

reduced cardiac hypertrophy and restored cardiac function, while

mice with pressure overload of CHAPIR mimetics had a response to

pathological cardiac hypertrophy. Mechanistically, the CHAPIR-

PIWIL4 complex directly interacts with METTL3 to block m6A

methylation of PARP10 mRNA transcripts, thereby upregulating the

expression of PARP10. CHAPIR-dependent increase of PARP10 in

turn promotes single ADP-ribosylation of GSK3b and inhibits its

kinase activity, which leads to accumulation of nuclear NFATC4 and

progression of cardiac pathological hypertrophy. This study shows that

changes in the expression level of piRNA may affect the methylation of

gene transcripts and then the expression level of genes, which also

provides new insights into piRNA as a human gene regulator.

piRNA also plays a crucial role in spermatogenesis. Dai et al. (74)

found a similar mechanism to be responsible for the activation of the

translational part of spermatogenic mRNA to coordinate the

morphological transformation of sperm. This kind of action

requires specific base pairing interaction between piRNA and target

mRNA in the 3’UTR, which stimulates translation by interacting with

AU-rich cis-acting regions and thereby nucleates the MIWI/piRNA/

eIF3f/HuR super-complex in a developmental stage-specific manner.

This finding reveals the crucial role of the piRNA system in activating

translation activation and proves that sperm cell development is

functionally necessary.

Obviously, piRNAs play various roles in several cellular processes,

therefore it is currently difficult to investigate their potential
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functions. However, we believe that soon, other piRNA functions will

be revealed to deepen our understanding of piRNA (Figure 2).
Study of piRNA in urological tumors

Urological tumor is a common disease worldwide, which mainly

includes renal carcinoma, bladder cancer, prostate cancer and

testicular cancer. Although they are all diseases with high incidence

rate and mortality, non-invasive diagnosis and evaluation of patient

prognosis are still a major problem in medicine at this stage. Existing

diagnostic techniques such as liquid biopsy, including circulating

tumor cells (CTCs), circulating tumor DNA (ctDNA) and

extracellular vesicles (EVs), have been demonstrated their potential

diagnostic value in urological tumors (85–88). And in prostate cancer,

the introduction of genomic biomarkers has dramatically improved

detection, prognosis, and risk assessment (89). But now we can detect

the differentially expressed piRNAs in urological cancer to diagnose

and evaluate the prognosis of patients, and piRNAs is expected to

become a potential therapeutic target (Table 2).
Renal carcinoma

More than 400,000 people worldwide suffer from renal cell

carcinoma (RCC) every year. The age of diagnosis is about 60 years

old, and the number of men diagnosed is twice that of women (100).

Renal cell carcinoma comprises various subtypes each with its distinct

traits and the most frequent subtype (about 70% of cases) is clear cell

renal cell carcinoma (ccRCC) (101). At present, it is difficult to make

an early diagnosis of renal carcinoma, however, some investigations

have revealed that piRNAs can be utilized as a possible marker of

renal carcinoma as strongly associated with renal carcinoma
Frontiers in Endocrinology 05
metastasis and prognosis. Simultaneously, during different studies,

researchers found some differentially expressed piRNAs in different

samples (such as tissue, urine, serum, etc.) which may also provide a

research basis for the non-invasive diagnosis of renal carcinoma.

