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Elevated polyamine levels are required for tumor transformation and development;
however, expression patterns of polyamines and their diagnostic potential have not
been investigated in oral squamous cell carcinoma (OSCC), and its impact on
prognosis has yet to be determined. A total of 440 OSCC samples and clinical
data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO). Consensus clustering was conducted to classify OSCC patients into
two subgroups based on the expression of the 17 polyamine regulators. Polyamine-
related differentially expressed genes (PARDEGs) among distinct polyamine clusters
were determined. To create a prognostic model, PARDEGs were examined in the
training cohorts using univariate-Lasso-multivariate Cox regression analyses. Six
prognostic genes, namely, “CKS2,” “RIMS3,” “TRAC,” “FMOD,”CALML5,” and “SPINK7,”
were identified and applied to develop a predictive model for OSCC. According to
the median risk score, the patients were split into high-risk and low-risk groups. The
predictive performance of the six genemodels was proven by the ROC curve analysis
of the training and validation cohorts. Kaplan–Meier curves revealed that the high-
risk group had poorer prognosis. Furthermore, the low-risk group was more
susceptible to four chemotherapy drugs according to the IC50 of the samples
computed by the “pRRophetic” package. The correlation between the risk scores
and the proportion of immune cells was calculated. Meanwhile, the tumor
mutational burden (TMB) value of the high-risk group was higher. Real-time
quantitative polymerase chain reaction was applied to verify the genes
constructing the model. The possible connections of the six genes with various
immune cell infiltration and therapeutic markers were anticipated. In conclusion, we
identified a polyamine-related prognostic signature, and six novel biomarkers in
OSCC, which may provide insights to identify new treatment targets for OSCC.
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1 Introduction

The three primary polyamines, namely, putrescine, spermidine, and spermine (McNamara
et al., 2021), are plentiful both inside the cell and outside it. Polyamines are multifunctional
polycations which are necessary for practically all living things (Novita Sari et al., 2021).
Polyamines, because of their cationic nature, could interact with macromolecules such as DNA,
RNA, phospholipids, and proteins to increase gene regulation via epigenetic and chromatin
structural change, mRNA structure stabilization, cell growth, proliferation and differentiation,

OPEN ACCESS

EDITED BY

Dinesh Kumar,
Centre of Bio-Medical Research (CBMR),
India

REVIEWED BY

Tae Jin Lee,
Augusta University, United States
Maheshwor Thapa,
Jackson Laboratory for Genomic
Medicine, United States

*CORRESPONDENCE

Bo Cheng,
chengbo@znhospital.cn

Yajie Lu,
yajiel_fmmu@foxmail.com

†These authors have contributed equally to
this work and share first authorship

SPECIALTY SECTION

This article was submitted to Molecular
Diagnostics and Therapeutics,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 18 October 2022
ACCEPTED 03 January 2023
PUBLISHED 17 January 2023

CITATION

Tang J, Wu X, Cheng B and Lu Y (2023),
Identification of a polyamine-related
signature and six novel prognostic
biomarkers in oral squamous
cell carcinoma.
Front. Mol. Biosci. 10:1073770.
doi: 10.3389/fmolb.2023.1073770

COPYRIGHT

© 2023 Tang, Wu, Cheng and Lu. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 17 January 2023
DOI 10.3389/fmolb.2023.1073770

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1073770/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1073770/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1073770/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1073770/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1073770&domain=pdf&date_stamp=2023-01-17
mailto:chengbo@znhospital.cn
mailto:chengbo@znhospital.cn
mailto:yajiel_fmmu@foxmail.com
mailto:yajiel_fmmu@foxmail.com
https://doi.org/10.3389/fmolb.2023.1073770
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1073770


and ion channel regulation (Pegg, 2009; Murray-Stewart et al., 2018).
It is used by cells throughout the body to support growth, and
microorganisms can interact with polyamines to reduce the
expression of pro-inflammatory genes (Holbert et al., 2022). The
downstream of numerous significant carcinogenic pathways is the
polyaminemetabolism (Casero et al., 2018). The polyamine pathway is
a viable target for anti-cancer treatment since it is frequently
dysregulated in cancer. Additionally, when polyamine production is
downregulated by pharmacological and genetic techniques, it will
cause cancer cells to senescence and undergo apoptosis (Minois et al.,
2011). It may be argued that polyamine levels could serve as a cancer
marker because they promote proliferation as well (McNamara et al.,
2021), and the increased demand of tumor cells for polyamines, to
some extent, shows that targeted polyamines are important strategies
in cancer treatments. Polyamines and polyamine metabolites

