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Adamič N and Vengust M (2023) Regenerative
medicine in lung diseases: A systematic review.
Front. Vet. Sci. 10:1115708.
doi: 10.3389/fvets.2023.1115708

COPYRIGHT
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Regenerative medicine in lung
diseases: A systematic review

Neža Adamič and Modest Vengust*

Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia

Regenerative medicine has opened the door to the exploration of new therapeutic
methods for the treatment of various diseases, especially those associated with
local or general disregulation of the immune system. In pulmonary diseases, new
therapeutic strategies have emerged that are aimed at restoring functional lung
tissue rather than alleviating symptoms. These strategies focus on tissue regeneration
using stem cells and/or their derivatives or replacement of dysfunctional tissue using
biomedical engineering. Animal health can directly benefit from regenerative therapy
strategies and also serve as a translational experimental model for human disease.
Several clinical trials have been conducted to evaluate the e�ects of cellular treatment
on inflammatory lung disease in animals. Data reported to date show several beneficial
e�ects in ex vivo and in vivomodels; however, our understanding of the mechanisms
that regenerative therapies exert on diseased tissues remains incomplete.
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Introduction

Several chronic respiratory diseases in humans and animals remain incurable. Treatments

have been relatively successful in relieving some symptoms, but they all ultimately lead to a

poorer quality of life and are one of the leading causes of death worldwide (1). Intense and

persistent inflammation leads to loss of functional tissue and pulmonary tissue remodeling,

which in turn leads to loss of respiratory function. Over time, lung tissue changes are so severe

that euthanasia is required in animals or lung transplantation is the only viable option to prolong

life in humans (2–9).

The lung has an exceptional ability to respond and regenerate after the tissue injury (7, 9, 10).

However, regeneration of lung tissue can often lead to pathological tissue remodeling and

subsequent impairment of lung function (10). These changes in the lung can potentially be

reversed through regenerative medicine in the form of cellular therapy, extracellular vesicle

therapy (ECV), or even tissue engineering (4, 5, 7, 9–12). Several animal studies addressed

regenerative therapeutic modalities in the lung in experimental models (13–38) and in clinical

trials (39–41) (Table 1).

Although inflammation is the reason for damage to the airways, it is also critical for initiating

tissue regeneration and restoration. Inflammatory cells flooding the airways are important

for phagocytosis and for stimulating resident progenitor cells through secreted cytokines and

growth factors. Some resident cell populations do not appear to exist in a healthy lung, but

emerge only in response to lung injury. Amore detailed knowledge of this relationship will likely

enable new therapeutic options to stimulate lung regeneration and self-repair (43).

Data sources and searches

An online literature search was performed using the PubMed R© (U.S. National Library of

Medicine and National Institutes of Health) search engine (https://pubmed.ncbi.nlm.nih.gov/),
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TABLE 1 List of selected references reporting the use of regenerative treatments for respiratory diseases in animals.

Disease Species Therapeutic strategy Treatment outcomes References

Acute lung injury Mice Bone marrow-derived mesenchymal stem cells Treatment with intrapulmonary MSC

markedly decreases the severity of

endotoxin-induced acute lung injury and

improved survival in mice

Gupta et al. (13)

Rabbit Bone marrow-derived mesenchymal stem cells Decreased pro-inflammatory cytokines,

increased anti-inflammatory cytokines,

decreased lung water mass fraction, and

ameliorated systemic inflammatory response.

Zhu et al. (15)

Chen et al. (16)

Mice Human Umbilical cord blood-derived

mesenchymal stem cells

Down-modulated inflammatory process and

enhanced bacterial clearance.

Kim et al. (17)

Sun et al. (19)

Rats Human umbilical cord blood-derived

mesenchymal stem cells

Reduced systemic inflammation and

attenuated ALI

Li et al. (21)

Sheep Human bone marrow-derived mesenchymal stem

cells

Reduced severity of ALI Asmussen et al. (22)

Dogs Human Umbilical cord blood-derived

mesenchymal stem cells

Reduced lung injury. Hao et al. (33)

Pigs Extracellular vesicle therapy Attenuated influenza virus-induced acute

lung injury.

