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KODAMA is a valuable tool in metabolomics research to perform exploratory
analysis. The advanced analytical technologies commonly used for metabolic
phenotyping, mass spectrometry, and nuclear magnetic resonance spectroscopy
push out a bunch of high-dimensional data. These complex datasets necessitate
tailored statistical analysis able to highlight potentially interesting patterns from a
noisy background. Hence, the visualization of metabolomics data for exploratory
analysis revolves around dimensionality reduction. KODAMA excels at revealing local
structures in high-dimensional data, such asmetabolomics data. KODAMA has a high
capacity to detect different underlying relationships in experimental datasets and
correlate extracted features with accompanying metadata. Here, we describe the
main application of KODAMA exploratory analysis in metabolomics research.
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1 Introduction

Metabolomics is the discipline that involves systematic profiling and analysis of metabolites
and their fluctuations (Vignoli et al., 2021). Metabolomics has been applied to many fields of
research, including studies in non-communicable and infectious diseases. (Cacciatore and Loda,
2015; Vignoli et al., 2020; Bataineh et al., 2022), molecular biology (Semreen et al., 2020; AL
Bataineh et al., 2021), and food research (Maccaferri et al., 2012; Ojo-Okunola et al., 2020). In
the medical field, it has played a key role in enhancing research in personalized medicine
(Cacciatore et al., 2018). Nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS) are the major platforms used to provide structural and quantitative
information on metabolites in biological samples (Lenz and Wilson, 2007; Lindon et al.,
2011; McCartney et al., 2019; Takis et al., 2019; Vignoli et al., 2019). A variety of metabolomics
databases are created to store structural and quantitative information from these platforms. The
Human Metabolome Database (HMDB) (Wishart et al., 2018) and the LIPID MAPS Structure
Database (LMSD) (Sud et al., 2007) are among the commonest metabolomics databases.

Powerful analysis techniques and software tools are needed to address the large amount and
variety of data generated by these platforms (Camacho et al., 2018). Advances in artificial
intelligence, including machine learning (ML), have contributed to breakthroughs in different
scientific disciplines through discovery and innovations in clinical and biological research
(Rajkomar et al., 2019).
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ML methods are employed in metabolomics (Figure 1) in the
process of building predictive models (supervised learning) or
identifying informative groupings within data (unsupervised
learning) (Greener et al., 2022). Supervised learning algorithms
predict the class (classification) or value (regression) of unlabeled
datasets using a model based on a predefined set of data points and
associated information (i.e., class or value) (Berry et al., 2019). Among
the supervised learning algorithm, k-nearest neighbors (kNN)
(Romano et al., 2018; Romano et al., 2019; Di Donato et al., 2021),
partial least squares (PLS) (Bertini et al., 2012; Vignoli et al., 2022) and
its variant orthogonal PLS (O-PLS) (Cacciatore et al., 2017b), support
vector machine (SVM) (Cacciatore et al., 2013; Paglia et al., 2016), and
random forest (RF) (Tenori et al., 2015; McCartney et al., 2019) are the
most used techniques in metabolomics research. One of the
performance metrics used to assess the quality of prediction is
cross-validated accuracy. Briefly, a dataset is separated into training
and test sets, where a predictor is built on the training set to predict the
class or the values of the samples in the test set. This process is repeated
multiple times with different combinations of training and test sets to
calculate an average of model performances (cross-validated
accuracy).

On the other hand, unsupervised learning aims to identify
unknown data patterns without prior existing knowledge of
groupings within a dataset. Methods belonging to this category
include clustering algorithms (e.g., k-means and hierarchical
clustering) and dimensionality reduction methods (Berry et al.,
2019). Clustering refers to the identification of groups within the
dataset using algorithms to determine similarities which allow data
points to be grouped into subsections and patterns within the dataset
(Ren et al., 2015). Dimensionality reduction methods transform data
with high dimensionality (many variables) into data of lesser
dimensions while minimizing the loss of information. These
methods can be distinct in feature selection or feature extraction.

However, feature selection methods, such as univariate filter, wrapper,
and embedded methods, aim to select a subset of the features that best
explains the original dataset; feature extraction methods extract new
features on the basis of combinations of the original features (Hira and
Gillies, 2015).