measured under humoral environment have shown potential as
biomarkers for different cancers (Liu et al., 2018; Nakajima et al.,
2018). At present, polyamine inhibitors and analogs are effective for
cancer in experimental animal models and in clinic; for example, α-
difluoromethylornithine (DFMO) was evaluated as a potential
combined cancer therapy drug (Holbert et al., 2022). For
another example, spermidine and spermine that have been
reported could stimulate apoptosis of macrophages stimulated
by Helicobacter pylori (Chaturvedi et al., 2004), and DFMO
could inhibit the apoptosis (Gobert et al., 2002). In various
malignancies, the involvement of polyamines in the
development of cancer has been demonstrated. Colorectal
cancer (Snezhkina et al., 2016) is regulated by the oncogenic
transcription factors c-MYC and C/EBP β via a number of
important enzymes in the polyamine metabolic pathway.

FIGURE 1
Flowchart of identifying a polyamine-related signature and six novel prognostic biomarkers in oral squamous cell carcinoma.
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Ornithine decarboxylase (ODC) has been identified as an effective
carcinogenic transformation factor, which is the most effective
transcriptional target in neuroblastoma (Lu et al., 2003).
Polyamines are abundant in breast tissue and can promote cell
proliferation by promoting growth factor receptors (Çelik et al.,
2017). In prostate cancer, the concentration of spermine is related
to the malignant grade of cancer (Tsoi et al., 2016), and it becomes a
biomarker of the malignant degree of cancer.

At present, studies on polyamines and oral cancer focus on the
detection of the saliva metabolism. Japanese scholars have
characterized the metabolic changes in patients’ saliva samples
(Ohshima et al., 2017) among the potential 25 metabolites, and the
polyamine metabolism showed significant changes. In the study of
Ishikawa et al. (2019), salivary ornithine can be utilized to distinguish
between oral epithelial dysplasia and oral squamous cell cancer as an
intermediate metabolite in the urea cycle, which is a well-known
metabolic marker of various tumors (Nijakowski et al., 2022). These
recently discovered polyamine-related genes may aid in the
development of an improved mechanistic comprehension of OSCC,
which may provide a productive insight to the clinical application of
the condition.

In our study, we combined genomic data from 420 OSCC samples
from TCGA and GEO datasets. We discovered two distinct polyamine
modification patterns and found that the immune cell infiltration is

different in clusters, indicating that the modification played a vital
role in shaping individual tumor microenvironment
characterizations. Furthermore, we developed a scoring model
to assess individual tumor polyamine alteration patterns and
predict patients’ clinical response to chemical therapy
(Figure 1). These findings showed that polyamine alteration is
critical in establishing various tumor immune microenvironment
profiles and driving therapeutic intervention approaches for oral
squamous cell carcinoma.

2 Materials and methods

2.1 Data collection

We obtained the sequence data for 323 samples with OSCC from
TCGA and 97 samples from the NCBI GEO database (GSE41613). A total
of 17 polyamine signatures were extracted fromHolbert’s research (Holbert
et al., 2022) and four gene sets in the Gene Set Enrichment Analysis
database as follow: GOBP_REGULATION_OF_POLYAMINE_
TRANSMEMBRANE_TRANSPORT, GOBP_PUTRESCINE_
METABOLIC_PROCESS, GOBP_PUTRESCINE_BIOSYNTHETIC_
PROCESS, and GOBP_POLYAMINE_TRANSMEMBRANE_
TRANSPORT.

FIGURE 2
Overview of genetic and prognostic information of polyamine regulators in OSCC. (A) Boxplot of 17 polyamine regulators expression in OSCC and its
adjacent normal tissue. (B) Waterfall plot of the polyamine regulators altered in OSCC samples. (C) Interaction of the polyamine regulators. Size of each cell
represents the survival effect of each gene. Red represents a positive correlation, whereas blue indicates a negative correlation. (D) PPI network map showed
the interaction of the 17 polyamine regulators.
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2.2 Consensus clustering analysis of
17 polyamine regulators

We chose to investigate potential molecular subgroups by using
the “ConsensusClusterPlus” R package (Wilkerson and Hayes, 2010)
to perform consensus clustering analysis to identify distinct polyamine
modification patterns based on the expression of 17 polyamine
regulators (AGMAT, AMD1, ATP13A2, AZIN1, AZIN2, OAZ1,
OAZ2, OAZ3, ODC1, AOC1, PAOX, SAT1, SAT2, SMOX, ARG1,
SRM, and SMS).