Li et al. (28) found that piR-32051, piR-39894, and piR-43607

among the same cluster of piRNAs were overexpressed in ccRCC by

RNA-seq analysis, and further confirmed that the overexpression of

the three piRNAs was significantly related to ccRCC metastasis by

using a paraffin tissue cohort of 68 samples. In addition, the

researchers also demonstrated that their expression was

significantly related to the advanced stage of ccRCC and the

cancer-specific survival rate of patients. Busch et al. (90) found the

relationship between three piRNAs and ccRCC metastasis and

progression through piRNA microarray analysis technology. They

used RT-qPCR to measure the piRNAs among non-metastatic (n =

76) as well as metastatic (n = 30) ccRCC tissues during nephrectomy,

and then compared them with the corresponding piRNAs from

normal kidney tissues (n = 77) and distant ccRCC metastatic

tissues (n = 13). These findings revealed that piR-57125 expression

in metastatic tumors was lower than that in non-metastatic tumors,

while increased expression of piR-30924, as well as piR-38756, was

found among metastatic tumors. The overexpression of piR-30924 as

well as piR-38756 while a low expression of piR-57125 among

metastatic primary tumors was found considerably correlated to

tumor recurrence and overall survival.

The deregulation of piRNA can not only serve as a diagnostic

marker of renal carcinoma metastasis but also directly regulate the

metastasis and invasion of ccRCC through some signaling pathways.

Du et al. (94) revealed piR-31115 to be upregulated in ccRCC tissues

through epithelial-mesenchymal transition (EMT) and PI3K/AKT

signaling pathways while promoting cell proliferation as well as

invasion. After down-regulating the level of piR-31115 in this

experiment, the epithelial marker E-cadherin protein expression
FIGURE 2

piRNA regulates transposon silencing. (A) at the transcriptional level, piRNA regulates transposon silencing through DNA methylation modification. What’s
more, the piRNA can also silence TEs through chromosomal heterochromatinization. (B) at the post-transcriptional level, piRNA recognizes a target
mRNA and mediates its degradation by deadenylating or cleaving the mRNA. DNMT, DNA methyltransferase.
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was up-regulated along while the expression of interstitial markers

vimentin and snail was decreased along with a significant decrease in

the expression of AKT and PI3K phosphorylation. EMT is a process

in which epithelial cells acquire mesenchymal characteristics. In

cancer, EMT is related to tumor initiation, invasion, metastasis, and

resistance to treatment while PI3K is a crucial oncogenic factor that

regulates multiple pathways, including cell proliferation and invasion,

as well as the EMT process. In addition, Ding et al. (91) reported

down-regulation of piR-57125 in ccRCC tissues. After knocking down

piR-57125, the experimenter found that the migration and invasion of

ccRCC became faster, and overexpression of piR-57125 inhibited the

metastasis of ccRCC. Simultaneously, the lung metastasis model in

vivo validated similar results. Moreover, functionally CCL3 acts as a
Frontiers in Endocrinology 06
downstream target of piR-57125 where piR-57125 binds to CCL3

directly and inhibits ccRCC metastasis by down-regulating the AKT/

ERK axis.

The expression of piRNAs may be different in different

specimens, and its expression level is significantly related to the

survival period of patients. Zhao et al. (92) extracted total RNA

from renal cell carcinoma tissue, normal kidney tissue, serum of

patients with renal cell carcinoma, and serum of patients with non-

malignant diseases, and measured the expression of piRNAs isolated

from cell mitochondria using quantitative real-time PCR. The results

showed that the expression of piR-34536 and piR-51810 were down-

regulated in renal cell carcinoma compared with non-malignant renal

tissues, and the decrease of tissue piRNAs level was a significant
TABLE 2 Expression and application of piRNAs in urological tumors.

piRNA types Functions \ possible clinical applications expression References

Renal carcinoma

piR-32051 Prognostic marker Up regulation

(28)piR-39894 Prognostic marker Up regulation

piR-43607 Prognostic marker Up regulation

piR-30924 Prognostic marker Up regulation

(90, 91)
piR-38756 Prognostic marker Up regulation

piR-57125
Inhibit cancer cell proliferation, invasion, and migration, and can be used as a diagnostic tool and a
therapeutic target

Down
regulation

piR-34536 Prognostic marker
Down
regulation

(92)

piR-51810 Prognostic marker
Down
regulation

piR-823 Diagnostic tool
Down
regulation (93)

piR-823(urine) Diagnostic tool Up regulation

piR-31115
Promote cancer cell proliferation, invasion, and migration, and can be used as a diagnostic tool and a
therapeutic target