Khatri et al. (34)

Rats Extracellular vesicle therapy Alleviated lung injury and pulmonary

fibrosis.

Gao et al. (42)

Acute respiratory

distress syndrome

Sheep Human bone marrow-derived mesenchymal stem

cells

Ameliorated inflammation. Rojas et al. (25)

Sadeghian Chaleshtori et al.

(37)

Sheep Adipose-derived mesenchymal stem cells Attenuated pulmonary microvascular

hyperpermeability.

Ihara et al. (32)

Sheep Bone marrow-derived multipotent adult

progenitor cells

Recovered arterial oxygenation. Cardenes et al. (36)

Asthma Mice Human bone marrow-derived mesenchymal stem

cells

Decreased chronic inflammation Bonfield et al. (14)

Lee et al. (18)

Mohammadian et al. (27)

Cruz et al. (26)

Mice Adipose-derived mesenchymal stem cells Ameliorated allergic airway inflammation. Cho et al. (23)

Mariñas-Pardo et al. (24)

Dai et al. (29)

Dai et al. (30)

Horses Bone marrow-derived mononuclear cells Reduced airway inflammation Barussi et al. (39)

Mice Bone marrow, adipose, and lung tissue-derived

mesenchymal stromal cells

Reduced airway inflammation and

remodeling and improved lung function.

Abreu et al. (28)

Cats Adipose-derived mesenchymal stem cells Delayed effect in reducing airway

inflammation, airway hyper-responsiveness

and remodeling.

Trzil et al. (40)

Mice Human adipose-derived mesenchymal stem cells

and their extracellular vesicles

Reduced inflammation and modulated

airway remodeling.

de Castro et al. (31)

Horses Adipose-derived mesenchymal stem cells Limited short-term anti-inflammatory effects

and long-term stability of clinical signs

Adamič et al. (41)

Lung emphysema Sheep Autologous lung-derived mesenchymal stem cell Ameliorated lung perfusion Ingenito et al. (20)

Therapeutic strategies and treatment outcomes are also listed.

evaluating reports from January 1, 1990, to October 31, 2022.

Reference lists of relevant articles were also reviewed to find

additional studies.

Cellular therapy

Regenerative cell therapy is currently the most widely used

method for stimulating the regeneration of damaged tissue, in which

stem cells (SC) play a leading role. Stem cells are undifferentiated

cells capable of self-renewal and transformation into other cell

types (44). Traditionally, the therapeutic effect of SC has been

associated with their migration to the affected area and their ability

to replace damaged tissue (45). However, later discoveries recognized

their complex immunomodulatory role through interaction with

local cells of the immune system and paracrine signaling (46, 47).

Currently, twoways of their potential use for therapeutic purposes are

being investigated: (1) induction of endogenous differentiation and
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mobilization of resident progenitor cells and (2) ex vivo (exogenous)

cultivation of SC and their application in patients (4, 11, 48, 49).

The former is mainly related to tissue regeneration and repair

through activation of resident cells (43, 48), while the latter is mainly

associated with paracrine action and immunomodulatory effects (4).

Heterogeneous endogenous stem cells [cells capable of long-term

self-renewal and differentiation into other progenitor cells or tissue-

specific cells (4)] and progenitor cells [tissue-specific cells capable

of differentiation into specific cell types, but are not capable of self-

renewal or are capable of self-renewal only in the relatively short

term (4)] of the lung, located in different regions of the airway,

are capable of self-renewal and of forming one or more mature cell

types, allowing local maintenance of epithelial integrity and repair of

damage (4, 10, 50). They reside in their unique microenvironmental

niches that allow them to maintain their progenitor properties and

differentiate into different cell types (10). Several distinct populations

of stem and progenitor cells are present in the airways, which can

differentiate into different airway cell types (4, 10, 50).

Basal epithelial cells represent a population of stem/progenitor

cells from which Club cells (formerly known as Clara cells) and

ciliated cells can develop (51, 52). They may also serve as progenitors

for multiciliated and goblet cells (10). Submucosal glandular

progenitor cells are another group of cells capable of regenerating

submucosal glandular tubules, ducts, and surface epithelium (10, 53).