Principal component analysis (PCA) is the most used feature
extraction method in metabolomics (Blekherman et al., 2011;
Hendriks et al., 2011; Saccenti et al., 2014). It reduces the
dimensionality of the dataset while preserving variability by finding
new variables that are linear functions of the ones in the original
dataset, thereby maximizing variance (Pearson, 1901; Sewell, 2007).
Despite the wide integration in various analyses, PCA shows
inefficient performance for dimensionality reduction on large
datasets (Yang et al., 2021). It failed to extract features from non-
linear data and does not maintain the local structure of the data when
the size of the dimension increases. In many cases, the complexity of
the datasets requires the use of more flexible solutions to highlight
interesting patterns in the data. Methods, such as t-distributed
stochastic neighbor embedding (t-SNE) (Van der Maaten and
Hinton, 2008) and uniform manifold approximation and projection
(UMAP) (McInnes et al., 2018), which have seen their popularity
grow in the analysis of a large dataset through single-cell RNA
sequencing, have been recently applied to the analysis of a large
metabolomic dataset (Buergel et al., 2022). They have the
advantages of maintaining neighbor information and visualizing
the local structure (Becht et al., 2019; Yang et al., 2021). Although
the debate is focused on the advantages and disadvantages of using
t-SNE or UMAP in terms of the global structure of the data, little
attention is dedicated to their sensitivity to the noise, typical in
biological datasets.

In this review, we will focus on KODAMA, an unsupervised
machine-learning algorithm for feature extraction from noisy and
high-dimensional data (Cacciatore et al., 2014). Unlike other

FIGURE 1
KODAMA on machine learning algorithm’s map. The machine learning algorithm can be categorized in unsupervised (i.e., clustering and dimensionality
reduction method) and supervised learning. KODAMA is one of unsupervised learning methods used for dimensionality reduction. Optionally, if supervised
information is used to lead the process of discovery of new patterns, KODAMA can be classified as semi-supervised.
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methods, KODAMA results are driven by an integrated procedure
of cross-validation of the results (Figures 2A–D). Golub et al.
(1999) showed that a predictor based on clustering can be
refined, removing samples not correctly predicted in cross-
validation. We introduced the novel idea that a clustering itself
can be improved by editing the class labels of samples not correctly
predicted in cross-validation. In the core step of KODAMA, an
initial clustering is refined through an iterative procedure, aiming
to maximize the cross-validated accuracy by swapping the class
labels of not correctly predicted samples with their predicted class
value. The initial clustering can either be the result of any clustering
methods or simply a vector where each sample belongs to a
different class. In the current version, the cross-validated
accuracy can be calculated by using kNN or PLS. The iterative
procedure used in KODAMA leads to suboptimal solutions and is
repeated to average the effects, owing to randomness. After each

run of the procedure, a classification vector with high cross-
validated accuracy is obtained. KODAMA subsequently collects
and processes these results by constructing a dissimilarity matrix to
provide a holistic view of the data while maintaining their intrinsic
structure. The KODAMA dissimilarity matrix can be visualized in a
low-dimensional space (generally in two dimensions) using
methods, such as multidimensional scaling (MDS), where the
pair-wise dissimilarity and similarity between samples are
preserved (Figure 2E). The final output could be visualized as a
set of points in a Cartesian space with a low number of dimensions
(KODAMA dimensions).

The algorithm is freely available from the R archive CRAN (http://
cran.r-project.org) and included as a function in the homonym
package (Cacciatore et al., 2017a). Since version 2.0 of
the KODAMA package, t-SNE can be used to transform the
dissimilarity matrix in low-dimensional space instead MDS.

FIGURE 2
KODAMA accuracymaximization by iterative cross-validations. (A)Cross-validationmodel (CV) generates predicted labels (PLs) that are used to calculate
the accuracy value (AC). (B)Generation of new labels to conduct the process of accuracymaximization can be i) an unsupervisedmethod, randomly swapping
some class labels of misleading samples with predicted labels; ii) semi-supervised type-I, changing only predefined labels and maintaining assigned class
labels; or iii) semi-supervised type-II, changing groups of labels together forcing their belonging to the same class. (C) Generation of new labels is an
iterative process aimed to identify the labels with the highest cross-validated accuracy. (D) Accuracy values increase with the number of iterations. (E)
KODAMA dissimilarity matrix generated as output can be transformed with MDS, or t-SNE, in a low-dimensional space.
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This versatile method has been successfully applied to other
disciplines including genomics (Meucci et al., 2019). Here, we will
introduce the KODAMA application in metabolomics research.

2 Integration with clustering algorithms

Clustering methods are common techniques used in exploratory
data analysis to group together observations in different subsets, where
observations in one subset are more similar to each other than
observations in different subsets. Results can depend on the chosen
method’s assumptions and starting parameter values. There is a wide
array of clustering approaches, each with its strengths and weaknesses.
Hierarchical clustering and partition clustering are the two classes of
clustering algorithms mostly used in biological research.