Up regulation (94)

Bladder cancer

piRABC
(piRNADQ594040、piR-
60152)

Inhibit cancer cell proliferation, invasion, and migration, and promote apoptosis, and can be used as a
diagnostic tool and a therapeutic target

Down
regulation

(95)

piR-5936(plasma exosomes) Diagnostic tool Up regulation (29)

Prostate cancer

piR-651 Related to hormone therapy for cancer Up regulation
(96)

piR-823 Related to hormone therapy for cancer Up regulation

piR-001773
Promote cancer cell proliferation, invasion, and migration, and can be used as a diagnostic tool and a
therapeutic target

Up regulation

(30)

piR-017184
Promote cancer cell proliferation, invasion, and migration, and can be used as a diagnostic tool and a
therapeutic target

Up regulation

piR-31470
Promote cancer cell proliferation, invasion, and migration, and can be used as a diagnostic tool and a
therapeutic target

Up regulation (97)

Testicular cancer

PIWI/piRNA The loss of this pathway is beneficial to the proliferation, invasion, and migration of cancer cells Defect (31, 98, 99)

PubMed and Web of Science were used for searching the articles related to urological tumors and piRNA in the past 10 years.
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independent predictor of the shortening of progression-free survival,

cancer-specific survival, and overall survival of ccRCC patients. There

was no difference in serum piRNAs levels between ccRCC patients

and control subjects.

Liquid biopsy and non-invasive diagnosis of renal cell

carcinoma have attracted more and more attention. There are

also differentially expressed piRNAs in urine of patients with

renal cell carcinoma, so urine may also become one of the non-

invasive diagnostic points for renal cell carcinoma. However, the

expression of a certain piRNA in the urine of ccRCC patients is very

different from that in tumor tissues. Iliev et al. (93) revealed

dysregulated expression of piR-823 among tumor tissues and

urine of ccRCC, but the dysregulation results of the two were just

the opposite. The expression of piR-823 has been down-regulated in

tumor tissues and was positively correlated with poor prognosis.

The researchers also measured the level of piR-823 in urine samples

of 20 RCC patients and 15 healthy controls. The results showed that

the level of piR-823 in urine samples of RCC patients was

considerably higher in comparison to healthy controls (P =

0.0157). Although they are both piR-823, it is still unclear why

their expression results are opposite in tissues and urine.

At present, piRNAs are not completely optimized for clinical

application, but they are possible to use differentially expressed

piRNAs for early diagnosis and prognosis evaluation of patients

with ccRCC in the future. In the above studies, among ccRCC

tumor tissues the piR-32051, piR-39894, piR-43607, piR-30924, and

piR-38756 were all up-regulated where this up-regulation was closely

related to cancer metastasis and low specific survival rate which can

be used as prognostic markers, while piR-31115 and piR-57125 can

regulate ccRCC progression making them potential therapeutic

targets for ccRCC. A down-regulation of piR-823 in tumor tissues

of patients has been related to poor prognosis in tissues.

Simultaneously, the down-regulated expression of piR-34536 and

piR-51810 isolated from cell mitochondria can be used as one of

the factors predicting the prognosis of patients. Urine piR-823 can be

used as a target for non-invasive diagnosis of ccRCC (Figure 3).
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Bladder cancer

Bladder cancer is an aggressive tumor with high mortality. It is the

most common malignant tumor in women and the fourth most

common malignant tumor in men (102). There were an estimated

500, 000 new cases of bladder cancer diagnosed in 2019 and 200, 000

deaths from the disease (103). Some studies have found that piRNAs

may affect the progress of bladder cancer. For example, Chu et al. (95)

investigated global piRNAs expression in three cases of bladder

cancer tissues and their neighboring normal tissues using piRNA

microarray. The results showed that in bladder cancer tissues, 106

piRNAs were found to be up-regulated whereas 91 were down-

regulated with piRNADQ594040 (piRABC and piR-60152) related

to bladder cancer had the highest down-regulation fold change. In

this study, the researchers found that the mRNA, as well as protein

expression of TNFSF4 in normal bladder tissues adjacent to cancer,

was higher in comparison to that among bladder cancer tissues.