2.3 Functional analyses

To identify differently expressed genes in distinct groups, the
“limma” package in R was used. The additional verification of the GO
processes in BP, CC, MF, and KEGG pathways was associated with
signature analysis for the differentially expressed genes in the cluster;
the “clusterProfiler” package in R (Yu et al., 2012) was applied in each
sample with a statistical threshold of p < 0.05.

2.4 Tumor mutational burden and immune
cell infiltration

Patients’ single-nucleotide variant data were used to estimate the
tumor mutational burden (TMB). The single sample gene set

enrichment analysis (ssGSEA) algorithms assessed the 28 immune
cells infiltration in the OSCC microenvironment.

2.5 Differentially expressed genes identified
between unique polyamine modification
patterns

Our previous consensus clustering algorithm classified patients
into two distinct polyamine modification patterns, and polyamine-
related differentially expressed genes (PARDEGs) among distinct
polyamine phenotypes were determined. R package was applied to
assess PARDEGs in OSCC samples among different clusters. Gene
expression data were normalized to calculate the differentially
expressed statistics. The significance filtering criteria of PARDEGs
were set as an adjusted value of p < 0.05.

2.6 Polyamine-related risk signature
construction and validation

In order to create an optimal polyamine-related risk signature
based on linear integration of the regression coefficient obtained and
the expression level of the chosen genes, we generated a polyamine-
related score pattern using LASSO regression with the “glmnet” R
package using intersecting genes from the public datasets. The risk
score was computed as follows: risk score � (0.2340 × CKS2) +

FIGURE 3
Construction of two polyamine-related gene (PARG) clusters in OSCC patients. (A) Consensus clustering of OSCC patients. (B) OS curves of OSCC
patients in two PARG clusters. (C)Heatmap of 17 polyamine regulator expression in two clusters. (D)Quantity of immunological infiltration cells as determined
by ssGSEA between PARG clusters. (E) Heatmap of GSVA in the KEGG pathway between PARG clusters.
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(−0.1522 × RIMS3) + (−0.1624 × TRAC) + (−0.1918 × FMOD) +
(−0.0871 × CALML5) + (−0.0934 × SPINK7).

2.7 Survival analysis

To compare the OS of different clusters of OSCC patients, the
Kaplan–Meier analysis and the “survminer” programs were utilized.
The “survivalROC” test was used to create ROC curves in order to
assess the accuracy of the risk signatures in predicting the outcomes of
OSCC patients. The bigger the AUC, the better the risk model’s
prediction power is.

2.8 Quantitative real-time PCR

Total RNA extraction using TRIzol reagent (Servicebio, Wuhan,
China) was performed as previously described (Wu et al., 2022). Total
RNA was then converted to a first-strand cDNA by ReverTra Ace
(Toyobo, Tokyo, Japan) and subjected to qRT-PCR (Bio-Rad CFX96,
America) with ChamQ Universal SYBR qPCR Master Mix (Vazyme
Biotech, Nanjing, China). In total, three duplicates of each sample
were analyzed. Once the expression levels of GAPDH were analyzed,
the results were calculated in 2̂-ΔΔCt. The target genes’ primer
sequences are included in Supplementary Table S3.

2.9 Drug sensitivity and interactions

Furthermore, we used the R package “pRRophetic” (Geeleher
et al., 2014) to assess each OSCC patient’s therapy response,
which is based on the 50% inhibitory concentration (IC50)
acquired from the Genomics of Drug Sensitivity in Cancer
(GDSC) website.

2.10 Statistical analysis

The data were analyzed by R software (https://www.r-project.org/).
R packages (ESTIMATE, glmnet, ggplot2, GSVA, limma, survminer,

and survival) were applied for data analysis and graph plotting. The
median value of tumor purity or risk scores was treated as the cutoff
value for the two subgroups. The qPCR results were analyzed by
GraphPad (version 9.0.0). In order to compare the statistical
differences between the two groups, the Student’s t-test was
employed. When there were more than two groups, Kruskal–Wallis
and one-way ANOVA tests were used. The p-value was always two-
sided; a value of p < 0.05 was considered statistically different (*, p < 0.
05; **, p < 0.01; ***, p < 0.001).