The ability of KODAMA in highlighting local structures facilitates
the identification of clusters. The benefit of using clustering on the
KODAMA dimensions was shown using simulated and experimental
datasets and comparing the results of different clustering methods
with KODAMA that showed a clear separation of classes (Cacciatore
et al., 2014). Both partitional and hierarchical clustering can be
applied to the KODAMA dimensions, as shown in different
metabolomic studies described in the following paragraphs.

Partitional clustering methods, such as partition around medoids
(PAM) clustering, were applied to the KODAMAdimensions to identify
different phenotypes in a dataset of urine metabolome of women with
lower urinary tract symptoms (Bray et al., 2017) and in a dataset of
lipoprotein profiles of patients with pancreatic ductal adenocarcinoma
(Elebo et al., 2021). Hierarchical clustering algorithms are largely used
for the visualization of metabolic data through heatmap plots.
Hierarchical clustering was also successfully applied to the output of
KODAMA to identify metabolic phenotypes in the plasma of patients
with prostate cancer (Cacciatore et al., 2021) and visualize metabolic
data for MYC- and AKT-driven prostate cancer (Priolo et al., 2014).

In general, determining the number of clusters that fit a certain
dataset is required to apply a partitional clustering or to perform a
“tree cutting” of the hierarchical clustering’s dendrogram. The
silhouette algorithm is one of the methods used to determine the
optimal number of clusters. It computes the coefficients of each point
from the measure of how much that point is similar to its own cluster
compared to other clusters. The silhouette algorithm has been used to
determine the optimal number of clusters both in PAM (Elebo et al.,
2021) and hierarchical clustering (Cacciatore et al., 2021) on the
KODAMA score. Identification of the number of clusters has
shown their benefit when applied to the analysis of KODAMA
scores (Cacciatore et al., 2017a).

3 KODAMA exploratory analysis in
metabolomics research

Feature extraction facilitates the classification, visualization, and
communication of high-dimensional data such as the those generated
by omics sciences, including metabolomics (Hinton and
Salakhutdinov, 2006). Unsupervised approaches are particularly
useful to exploratively identify clustering patterns in the data and
in metabolomic research. Previous studies harnessed the KODAMA
algorithm to identify the metabolic phenotype in various disciplines:
psychiatric, oncologic, and pregnancy research.

3.1 Psychiatry

The identification of early biomarkers of psychotic experiences
(PEs) is pivotal to timely diagnosis and effective treatment of patients
at risk of future disorders, improving clinical outcomes and life
quality, particularly in children and adolescents (Larsen et al.,
2011). Madrid-Gambin et al. (2019) performed an integrated
plasma lipidomic and proteomic study on a population of
115 children (48 cases and 67 controls) aimed at identifying early
metabolic biomarkers of PEs. All patients were prospectively enrolled
and evaluated, and plasma samples were collected at 12 years of age
and re-evaluated at 18 years of age to identify those with definite PEs.
The univariate analysis enabled the identification of a panel of
16 lipids, and one protein significantly dysregulated in children
with PEs, as compared to controls. The KODAMA algorithm was
used to identify potential underlying metabolic phenotypes in the
study population: according to the highest silhouette median values,
four clusters emerged. PE occurrence was significantly different
among the four clusters. Particularly, as compared with all the
others, the cluster named D, characterized by increased levels of
small LDL particles, represents a metabolic phenotype with a high
probability of developing PEs (occurrence 71%). The results of this
study suggest early vulnerability to the development of PEs could have
a metabolic basis in which the lipidome plays a key role.

3.2 Oncology

The KODAMA algorithm has found its way into oncological
metabolomic research. Prostate cancer (PC) is the second most
frequently diagnosed cancer in men and the Black population, as
compared to the other ethnicities, and has a higher risk of developing
particularly aggressive PCs. Cacciatore et al. (2021) analyzed viaNMR
plasma samples of 41 South African men diagnosed with PC.
Glycoproteins (GlycA and GlycB), well-known metabolic markers
of systemic inflammation, were found to be significantly higher in
patients with highly aggressive and high-stage (metastatic) diseases.
Moreover, GlycA and GlycB showed significant correlations with the
prostate-specific antigen. Interestingly, KODAMA enabled the
identification of four metabolic clusters associated with PC
aggressiveness. The metabotype IV, characterized by high levels of
GlycA and GlycB, is the one associated with the worst oncological
condition (and outcome), and it can be discriminated from all the
others with high accuracy (PLS model accuracy: 91.2%). If further
validated, the metabotype IV represents a well-defined high-risk
metabolomic profile that, in future, could be used to predict
patients who will be more likely to benefit from combination
therapy that associates androgen deprivation with drugs that are
able to reduce the level of systemic inflammation.