TNFSF4 is a binding partner of OX40, and in cancer treatment, the

OX40-TNFSF4 pathway has been found to influence immune

tolerance (104). Moreover, the TNFSF4 expression in cancer-free

serum was found higher than that in bladder cancer serum (95).

Therefore, the down-regulation of piRABC expression may promote

cell proliferation, and colony formation and inhibit apoptosis of

bladder cancer by affecting the TNFSF4 gene and thus down-

regulating TNFSF4 protein. Thus, it can be seen that the TNFSF4

gene is a potential target gene of piRABC, and piRABC may also be a

potential therapeutic target for bladder cancer.

Most of the diagnosis of bladder cancer relies on cystoscopy and

pathological biopsy, which are time-consuming and labor-

consuming, and patients have to bear great pain during the

examination. Now, liquid biopsy of bladder cancer can alleviate the

pain of patients and obtain a variety of analytes and predict the

prognosis of patients, such as CTCs, ctDNA, circulating acellular

tumor RNA (ctRNA), proteins, peptides, and metabolites (105).

However, the piRNAs of plasma exosomes has not been measured

yet. Exosomes (106) are small vesicles secreted or shed from the
A B

DC

FIGURE 3

Expression and function of piRNAs in urinary neoplasms. (A) Renal carcinoma. (B) Bladder cancer. (C) Prostate cancer. (D) Testicular cancer.
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membrane by cells, which contain some cytoplasmic components,

such as protein, mRNA, sncRNA, DNA, and piRNA contained

therein will have profound significance in clinical diagnosis and

treatment in the future. Sabo et al. (29) evaluated the expression

level of sncRNA in plasma exosomes from 47 bladder cancer males

and 46 healthy controls by next-generation sequencing. SncRNA

profiles were compared with urine profiles from the same subject.

Compared with the control group, piR-5936 was highly expressed in

high-risk bladder cancer. It indicates that piR-5936 from plasma

exosomes may be a diagnostic biomarker of bladder cancer, especially

in the advanced stage of bladder cancer.

Although there are many studies on bladder cancer, so far, only a

few researchers have studied the mechanism of piRNA and

proliferation, invasion, and metastasis of bladder cancer. However,

miRNA and siRNA, which belong to sncRNA like piRNA, have made

rapid progress in the research on the mechanism of bladder cancer. In

terms of clinical diagnosis, if the above three sncRNAs are combined,

it may be more accurate for the detection and diagnosis of bladder

cancer, but we still need to explore piRNAs and other sncRNAs in

combination (Figure 3).
Prostate cancer

Prostate cancer is a complex disease about 1,600,000 men are

diagnosed with prostate cancer every year, and 366,000 die from it.

This disease is heterogeneous and accounts for one of the major

causes of cancer-related deaths worldwide. If prostate cancer can be

detected early and actively treated, some patients with low and

medium recurrence risk usually have a 10-year overall survival rate

of 99% (107). There are various risk factors for the occurrence of

pros ta t e cancer , among which the l eve l d i sorder of

dihydrotestosterone and other androgen is inseparable from the

incidence of prostate cancer (108). However, studies have found

that the level of hormones can affect the level of piRNAs and thus

affect the progression of prostate cancer. Oner et al. (96) treated

androgen-dependent and androgen-independent prostate cancer cells

(LNCaP and PC-3) with androgen, and after hormone treatment,

piR-651 and piR-823 expression were increased in prostate cancer cell

lines. The experimental results show that the increased expression of

piR-651 and piR-823 may be related to the changes in hormone levels

in the cancer microenvironment, and this result may also open a new

idea for hormone treatment of prostate cancer.