3 Results

3.1 Outline of polyamine-related gene
expression changes in OSCC and a PPI
network

We first investigated the expression of 17 polyamine regulators
(AGMAT, AMD1, ATP13A2, AZIN1, AZIN2, OAZ1, OAZ2, OAZ3,
ODC1, AOC1, PAOX, SAT1, SAT2, SMOX, ARG1, SRM, and SMS) in
OSCC patients. The results showed that most polyamine regulators
were expressed higher in neoplastic tissues in OSCC patients than in
their normal tissues. However, ARG1 had low expression in cancer
tissues and high expression in normal tissues (Figure 2A). The
mutation analysis of OSCC patients showed that only 4.74% of
506 samples had polyamine regulator gene alterations. The
mutations frequency was concentrated in ODC1, AOC1, SAT1, and
AMD1, most of which were missense mutations (Figure 2B).

We made a correlation analysis on these polyamine genes to see
whether they interact with each other. The regulator network depicted the
complete picture of the interactions of the 17 polyamine regulators, the
regulator interconnections, and their prognostic value in OSCC patients.
Results in Figure 1C show that 6/17 of the polyamine regulators are
favorable factors, and among them, ARG1 has the most abundant blue
lines (representing negative correlation), which shows its regulatory
importance in tumors. In addition, AMD1, AZ1N1, ARG1, and
OAZ1 have the most related lines with other genes, indicating that
cross-talk among the regulators plays a role in regulation (Figure 2C).
A PPI (protein–protein interaction) network shows the interaction
between proteins encoded by polyamine genes. ATP13A2 has no

FIGURE 4
Functional annotation of 17 polyamine regulators using GO terms and the KEGG pathway. GO (A) and KEGG (B) analyses of the identified genes.
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interaction with other proteins but has connections with other genes in
the correlation network, suggesting that there may still be proteins
encoded by intermediate genes that have not been included in tumor
development. For others, pink lines between SRM andODC1, AMD1 and
AZIN2, etc., indicated that there has been experimental verification of
interaction (experimentally determined). Most of the gene connections of
polyamines are still emerald green (text mining), which means they have
research potential and need to be further explored (Figure 2D).

3.2 Polyamine modification patterns
characterized by gene expression

Based on the hypotheses of polyamine regulators with OSCC
progression, we identified two distinct polyamine-related gene
(PARG) clusters (Figure 3A; Supplementary Figures S1A–J); thus,
we divided all patients into cluster PARG-A (n = 221) and PARG-B
(n = 199) by consensus clustering. PARG-A exhibited the worst
prognosis, whereas PARG-B had a prominent survival advantage
(Figure 3B).

After the differential analysis of all polyamine-related genes
(PARGs), heatmap showed that AOC1 showed low expression in
PARG-B with poor prognosis, and its high expression in PARG-A
was helpful to the prognosis of OSCCs. Also, although the expression
of an ARG1 gene is lower than that of other PARGs in OSCC patients
(Figure 2A), it can still be seen that its high expression indicates a
better prognosis (Figure 3C).

3.3 Immune cell infiltration and pathways in
two PARG clusters

We also analyzed the differences between the two clusters of
immune infiltrating cells. We used ssGSEA to create a boxplot to
visualize and compare the 23 immune infiltrating cell subtypes among
distinct clusters (Figure 3D). Compared to PARG-A, the expression of
most lymphocytes and myeloid cells in PARG-B was higher, such as
activated CD8+ T cells, T follicular helper cell, and Type 1/17 T helper
cells. Natural killer cells (NK cells), which are considered to be the next
leading role of cellular immunotherapy (Laskowski et al., 2022), have
higher infiltration in PARG-B with better prognosis.

Moreover, we used GSVA to explore the biological molecular
changes of PARG-A and B. As shown in the result in the heatmap
(Figure 3E), PARG-A has a poor prognosis, concentrated in
metabolic-related pathways, such as pyrimidine metabolism, one
carbon pool by folate, aminoacyl-tRNA biosynthesis, and RNA
polymerase. PARG-B is concentrated in a chemokine signaling
pathway. Chemokines are small molecular weight cytokines, whose
main role is to recruit leukocyte subsets under stable and pathological
conditions, that transmit cell signals after binding with the chemokine
receptor, which are expressed on the cell surface. Cell adhesion
molecule cam has the function of maintaining the normal tissue
structure, regulating immune response and inflammatory response,
and is also highly expressed in PARG-B.