Neuroendocrine cells of the lung can also function as progenitor

cells that differentiate into Club cells and ciliated cells upon injury

(10, 54). Type 2 alveolar cells are critical for surfactant C production

and secretion, but are also considered alveolar progenitor cells. They

can self-renew and/or differentiate into type 1 alveolar cells, which

are responsible for gas exchange (10). Differentiation, proliferation

and expansion of type 2 alveolar cells after tissue injury is protracted

and takes several months (50).

Resident stem cells, which are thought to share several properties

with bone marrow-derived mesenchymal stem cells (BM-MSC), have

also been found in the lung (20, 55–57). They are currently referred

to as lung mesenchymal stem cells or lung mesenchymal stromal

cells (L-MSC). Their potential physiological or pathophysiological

functions are not yet known. Similar to BM-MSC, L-MSC secrete

immunosuppressive molecules and therefore may influence the

course of inflammation, tissue injury and repair (58, 59).

Attempts have also been made to derive the phenotype of

structural lung cells for pulmonary vascular regeneration from

adipose or bone marrow tissue or from embryonic SC. Despite the

ability of SC to differentiate into lung cell types, results of such studies

remain controversial because of inadequately derived or described

methods (4).

The therapeutic potential of exogenous SC has been repeatedly

noted in relation to their immunomodulatory effects. Their complex

immunomodulatory role results from their interaction with local

immune cells and paracrine signaling, leading to a reduction

in proinflammatory stimulus and thus less tissue damage (46,

47, 60–63). Most research on SC therapies has focused on

inflammatory airway diseases where conventional treatments have

been unsuccessful, and they have been found to have several beneficial

effects (36, 64–67). Various cell sources (e.g., BM-MSC, adipose-

derived stem cells, embryonic stem cells, umbilical cord blood-

derivedmesenchymal stem cells), dosages, and deliverymethods have

been investigated to maximize the potential of their therapeutic use.

However, there is not yet sufficient evidence to formulate precise

guidelines for clinical use.

Tissue engineering

Pathologic changes in diseased lungs may progress to the point

where cell therapy and stimulation of tissue regeneration alone

are insufficient and tissue replacement is required to restore lung

function. Suitable lung donors are not always available, or lung

transplantation is contraindicated (68); therefore, in vitro-grown

tissue may bridge the time to lung transplantation or serve as a

definitive therapeutic modality.

Tissue engineering techniques are still insufficiently developed.

The lung is composed of more than 40 different cell types that

form a complex three-dimensional (3D) anatomic architecture (69).

Generating lungs in vitro and mimicking their function is a major

challenge that requires a high degree of cell specialization and

complex tissue architecture (5, 48, 70, 71). They must provide a

variety of organ functions, such as the diversity of airway cell types,

the defensemechanisms that protect the upper airways (e.g., secretion

of specifically composed mucus and active ciliary apparatus), and the

coupling of the alveolar space with the surrounding systemic and

pulmonary vasculature to ensure effective tissue perfusion and gas

exchange (72).

Most preclinical studies have used biologically derived models

or synthetic scaffolds seeded with an appropriate cell source to

regenerate functional lung tissue (5, 7). Hybrid scaffolds combining

biological materials (extracellular matrix (ECM) components) with

synthetic scaffolds currently appear to have the greatest potential.

These scaffolds are then seeded with autologous or allogeneic cells to

generate functional tissue generation (5). An important advantage of

using allogenic cells is the reduction of immunologic complications

and tissue rejection (7, 12, 48). In this way, a miniaturized and

simplified version of an organ can be produced in the laboratory,

called an organoid. This is a 3D structure that replicates the

microanatomy of the desired organ. The formation of organoids relies

on the self-assembly of cells derived from adult tissues, embryonic

stem cells, or induced pluripotent stem cells (70, 71, 73, 74).