In addition, some piRNAs present in prostate cancer cells can

promote the proliferation, invasion, and metastasis of prostate cancer

cells through specific pathways. Zhang et al. (30) revealed piR-001773

and piR-017184 overexpression among prostate cancer tissues.

Protocadherin 9 (PCDH9) is down-regulated in prostate cancer

cells and acts as a tumor suppressor. PCDH9 can binds to p85a
which is a PI3K regulatory subunit. The PCDH9 down-regulation in

prostate cancer cells leads to an enhanced AKT phosphorylation and

activity thereof. The piR-001773 and piR-017184 regulate PCDH9

post-transcriptionally which promotes proliferation, invasion, and

metastasis of prostate cancer cells and effectively promotes the growth

of tumors in vivo and in vitro. In contrast, the down-regulation of

piR-001773, as well as piR-017184, significantly inhibits

tumor growth.
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Glutathione S-transferase Pi1 (GSTP1) occurs in the early stage of

prostate cancer through methylation inactivation and can be detected

in up to 90% of prostate cancer (109). Functional inactivation of

GSTP1 increases susceptibility to oxidative stress and increases the

risk of progression of prostate cancer. On this basis, Zhang et al. (97)

also discovered that piR-31470 may bind to PIWIL4 forming a

PIWIL4/piR-31470 complex. This complex can bind GSTP1’s initial

RNA transcript and recruit DNA methyltransferase 1, 3a, and
methyl-CpG binding domain protein 2 to begin and sustain

hypermethylation and inactivation of GSTP1. The data showed a

piR-31470 overexpression mediated inhibition of GSTP1 levels and

also increased susceptibility of human prostate epithelial RWPE1 cells

to oxidative stress and DNA damage. This finding may present a

novel treatment technique for prostate cancer epigenetic therapy by

targeting piRNA. The above-mentioned piR-001773, piR-017184, and

piR-31470 are all overexpressed in tumor tissues, and they can also

promote the proliferation, invasion as well as migration of cancer cells

through specific pathways. Due to their potential applications, CTCs,

EVs, ctDNA and ctRNA of blood have been extensively studied as a

part of liquid biopsies in prostate cancer (110). In the future, piRNAs

are anticipated to be used as diagnostic tools and treatment targets for

prostate cancer (Figure 3).
Testicular cancer

The most common malignancy in young men between 14 to 44

years of age is testicular germ cell tumors (TGCT) in Western

countries. There will be 9560 new cases and 410 deaths of TGCT in

the United States in 2019. TGCT prevalence and incidence have been

on the rise in the past two decades (111). piRNA was first found in

germ cells and is also a key factor for germ cell maintenance. PIWI/

piRNA pathway is not only critically involved in the development of

the male germ line but also plays an important role in the occurrence

and progression of testicular cancer.

In the study on the relationship between epigenetic disruption of

PIWI/piRNA pathway and testicular cancer, Ferreire et al. (31) have

found epigenetic abnormalities of PIWI protein and piRNA in

testicular cancer. They found that in addition to testicular germ cell

tumors, there was a decrease in piRNA expression and DNA

hypomethylation of LINE1 (PIWI/piRNA target sequence) in

primary seminoma and non-seminoma testicular tumors, and their

reduction also led to epigenetic inactivation of PIWI-like protein

(PIWIL1, PIWIL2, and PIWIL4) and their related TDRD1 protein

gene in human testicular tumorigenesis. Rouge et al. (98) performed

small RNA sequencing on 22 human TGCT samples from 5

histological subtypes, 3 carcinomas in situ, and 12 normal testis

samples, and found that the expression of piRNA populations of all

TGCT subtypes was globally absent compared with normal testis.

These research data all show that the epigenetic disruption of the

entire PIWI/piRNA pathway is indeed a sign of testicular

tumor development.

In addition, the loss of the PIWI/piRNA pathway may also

provide favorable conditions for the progress of TGCT.