Based on our findings, the two polyamine modification patterns
had distinct immune infiltration characteristics.

3.4 GO term and the KEGG pathway analyses

Despite the fact that the consensus clustering technique based on
PARG expression categorized OSCC patients into two polyamine
modification phenotypes, the underlying genetic modifications and
expression perturbations within these phenotypes remained
unknown. Based on these questions, we investigated the possible
polyamine-related transcriptional expression changes in OSCC
across two polyamine modification types. We identified
289 polyamine-related differentially expressed genes (PARDEGs)
(Supplementary Table S1) between the two PARG clusters.

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses of PARDEGs were carried out. The biological
process (BP) (Figure 4A) of PARDEGs was concentrated in the
occurrence and development of epithelial development. At the same
time, it was concentrated in the human immune response, acute human
response, and other immune-related pathways. The most abundant
cellular component (CC) influenced the immune microenvironment,
in which the external side of plasma is more expressed. The serine-
type peptidase activity and serine hydrolase activity were the two most
prevalent molecular function (MF) terms. Also, other pathways in the
KEGG pathway analysis showed that the cytotoxic receptor and
chemokine signaling pathway were the most abundant pathways
(Figure 4B).

FIGURE 5
Identification of polyamine-related differentially expressed gene (PARDEG) clusters. (A) Consensus clustering of OSCC patients based on PARDEGs. (B)
Comparison of the three cluster survival probability of OSCC patients. (C) Polyamine marker expression in three clusters.
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3.5 PARDEGs construct phenotypes in OSCC

We first conducted univariate Cox regression among the
289 PARDEGs, and we got 125 prognostic genes in total, as shown
in Supplementary Table S2. Then, we performed consensus clustering
analysis based on the 125 prognostic genes and obtained three stable
transcriptomic phenotypes (Figure 5A; Supplementary Figures
S2A–J).

Among them, the survival rate of group B (n = 93) is the worst,
while that of group C (n = 142) is more advantageous in the long
survival probability (Figure 5B). By analyzing the polyamine
regulator expression in A, B, and C groups, we found that the
previously mentioned favorable factors ARG1 and AOC1 were
highly expressed in the C group; in other words, they were
expressed low in A and B groups (Figure 5C).

In order to build a prognostic model related to the oral squamous
cell carcinoma, the LASSO regression for these genes was carried out
(Figures 6A, B), and biomarkers of the 12 genes were screened.
Additionally, by the univariate Cox regression, we can identify
whether these genes are risk or preventive factors (Figure 6C).
Finally, multivariate Cox regression was used to select the final six
penalty genes (Figure 6D). At this time, the risk of overfitting is
minimizing.

3.6 The development of the risk score by
PARDEGs and prognostic analysis

According to the six penalty genes, namely, “CKS2,” “RIMS3,”
“TRAC,” “FMOD,” “CALML5,” and “SPINK7,” the model was
established and its effectiveness was verified. The risk scores were
calculated as the following formula: risk score � ∑n

i�1exprgenei ×
coefficientgenei. Patients were randomly divided into training and
validation cohorts. In our study, the survival curves (Figures 7A–C) of
the training cohort (p < 0.001), the validation cohort (p = 0.02), and the
whole cohort (p < 0.001) could better distinguish the survival of high-risk
groups, while the ROCworking curve was also highly efficient for a 1-, 3-,
and 5-year overall survival (OS) that were 0.752, 0.752, and 0.752 and
0.608, 0.606, and 0.576 in the training and validation cohorts, respectively
(Figures 7D–F). It was found that CKS2was a risk gene for OSCC, and its
high expression was associated with poor prognosis (Figures 7G–I). We
replaced all patients with risk points, and the model can more effectively
identify between patients with OSCC of high-risk (red points) and low-
risk (blue points) points (Figures 7J–O). The median value served as the
threshold to distinguish between high- and low-risk groups. As shown in
Figures 7J–L, the number of patient deaths increased significantly as the
risk score increased. Figures 7M–O show the distributions of risk scores
among patients.