Elebo et al. (2021) conducted a pilot serum NMR-based
metabolomic and lipoproteomic study on 34 patients diagnosed with
pancreatic ductal adenocarcinoma (PDAC), 6 patients with chronic
pancreatitis, and 6 healthy participants. In this study, KODAMA
highlighted three distinct clusters: all healthy controls and patients
with chronic pancreatitis were allocated in the cluster named N,
whereas PDAC patients of clusters A and B were characterized by
higher free cholesterol and cholesterol ester ratio (ratio >.45).
Moreover, patients clustered in A and B, as compared to those in the
cluster N, displayed a significant dysregulation of liver function
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parameters. The A–B profiles could represent the patient’s phenotype of
patients at a high risk of obstructive jaundice that may require urgent
treatment.

3.3 Pregnancy

The KODAMA algorithm was also applied to study the metabolic
phenotyping of women with lower urinary tract symptoms (LUTS)
(Bray et al., 2017). Urine samples of 176 women attending tertiary
urogynecology clinics and 36 healthy control women attending
general gynecology clinics were analyzed through NMR
spectroscopy. Despite the high urine metabolic variability,
KODAMA identified four distinct urinary metabotypes associated
with the variations of six clinical parameters (i.e., BMI, parity,
frequency, straining, storage score, and OAB status). In particular,
the metabotypes 1 and 4 showed to be the most discriminated:
Metabotype 1 was enriched in patients with increased BMI and
decreased frequency, whereas the opposite trends were observed in
metabotype 4 patients. Interestingly, hippurate and isoleucine were
crucial in this discrimination and, thus, probably play a role in LUTS.
The depiction of these sub-phenotypes in such heterogeneous disease
like LUTS could pave the way for more tailored pharmacological
treatments, improving patient outcomes.

4 New paradigms of KODAMA

4.1 Semi-supervised approach

Semi-supervised learning is an approach that falls between
supervised and unsupervised learning. It can be defined as a
machine learning approach where the learning procedure is led by
external supervised information. The procedure of maximization of
cross-validated accuracy can be led by supervised information making
KODAMA, optionally, a semi-supervised method.

There are two different ways to lead the feature extraction
algorithm of KODAMA with external information (Figure 2B). In
the first approach (type-I), external information can be provided as
belonging to a particular sample classification (e.g., healthy status).
This information is provided partially for only some samples, and it is
used to lead the maximization of the cross-validated accuracy without
changing the class of these samples. This led to improved model
reliability, especially with limited access to curated labeled data.

In the second approach (type-II), the learning procedure considers
the samples, as organized in groups. For example, if the dataset
encompasses replicates, constraints can be imposed, linking some
samples in such a way that if one of them is changed, the linked ones
must change in the same way; they are forced to belong to the same
class. This will produce a solution where linked samples are forced to
have a close distance in the KODAMA scores.

KODAMA was applied as a semi-supervised type-II in a dataset
containingmetabolomic data on urine samples from a cohort of 22 healthy
donors, where each provided about 40 urine samples over the time course
of approximately 2 months, for a total of 873 samples (Cacciatore et al.,
2014). The information relative to the donors of the urine samples was
provided to the KODAMA algorithm. If the unsupervised KODAMA
clearly separated the urine of each donor, providing this additional

information, KODAMA was able to highlight the separation based on
sex, which was not previously provided.

4.2 Chemical structural similarity analysis

Initially, KODAMA was designed as an unsupervised method to
facilitate the identification of patterns representing underlying groups
on all samples in a dataset. Recently, KODAMA has been introduced
as a method for investigating the chemical similarity between
metabolites. In the procedure implemented in the R package
MetChem, KODAMA uses the molecular structure of metabolites
represented by the simplified molecular-input line-entry system
(SMILES) (Weininger, 1988) to visualize the chemical similarity
across metabolites in two-dimensional space. SMILES are converted
into molecular fingerprints, encoding their structural characteristics as
a vector (Bender and Brown, 2018). The distance between two
metabolites is calculated using a distance method, such as the
Tanimoto distance method (Chen and Reynolds, 2002), to produce
a dissimilarity matrix. This dissimilarity matrix is then converted into
a multi-dimensional space by MDS prior to being processed by
KODAMA. In this way, KODAMA can offer the possibility to
identify the class of metabolites structurally that may be
representative of specific functions and interactions in a biological
context.

5 Conclusion

KODAMA is an innovative approach that can be used for
unsupervised and semi-supervised exploratory analyses of high-
dimensional data for feature extraction and clustering of data points
into groups based on underlying features. The application of this
method has shown its benefit in the stratification of several medical
conditions. Recently, a new application aimed at the identification of
structural similarities among metabolites has been shown.
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