Gainetdinov et al. (99) used small RNA deep sequencing, qRT-

PCR, and mining public RNA seq/small RNA-seq data to detect the

PIWI/piRNA gene expression and piRNA biosynthesis of cells in the
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development stage of TGCT. Three types of samples were studied: 1.

Healthy testis, 2. Testicular tumor paracancerous tissue and germ cell

neoplasia in situ (GCNIS), 3. Matched TGCT samples. The result was

that piRNA biogenesis was complete in germ cells of the healthy adult

testis and adjacent tissues of testicular tumors. In contrast, there is a

lack of PIWI/piRNA pathway gene expression and germline-like

piRNA biogenesis in GCNIS and TGCT cells. However, there is no

evidence that the PIWI/piRNA pathway is dysregulated in germ cells

adjacent to TGCT, which contradicts its role as an oncogenic driver of

TGCT development. However, in vitro experiments demonstrated

that the PIWIL2/HILI short isoform may play a role in inhibiting

transposon silencing, which can provide growth advantages for

TGCT by ensuring its genomic integrity. Therefore, detecting the

deletion of the PIWI/piRNA pathway can be used as an auxiliary

means for the clinical diagnosis of testicular cancer (Figure 3).
Rare urological tumors

Up to now, few researchers have studied the relationship between

piRNAs and rare urological tumors, such as penis cancer. However,

given that piRNAs have many potential applications in other tumors,
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we have reason to believe that piRNAs still have the potential as a

diagnostic tool and therapeutic target in rare urological tumors.
Conclusion

The discovery of piRNA has opened up a new field for the

research of non-coding small molecule RNA. So far, number of

scholars have predicted the application of piRNAs in biomedicine

and have shown some promising results, it has a great prospect as a

diagnostic tool and prognostic marker for urologic tumors in the

future. Now we can diagnose tumors through liquid biopsy

techniques such as CTCs, ctDNA and EVs, but no one has

combined these techniques with piRNAs. If they are detected

together with piRNAs, they may have more accurate diagnosis and

prognosis. In addition, piRNAs also have the potential to open the

door to predict treatment response. Many prostate cancer patients

treated with novel ARTAs, PARP inhibitors or immune checkpiont

inhibitors (112–114). The above liquid biopsy can also be used to

predict treatment response, but it is still not accurate enough. We can

also detect liquid biopsy molecules and piRNA together which may be

more sensitive to predict treatment response. FGFR3 mutations
A

B

FIGURE 4

Detection and Potential Application of piRNA. (A) piRNA can be detected in tissue, blood, and urine. (B) piRNA can be used as a diagnostic tool,
prognostic marker and therapeutic target through its extraction, detection, classification and analysis.
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selectively identified patients with favorable bladder cancer at radical

cystectomy, whereas p53 and Ki-67 were only associated with

unfavorable tumor features (115). We can combine the differential

expression of piRNAs in bladder cancer to make a more accurate

judgment of the prognosis of patients (Figure 4).

There are still many problems to be further studied. The synthesis

of piRNAs is extremely complex. Many genomic regions filled with

H3K9me3 markers neither bind Rhino nor transcribe piRNAs. What

are their functions? In terms of piRNAs research, piRNAs expression in

somatic cells and body fluids is easily distorted by background noise

and technical artifacts. At present, there are also many deficiencies in

the connection between piRNAs and urological tumors. For example,

some piRNAs (such as piR-832) are highly expressed in tumor tissues

of cancer patients, but their expression in body fluids is opposite. What

is the reason for this differential expression? Moreover, many

researchers only study the abnormal expression of piRNAs in certain

tumor tissue but ignore the comparison with the abnormal expression

in other tumor tissues, so there is no specificity when this piRNAs are

used as a biomarker of tumors.

In the future, with the efforts of scientists and the application of

new methods, more piRNAs will be identified, and the mechanism

and clinical application of piRNAs in tumor progression will certainly

be at the forefront of cancer research.
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