FIGURE 6
Stepwise identification of PARG risk signature of the model. (A) Cross-validation for tuning parameter selection in the proportional hazards model. (B)
LASSO coefficient of the PARDEGs. (C) Forest plot of the univariate Cox regression analysis in DEGs. (D) Forest plot of the multivariate Cox regression analysis
in DEGs.
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3.7 Correlation between PARGs and its related
clusters with risk scores

The Sankey plot shows the flow of the OSCC patients’ survival and
death status from the first clustering analysis to the second clustering
analysis and then to the final risk-related group (Figure 8A). The risk

scores of the two groups were consistent with the previous survival
prognosis (Figures 8B, C). Again, we examined the expression of genes
related to polyamines in the two groups determined by the risk score;
as shown in Figure 8D, PAOX, AOC1, and ARG1 were expressed
higher in the low-risk group, while AZIN1, OAZ1, SAT2, AGMAT,
SMS, and SRM were the opposite.

FIGURE 7
Correlation between the risk score and overall survival of OSCCpatients in the training, validation, and thewhole cohort. (A–C)Overall survival (OS) of the
high-risk group was significantly shorter than that of the low-risk group. (D–F) ROC curve and the areas under the curve for predicting a 1-, 3-, and 5-year OS
in OSCC patient. (G–I) Heatmap of six genes’ expression in the training, test, and total cohorts. (J–O) Based on the polyamine-related risk score, groups are
distributed. Scatterplot showed the variations in OSCC patients’ survival rates between high-risk and low-risk categories.
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3.8 Correlation between immune infiltration
cells and risk scores

Simultaneously, we examined the expression of 22 immune cell
infiltration correlated with risk scores by ssGSEA. There was a
significant inverse correlation between the risk score and the naïve
B cells, resting mast cells, resting dendritic cells, activated memory
CD 4 + T cells, CD8+ T cells, helper follicular T cells, gamma delta
T cells, and regulatory T cells. The rest cell types were positively
correlated with risk scores such as memory B cells,
M0 macrophages, activated mast cells, and resting NK cells
(Figures 9A–L).

3.9 Differences in mutation frequency
between high- and low-risk groups

Different risk scores are related to the TMB (tumor mutation
burden) of OSCC patients. The higher the risk score of patients,
the higher their TMB is (Figure 10A). Additionally, A, B, and C
groups are shown to be correlated with risk scores and TMB;
group C has the lowest risk score, and its TMB is lower than that
of groups A and B (Figure 10B). Then, we analyzed the mutation
load of different risk groups. Most of the mutations are
concentrated in TP53, TTN, and FAT1; overall, the high-risk
group had a greater mutation rate (97.44%) than the low-risk
group (88.89%).

3.10 The IC50 of the chemotherapy between
high- and low-risk groups

In tumor treatment, chemotherapy still dominates in therapeutic
drugs. Depending on the risk score, it might provide various
chemotherapeutic effects; a cluster with a high risk score was more
likely to respond to chemotherapy. By comparing drug sensitivity, we
discovered four chemotherapeutic medications, such as cisplatin,
docetaxel, doxorubicin, and pacitaxel, which showed better efficacy
in high-risk groups (Figures 11A–D).

3.11 PARDEG expression levels and its
correlation between immune cell infiltration
and chemotherapy

We examined the expression levels of PARDEG expression in
cancer and normal tissues. Three genes were differently expressed
between normal and tumor tissue samples in boxplots (p < 0.05)
(Figure 12A). Two of these, CKS2 and RIMS3, were shown to be
substantially expressed in tumor tissues. Also, SPINK7 is highly
expressed in normal tissues. When compared to paired adjacent
normal tissues in clinically collected samples, q-PCR results
showed that CKS2 was statistically substantially more expressed in
the OSCC tissues (p < 0.001) (Figure 12B).

The heatmap shows the interaction of six genes and immune cell
infiltration in OSCC. TRAC is significantly correlated with CD8+,

FIGURE 8
Comparison of the effectiveness of risk scores in different groups. (A) Sankey plot shows theOSCC patients’ distribution in different states of our analyses.
(B) Risk score in A and B clusters related to PARGs. (C) Risk score in A, B, and C clusters divided by the PARDEG cluster-related genes. (D) High- and low-risk
groups expressed PARGs significantly different.
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CD4 memory-activated B cells, and macrophages (Figure 12C). Here,
the association between PARDEGs and different chemotherapeutic
drugs is carried out for six genes (Figure 12D), and the 16 drugs in
different genes with the highest correlation are listed as follows:
SPINK7-bendamustine, RIMS3-nelarabine, CKS2-hydroxyurea,
CALML5-idarubicin, and FMOD-ABT-199.

