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In recent years, passive acoustic monitoring (PAM) has become increasingly popular.
Many acoustic indices (AIs) have been proposed for rapid biodiversity assessment
(RBA), however, most acoustic indices have been reported to be susceptible to
abiotic sounds such as wind or rain noise when biotic sound is masked, which greatly
limits the application of these acoustic indices. In this work, in order to take an insight
into the influencemechanism of signal-to-noise ratio (SNR) on acoustic indices, four
most commonly used acoustic indices, i.e., the bioacoustic index (BIO), the acoustic
diversity index (ADI), the acoustic evenness index (AEI), and the acoustic complexity
index (ACI), were investigated using controlled computational experiments with field
recordings collected in a suburban park in Xuzhou, China, in which bird vocalizations
were employed as typical biotic sounds. In the experiments, different signal-to-noise
ratio conditions were obtained by varying biotic sound intensities while keeping the
background noise fixed. Experimental results showed that three indices (acoustic
diversity index, acoustic complexity index, and bioacoustic index) decreased while
the trend of acoustic evenness index was in the opposite direction as signal-to-noise
ratio declined, which was owing to several factors summarized as follows. Firstly, as
for acoustic diversity index and acoustic evenness index, the peak value in the
spectrogram will no longer correspond to the biotic sounds of interest when signal-
to-noise ratio decreases to a certain extent, leading to erroneous results of the
proportion of sound occurring in each frequency band. Secondly, in bioacoustic
index calculation, the accumulation of the difference between the sound level within
each frequency band and the minimum sound level will drop dramatically with
reduced biotic sound intensities. Finally, the acoustic complexity index calculation
result relies on the ratio between total differences among all adjacent frames and the
total sum of all frames within each temporal step and frequency bin in the
spectrogram. With signal-to-noise ratio decreasing, the biotic components
contribution in both the total differences and the total sum presents a complex
impact on the final acoustic complexity index value. This work is helpful to more
comprehensively interpret the values of the above acoustic indices in a real-world
environment and promote the applications of passive acoustic monitoring in rapid
biodiversity assessment.
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1 Introduction

Biodiversity assessment is an increasingly urgent task in the face of global environmental
change (Pereira et al., 2013; Bradfer-Lawrence et al., 2020). Despite ambitious global targets to
reduce biodiversity loss (Tittensor et al., 2014), pressure on biodiversity has increased notably
(Butchart et al., 2010; Dröge et al., 2021) over the past four decades. Quantifying biological
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diversity is fundamental for setting priorities for conservation
(Mittermeier et al., 1998; Brooks et al., 2006), especially in the
current period of dramatic biodiversity loss (Brooks et al., 2006;
Ceballos et al., 2015; Cifuentes et al., 2021). Traditionally, this has
relied on detailed species inventories, which however often require an
extensive, costly sampling effort, especially in high-biodiversity areas
(Cifuentes et al., 2021).

Passive acoustic monitoring, a promising alternative to conducting
point-count surveys, may offer a more rapid and economical means of
terrestrial biodiversity appraisal than traditional methods in situ surveys
(Pijanowski, 2011). There are two main advantages associated with
acoustic monitoring. One is the ability to collect data simultaneously
across large areas with minimal observer bias (Deichmann et al., 2018;
Gibb et al., 2019). Another advantage is that data collection can be carried
out over a long period of time with minimum disturbance to wildlife
(Deichmann et al., 2018; Gibb et al., 2019; Shamon et al., 2021).

In recent years, a number of acoustic indices (AIs) have been
developed for rapid, automated assessments of ecosystem conditions
or as a proxy for richness and/or diversity (Gasc et al., 2013a; Rajan
et al., 2019; Sugai and Llusia, 2019; Shamon et al., 2021). Several
studies have reported relationships between different AIs and
measures of species richness and/or diversity, in which conclusions
with regard to the “best” performing index differ between ecosystems
(Fuller et al., 2015; Gasc et al., 2015; Fairbrass et al., 2017; Mammides
et al., 2017; Myers et al., 2019; Zhao et al., 2019). These uncertainties
warrant ecosystem-specific assessments of the performance of AIs
(Gasc et al., 2015). Furthermore, there are still some open questions
concerning AIs, which include the impact of various abiotic sounds
(such as wind, rain, and road noise), the sensitivity of AIs to different
signal-to-noise ratio (SNR) conditions, and the optimized usage of AIs
in acoustic monitoring. For instance, when using AIs to quantify the
complexity of an acoustic community, it is necessary to consider the
influence on the AIs’ values from variations of SNR in the recording.

Since the varying distance between vocalizing organisms and
acoustic recorders inevitably impacts the SNR in the recording, we
investigated potential associations between AIs and SNR in this work
using field recordings collected in a suburban park in Xuzhou, China.
Considering that it is very difficult to ensure the SNR as expected in the
survey environment, controlled computational experiments were
conducted and different SNR conditions were used. Experimental
results suggested that, in addition to different sound unit shapes (Zhao
et al., 2019), variations in SNR also contributed to the differences in
AIs’ values.