Because they represent the overall architecture of the lung,

organoids are important models for studying various physiological

processes in the airway microenvironment and the effects of various

effectors on airway tissue structure, including infectious agents

and/or new therapeutic modalities. This is particularly important

because the cellular and molecular response to chemical and physical

signals in vivo and the properties of gene expression can be obscured

or lost in more commonly used in vitro 2D cell culture systems

(73, 74). Lung organoids are broadly divided into proximal lung

organoids (containing cells that mimic the conducting airways),

distal lung organoids (subsuming the alveoli), or proximal-distal

organoids (74).

The creation of a functional epithelial tissue appropriately

connected to the vascular component is particularly important

for the future development of therapeutically beneficial engineered

pulmonary tissues. A more ambitious model of tissue engineering

is based on decellularization of the original organ, in which all cells

and cellular materials are removed from the entire lung, resulting

in an intact three-dimensional scaffold. This represents the innate
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ECM, preserving the natural structure of the airways and blood

vessels, providing an optimal platform for transplantation of lung

cells (48, 74). Lung ECM (collagen and elastic fibers enriched

in proteoglycans, glycosaminoglycans, and fibronectin) not only

provides a sophisticated scaffold for potential lung organogenesis, but

also combines biochemical and mechanical signals that further guide

SC behavior during lung re-development and regeneration (74). To

generate functional lung tissue ex vivo, one would need to definemore

than 40 different cell types and perhaps hundreds to thousands of

different cell subtypes (5).

Nichols et al. (35) transplanted a bioengineered porcine lung,

which was generated using autologous cells. The bioengineered

lungs successfully formed alveolar tissue and were ventilated, well

vascularized, and developed a microbiome similar to that of the

natural lung. The authors also noted no evidence of graft rejection

(35). However, Yanagiya et al. (38) reported marked bullous

changes in the transplanted tissue of bioengineered lungs when they

examined unilateral transplantation of porcine lungs generated from

autologous cells. They also reported comparable oxygen exchange

between the bioengineered lung transplant group and the allograft

recipient group, whereas CO2 exchange was significantly lower in the

bioengineered lung transplant group than in the allograft group (38).

Airway anatomy and physiology are highly species-dependent,

making it necessary to create species-specific models. In a recent

review of mammalian lung organoids, Archer et al. (72) highlighted

that the cells lining the bronchiolar or more distal part of the

tracheobronchial tree differ considerably between species in terms of

their abundance, the cell types present, the ultrastructural features of

these cells in adult animals, and the secretory products they produce

(72). Mouse models, for example, are not particularly well suited for

studying human respiratory diseases. On the other hand, sheep lungs

are most commonly used as models for human lungs because of their

anatomy and the uniform distribution of differentiated cells at a given

age of maturity. These elements make sheep a valuable model for

human respiratory physiology and disease (72).

Cell-free therapeutical strategies

Extracellular vesicles are membrane-protected carriers of

many substances, including microRNA (miRNA), messenger RNA,

proteins, and mitochondria. Extracellular vesicles are broadly

classified into exosomes (vesicles of endocytotic origin with a

diameter of 30–150 nm, surrounded by a plasma membrane),

microvesicles (diameter of 100–1,000 nm, not of endocytotic origin),

and apoptotic bodies [diameter of 50 nm−5µm; they are released by

apoptotic cells during membrane budding (blebbing)] (75). The use

of ECV offers several important advantages over cell therapy. Due

to their smaller size, ECV can penetrate deeper into the airways and

potentially be delivered by inhalation techniques (76). In addition,

their membrane envelope makes them stable in tissues and body

fluids. They also have low immunogenicity and toxicity compared to

cell therapies (77, 78). A major obstacle to the therapeutic use of ECV

is the lack of standardized methods for isolation and purification

of ECV. The lack of standardized methods for isolating exosomes

means that exosomes cannot be separated from other ECV of similar

size. There is also a lack of standardization of methods for measuring

ECV purity (47, 79). In this context, it is advisable to use the

generic term “extracellular vesicle” when using ECV therapeutically

and to avoid nominal categorization into subtypes. If the name

of a single subspecies is used, extraction and selection must be

precisely defined.