4 Discussion

The role of the polyamine metabolism in tumors has been
gradually reported, and some reviews have emerged and stated the
current status of the polyamine metabolism in tumors (McNamara
et al., 2021; Novita Sari et al., 2021). Lewis et al. assessed the 2-

FIGURE 9
Correlation between the risk score and the immune cell infiltration by ssGSEA (A) memory B cells, (B) naive B cells, (C) resting dendritic cells, (D)
M0 macrophages, (E) activated mast cells, (F) resting mast cells, (G) resting NK cells, (H) activated memory CD4+ T cells, (I) CD8+ T cells, (J) follicular helper
T cells, (K) gamma delta T cells, and (L) regulatory T cells.
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difluoromethylornithine (DFMO) as a treatment for OSCC in a cat,
which is a polyamine inhibitor (Lewis et al., 2013). Polyamine-
related genes might provide an exploitable treatment strategy,
advance individual therapy, and enhance the prognosis of
patients. Data from Chen (Hsu et al., 2019) demonstrated an
overabundance of polyamine and its associated metabolites in
OSCC. Ornithine decarboxylase 1 (ODC1), the mutations of
which were concentrated in our research the most (Figure 2B),
is now frequently increased in cancer cells (Choi et al., 2016) and
necessary for cell proliferation, transforms ornithine into
putrescine, and is associated with cellular mechanisms that lead
to an increase in polyamine metabolites (Miller-Fleming et al.,
2015). A promising approach for overcoming the limitations of
systemic therapies and advancing the science of immunotherapy is
the targeting of polyamines. Therefore, it is important to properly
understand and evaluate the links and processes among
polyamines, immunity, and OSCC.

Amine oxidase copper containing 1 (AOC1) catalyzes the
breakdown of related molecules and oxidatively deaminates
putrescine and histamine. According to recent research studies
(Ding et al., 2022), in order to stop the growth of cancer cells, the

activity of AOC1 on spermidine produces reactive oxygen species and
results in ferroptosis. Proline and polyamides are produced by urea
cycle enzyme arginase-1 (ARG1), which is essential for tumor cell
growth. It is an important regulator of both innate and adaptive
immune responses in the arginine metabolism. When the cell dies, it is
released from the phagolysosome and depletes the microenvironment
of arginine, which inhibits the proliferation of T cells, natural killer
cells, and the release of cytokines (Munder et al., 2006). Consistent
with this, the upregulation of AOC1 and ARG1 genes in OSCC was
observed in our independent dataset from TCGA.

Then, to evaluate the pattern of polyamine alteration in OSCC
patients, the risk score method was created by six genes as follows:
“CKS2” (Gao et al., 2021), a subunit of the cyclin dependent kinases
and is essential for their biological function. “RIMS3” (Deng et al.,
2022) is essential for transmembrane transporter binding activity.
“TRAC” (Long et al., 2021) is a protein coding gene related to
immunodeficiency. “FMOD” (Silva et al., 2022) can affect the rate
of fibrils formation as a biomarker of prostate cancer. “CALML5”
(Kitazawa et al., 2021), which can bind calcium, may be involved in
terminal differentiation of keratinocytes. The expression changes of
“SPINK7” (Pennacchiotti et al., 2021) can be relevant in predicting

FIGURE 10
Exploration of risk scores and tumor mutation burden. (A) High-risk score tumors were markedly correlated with a higher TMB (p = 4e−06, Student’s
t-test). (B) There was a positive correlation between risk scores and TMB (p = 1.7e−07). Tumor mutation landscape in high-risk (C) and low-risk (D) score
groups of OSCC patients were presented in the waterfall plots.
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OSCC at a molecular level. Patients with high-risk scores have the
worse OS related to poor survival prognosis and high TMB than those
with low risk scores and inhibitory TME status. These findings
suggested that the risk score can offer an innovative approach to
assessing the TME status and prognosis of oral squamous cell
carcinoma.