The objective of this study is to take an insight into the influence
mechanism of SNR on four most commonly used AIs, i.e., the
bioacoustic index (BIO) (Boelman et al., 2007), the acoustic
diversity index (ADI) (Villanueva-Rivera et al., 2011), the acoustic
evenness index (AEI) (Villanueva-Rivera et al., 2011), and the acoustic
complexity index (ACI) (Pieretti et al., 2011). Furthermore, we also
presented preliminary ideas to improve the robustness of these AIs,
which will be explored in the future.

2 Materials and methods

2.1 Study area

We obtained acoustic recordings from two sites in Jiuli Lake
National Wetland Park (Figure 1), located in the northwest of

Xuzhou, Jiangsu Province, China (34°19′27′′ - 34°20′44″N,
117°6′2′′ - 117°7′22″E). There are many species of insects, reptiles,
anurans, birds (about 42 species), and mammals in the park.
Currently, this area is surrounded by densely urbanized
infrastructure with a road running through the park.

2.2 Data collection

Sound files were recorded at two locations in the park as shown in
Figure 1. Site A (34°19′44″N - 117°6′17″E) was 50 m away from the
trail and surrounded by trees whilst site B (34°20′18″N - 117°6′54″E)
was located on an island in the middle of the lake.

In each of the two locations, we used a SongMeter digital recording
device (model SM4, Wildlife Acoustics Inc., Concord, MA) to obtain
bird sounds during three consecutive days in each month from June to
August of 2022. The recorders were programmed to operate 24 h every
day. Recordings were made in wav files (48 kHz sampling rate, 26 dB
microphone gain, 16 bits) with 60-min duration each. In this way, for
each location, we obtained 72 60-min recordings per month,
corresponding to 144 h/month (2 locations × 72 h per point) and
432 h in total.

Figure 2 shows the spectrogram of a 30-s recording as a
representative example collected in site A from 6:35:16 a.m. to 6:
35:46 a.m. on 24 June 2022. The recording contains various bird
sounds with mild winds, and there are almost no obvious
anthropogenic sounds. Specifically, one can observe that
frequencies below 400 Hz are filled by noise, and between
400 and 12,000 Hz exist rich biological sounds. Here, in line
with our previous studies (Zhao et al., 2017; 2019; Zhang et al.,
2018), we considered a call or a syllable as an acoustic event. We
selected five common and widespread bird species in Xuzhou, of
which the vocalizations correspond to five unique sound unit
shapes. More specifically, these five sound unit shapes are
constant frequency (CF), frequency modulated whistles (FM),
broadband pulses (BP), broadband with varying frequency
components (BVF), and strong harmonics (SH) (Brandes, 2008).
The detailed description of the avian acoustic events used in this
work is provided in Table 1. We extracted acoustic events using the
same automatic segmentation procedure presented in Zhao et al.
(2017). The duration of each event is less than 1 s, facilitating the
following experiments.

2.3 Data analysis

We calculated four different indices, i.e., BIO, ACI, ADI, and
AEI, using the R programming language version 3.4.2. More
specifically, the above indices were computed using the
bioacoustic_index, acoustic_complexity, acoustic_diversity, and
acoustic_evenness functions, respectively, in the “soundecology”
package (Villanueva-Rivera and Pijanowski, 2016). For BIO, the
minimum frequency and maximum frequency were set to 0.4 kHz
and 12 kHz, respectively. In the case of ACI, the maximum
frequency was set to 12 kHz. ADI and AEI were calculated using
12 kHz as the maximum frequency and 1 kHz as the frequency
bandwidth (−50 dBFS threshold was used). After all indices’ results
were calculated, descriptive statistics (mean, standard deviation)
were produced for each index in Experiment 1.
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2.4 Experiments

2.4.1 Experiment 1—The effect of SNR
In order to inspect the influence of SNRs on AIs’ values, we

focused on vocalization intensity options of acoustic events in this
experiment. Using the five bird species listed above (Table 1), we
randomly selected six acoustic events of each species, i.e., 30 events
in total, and overlaid them on a 1-min background noise recording
with each event within every non-overlapping 2 seconds. The

background recording was obtained from 5:15 a.m. to 5:16 a.m.
on Jun. 24, 2022, at Jiuli Lake National Wetland Park, Xuzhou,
Jiangsu Province, China, and the corresponding spectrogram is
shown in Figure 3. This recording contained almost no audible
sounds but mild winds, providing an acoustic background in
natural conditions similar to that in most field recordings. It is
worth mentioning that the background noise contains most energy
in low frequency range rather than equally distributed across the
frequency spectrum.

FIGURE 1
Locations of acoustic recorders in Jiuli Lake National Wetland Park, Xuzhou, Jiangsu Province, China. Site A represents a terrestrial sampling point, and
site B is surrounded by the lake.