Confirmation of the functionality of ECV therapy requires that

the therapeutic effect occurs without intercellular contact and that

this is not achieved by ECV-unrelated soluble paracrine factors

(80). Extracellular vesicles are involved in several intercellular

signaling pathways, making them critical molecular messengers in

various processes responsible for normal homeostasis and disease

development. In the regeneration process, they also influence the

response of stem/progenitor cells and other cells within their

niche (78).

Numerous studies have demonstrated the benefits of systemic

administration of ECV in mitigating allergic airway hyperreactivity

and resulting inflammation and tissue remodeling (26, 31).

Extracellular vesicle treatment has been shown to be beneficial in

the treatment of lung injury and pulmonary fibrosis in rats. After

intratracheal administration, there was a reduction in apoptosis

and necrosis of type 2 alveolar epithelial cells and alleviation of

lung injury. Extracellular vesicles decreased reactive oxygen species

levels and inflammation in the airways. The authors were able to

attribute some of the beneficial effects to a specific miRNA, let-

7d-5p (42). Antounians et al. (81) also attributed the therapeutic

effects of ECV to miRNA when they investigated its influence on the

regenerative capacity of undeveloped fetal lungs in an experimental

rodent model. Following ECV treatment, enhanced morphogenesis

and alveolarization, restoration of lung tissue homeostasis, and

differentiation of epithelial cells and fibroblasts were observed in

association with the release of RNA cargo (81). In addition, ECV

treatment may limit viral respiratory infections by affecting viral

replication and virus-induced apoptosis in lung epithelial cells, which

is also thought to depend on the transfer of RNA from ECV to

epithelial cells (34).

In addition to the cell-free regenerative medicine options

described above, several indirect therapeutic options have been

described to stimulate local cells and tissue regeneration in the

airways. For example, all-trans-retinoic acid, a derivative of vitamin

A (retinol), has been described as a possible candidate to promote

alveologenesis (48, 82, 83). It is also suggested that nanoparticles of

integrins may influence the regeneration of collapsed alveoli (84).

Another area of research is regenerative photobiostimulation, which

aims to stimulate resident stem cells with electromagnetic radiation

to trigger growth factor production, inhibition of inflammation, and

stimulation of angiogenesis (85).

Most probable therapeutic application
in animals

Benefits of cell treatments have been reported for the treatment of

asthma; experimentally in mouse models (14, 18, 23, 24, 26–31) and

animals with natural asthma, such as cats (40) and horses (39, 41).

The treatment effects of SC, identified in preclinical studies of asthma

treatment, are related to the reduction of airway inflammation

through the regulation of inflammatory cytokines. The results of

these studies differ in terms of cytokine expression and translation,

but all consistently reported a reduction in airway inflammation. The

influence of SC on tissue remodeling may play the critical role in the

treatment of asthma (18, 24, 26, 31, 86, 87).
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Ingenito et al. (20) investigated the effect of autologous L-

MSC on experimentally induced lung emphysema in sheep to

evaluate their ability to regenerate functional tissue. Animals received

endoscopically either cellularized biological scaffolds or scaffolds

alone. At four-week follow-up, no immune response to the grafts

was detected, but significant improvement in tissue mass (in terms

of increased cellularity and extracellular matrix content) and lung

perfusion was observed in sheep receiving L-MSC compared with the

control group. Detection of labeled L-MSC in the alveolar septum and

peribronchial interstitium was also reported. L-MSC therefore have

the potential for regeneration of emphysematous lungs (20).

Treatment with SC also significantly affects inflammatory

responses and lung tissue regeneration in acute lung injury (ALI)

and acute respiratory distress syndrome (ARDS) (36, 88–91). Aside

from symptomatic therapy, no specific treatment for these diseases

have been defined that would substantially improve short- and long-

term outcomes. Positive effects in terms of reducing pulmonary

edema and inflammation and improving gas exchange have been

reported after cell treatment in experimentally induced ARDS in

sheep (22, 25, 32, 36, 37). Currently, research on the effect of SC on

the treatment of ARDS caused by respiratory viruses is particularly

relevant due to the COVID-19 pandemic (67, 90, 92). Reductions

in oxidative stress and inflammation and resulting lung injury and

mortality following treatment with SC have been observed in mice

(13, 17, 19, 21), rabbits (15, 16) and dogs (33) with experimentally

induced lung injury.