The adaptive immune system’s lymphogenesis and T-cell and
B-cell activation are both influenced by polyamines. One of the many
ways that a B-cell activity can stop the formation of cancers is through
stimulating CD4+ T cells and CD8+ T cells, as well as by producing
antibodies that are reactive to tumors. Previous research has
demonstrated (Zeng et al., 2021) that many subtypes have varying
immunological and immune cell infiltration, which affect their
prognoses and responsiveness to immunotherapy. Therefore, based
on the expression of genes associated to polyamine clusters, we
classified patients into three clusters. The expression of polyamine
synthesis enzymes is higher in malignant tumors than in normal
tissues, and this is associated with an immunosuppressive phenotype.
The exchange of materials and energy between tumor cells occurs in
the TME, which is crucial to the biology of tumors (Yoshihara et al.,
2013). Immunosuppressive environments enable the use of
polyamine-reduction methods to boost the antitumor immune
responses.

In addition (Cerqueira et al., 2020), tumors evade the immune
system by lowering the activity of CD8+ T cells while boosting the
activity of CD4+ T cells. Our ssGSEA (Figure 5D) revealed that the
expression level of CD8+ T cells was substantially lower in cluster
A, which has a high CD4/CD8 ratio. Also, immunosuppressive
myeloid-derived suppressor cells (MDSCs) are often found in
abundance in the immunosuppressive microenvironment of
tumors (Latour et al., 2020). When the findings of our
investigation were merged with the findings of the OS analysis,
they agreed with previous conclusions. As a result, we expected that
polyamine-related modification patterns would alter the TME of
OSCC, hence influencing survival rates. In the experimental
autoimmune mouse model, it showed that the coordinated
blocking of polyamine uptake and synthesis prevented T-cell-
mediated inflammation (Wu et al., 2020; Chia et al., 2022).
Figure 12C shows that in the foundation of the foregoing
prognostic model, the TRAC gene mostly promotes tumor
growth in OSCC patients by regulating T cells in several
directions (upregulating CD8, driving naive CD4 T cells to
convert to activated CD4 T cells, and inducing macrophages
M0 to convert to macrophages M1 and M2).

Thus, T-cell-targeting immunotherapies and other
immunotherapeutic medications can be used to treat patients. By

FIGURE 11
Sensitivity of low- and high-risk patients to four common chemotherapy agents. The y-axis represents 50% inhibitory concentration (IC50). (A)Cisplatin,
(B) docetaxel, (C) doxorubicin, and (D) paclitaxel.
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releasing PRF1, GNLY, or GZM and rupturing previous
immunological tolerance, CD8 + T cells can destroy cancer cells
and improve immunotherapy by activating the PD-1/PD-
L1 immune inhibitory axis. This will advance not only
immunotherapy but also the study of cancer.

In addition, patients with OSCC in the high-risk group, which
mainly come from cluster A (with higher polyamine-related genes
expression), were more sensitive to chemotherapy drugs
(Figure 11). Patients with high polyamine-related genes
expressed in liquid biopsies could be distinguished by imaging
mass cytometry or other experiments, which can guide through the
application of chemotherapy medications. Patients with OSCC
currently undergo cisplatin, paclitaxel, and docetaxel as their
first-line treatments (Meng et al., 2021). Doxorubicin was
usually used in combination with radiotherapy as 2B
chemotherapy, to treat head and neck adenomas and metastatic
tumors, according to the NCCN guidelines.

Although we had used various techniques to strengthen our
model, there were still some flaws and weaknesses. Because it was a
retrospective study, it was subjected to the biases that were built by this
research paradigm. It was challenging to conduct external validation
for prediction though we had completed internal validation in the
model. The immune cell infiltration and the fitting of chemotherapy
methods displayed the results from several platforms, and we also used
collected tissues to validate the RNA expression level, which could be
viewed as external validation in a certain sense. We intend to gather
more clinical datasets to reaffirm the importance of these polyamine-
related genes.

5 Conclusion

In this study, two distinct polyamine modification patterns
were discovered, and the immune cell infiltration was different in
these clusters, indicating that the modification played a vital role in
shaping individual tumor microenvironment characterizations.
We built a six PARDEG model and attempted to identify the
prognosis and immune infiltration of OSCCs. Moreover, the
model could assess individual tumor polyamine alteration
patterns and predict the clinical response of patients to chemical
therapy. These findings are conducive to understanding the
mechanism of polyamine in OSCC and provide novel targets for
treating OSCC patients.
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