In addition to cell therapy, treatment with ECV has also

successfully treated acute airway inflammation caused by viral

infection. Khatri et al. (34) investigated the effects of intratracheally

administered ECV on influenza virus-induced acute lung injury in

pigs. ECV treatment significantly reduced viral secretion (detected

in nasal swabs), viral replication in the lungs, and virus-induced

inflammatory cytokine formation in the lungs of infected pigs

12 h after viral infection. The authors concluded that intratracheal

treatment with ECV attenuates influenza virus-induced ALI in

pigs (34).

Conclusions

Further evidence from appropriately designed clinical trials

is needed before regenerative therapy is considered an accepted

therapeutic modality in respiratory medicine. To date, the use of SC

or ECV for the treatment of respiratory disease has consistently been

described as relatively safe after local and systemic application. Apart

from mild local reactions after administration of cells of allogeneic

origin, no severe adverse events have been observed (41, 47, 93–96).

The interaction between SC/ECV and the immune system may also

provide better insight into the pathophysiology of immune system

dysregulation in the respiratory system.

It is also important to focus on a detailed understanding of the

functional heterogeneity of each cell type in the respiratory system

and the development of protocols for targeted cell differentiation

and maturation (70). This is particularly true for tissue engineering,

which is less explored compared to SC and ECV due to its anatomical

and functional complexity. The creation of a functional epithelial

tissue suitably linked to the vascular component is particularly

important for the future development of respiratory physiology

and medicine.

Author contributions

All authors listed have made a substantial, direct, and intellectual

contribution to the work and approved it for publication.

Funding

The authors acknowledge the financial support from the

Slovenian Research Agency (P4-0053).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

References

1. World Health Organization. Chronic Respiratory Diseases. (2022). Available online
at: https://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_3 (accessed
November 2, 2022).

2. Rhind S, Gunn-Moore D. Desquamative form of cryptogenic fibrosing alveolitis in a
cat. J Comp Pathol. (2000) 123:226–9. doi: 10.1053/jcpa.2000.0412

3. Lavoie JP. “Recurrent airway obstruction (Heaves) and summer-pasture-associated
obstructive pulmonary disease,” In: McGorum BC, Dixon PM, Robinson NE, Schumacher
J, eds Equine Respiratory Medicine and Surgery. Edinburgh: W.B. Saunders (2007). p.
565–89. doi: 10.1016/B978-0-7020-2759-8.50046-5

4. Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in
lung biology and diseases.Mol Ther. (2012) 20:1116–30. doi: 10.1038/mt.2012.37

5. De Santis MM, Bölükbas DA, Lindstedt S, Wagner DE. How to build a lung: latest
advances and emerging themes in lung bioengineering. Eur Respir J. (2018) 52:1601355.
doi: 10.1183/13993003.01355-2016

6. Boiron L, Hopper K, Borchers A. Risk factors, characteristics, and outcomes of acute
respiratory distress syndrome in dogs and cats: 54 cases. J Vet Emerg Crit Care San
Antonio. (2019) 29:173–9. doi: 10.1111/vec.12819

7. Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration:
implications of the diseased niche and ageing. Eur Respir Rev. (2020) 29:200222.
doi: 10.1183/16000617.0222-2020

8. Trzil JE. Feline asthma: diagnostic and treatment update. Vet Clin North Am Small
Anim Pract. (2020) 50:375–91. doi: 10.1016/j.cvsm.2019.10.002

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2023.1115708
https://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_3
https://doi.org/10.1053/jcpa.2000.0412
https://doi.org/10.1016/B978-0-7020-2759-8.50046-5
https://doi.org/10.1038/mt.2012.37
https://doi.org/10.1183/13993003.01355-2016
https://doi.org/10.1111/vec.12819
https://doi.org/10.1183/16000617.0222-2020
https://doi.org/10.1016/j.cvsm.2019.10.002
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
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