FIGURE 2
Spectrogram of a 30-s recording as a representative example collected in site A at Jiuli Lake National Wetland Park, Xuzhou, Jiangsu Province, China.
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It is well known that the SNR is calculated by the ratio between
the average power of the signal and noise. In this work, we
multiplied the signal (i.e., the acoustic event) power by a factor
a while maintaining the noise power constant, which would result
in the desired SNR. Note that although all selected events have high
SNRs, the Wiener filter (Arslan, 2006) was further employed upon
each event to reduce background noise before constructing
experimental recordings.

In this experiment, the SNR of each acoustic event was set to
11 different values, i.e., 35 dB, 30 dB, 25 dB, 20 dB, 15 dB, 10 dB, 5 dB,
0 dB, −5 dB, −10 dB, and −15 dB, resulting in 11 cases total. For each
case, 300 random runs were conducted to obtain a statistically
significant result, in which all events were set to the same SNR. In

each run, we used a random selection of acoustic events without
replacement. It is noteworthy that the place of each event within every
non-overlapping 2 seconds was also random—that is, considering a
certain event (viewed as a 1-s space) and a 2-s space (say, 0–2 s), the
event could be placed within 0–1 s or 0.4 s –1.4 s, etc. Finally, each
acoustic index was calculated based on the experimental recording. In
this way, we conducted 3,300 random runs in total for each of the four
acoustic indices.

2.4.2 Experiment 2—Influence mechanism analysis
of SNR

In this experiment, we investigated the underlying influence
mechanism of SNR on AIs. We selected six acoustic events from

TABLE 1 Details of species and acoustic events used in this work. The five species are common and widespread in Xuzhou. All the acoustic eventsa were extracted from
our field recordings.

Bird species Frequency range (kHz) Sound unit shapeb Number of events

Reed Warbler 3–12 BVF 60

Acrocephalus orientalis

Azure-winged Magpie 0.4–12 BP 60

Cyanopica cyanus

Vinous-throated Parrotbill 3–5 CF 60

Paradoxornis webbianus

Peregrine 0.5–12 SH 60

Falco peregrinus

Zitting Cisticola 5–12 FM 60

Cisticola juncidis

aAll the acoustic events are available at https://figshare.com/articles/dataset/Bird_species_in_Xuzhou/21317835.
bBVF: broadband with varying frequency components, BP: broadband pulses, CF: constant frequency, SH: strong harmonics, FM: frequency modulated whistles.

FIGURE 3
The 1-min background noise recording collected at site A in Jiuli LakeNationalWetland Park, Xuzhou, Jiangsu Province, China. (A) The normalized power
spectrum of the recording. (B) The spectrogram of the recording.

Frontiers in Remote Sensing frontiersin.org04

Chen et al. 10.3389/frsen.2022.1079223

https://fshare.com/articles/dataset/Bird_species_in_Xuzhou/21317835
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.1079223


each of the 5 bird species listed in Table 1 and the SNR for
each acoustic event was set to 35 dB and 0 dB, respectively,
representing high and low SNR cases. Similar to experiment 1,
the Wiener filter was also employed upon each event to reduce
background noise before constructing experimental recordings.
For each case, after the total 30 acoustic events were ready, they
were overlaid on the same 1-min background recording with each
event within every non-overlapping 2 s. It is important to remark
that the place of each event within every non-overlapping 2 s was
fixed in the two cases to assure that SNR was the only varying factor
during the experiment, facilitating the influence mechanism
analysis associated with SNR. Finally, for each of the four
acoustic indices, the calculation results were based on the
experimental recording.

3 Results and discussion

3.1 Experiment 1

As is shown in Figure 4, explicit influence from SNR can be
observed on all four indices. Specifically, AEI values were in the
opposite direction as SNR decreased. As for the other three indices,
their values increased when the SNR was from low to high.
Furthermore, when SNR was larger than 0 dB, only BIO values
obviously tended towards a constant value.

3.2 Experiment 2

3.2.1 ADI and AEI
The ADI is obtained from a matrix of frequency bins within a

specified frequency range and their respective amplitude values. Then,
the proportion of amplitude values above a certain threshold is

calculated and the Shannon entropy index is applied to these
values, i.e.,

ADI � −∑S

i�1pi lnpi (1)
where pi is the fraction of sound in each i-th frequency band in S
frequency bands. As for AEI, when pi is ready, the Gini index is applied
to the values, yielding

AEI � Gini p1, p2, . . . , ps[ ]( ) (2)
The threshold used for the above two indices is 50 dB below the

peak value by default (Villanueva-Rivera et al., 2011). It is worth
remarking that the peak value (i.e., the strongest time-frequency bin) is
assumed to be dominated by biotic sound in the calculation. However,
the peak value in the spectrogram may correspond to abiotic sound
when SNR decreases to a certain extent, leading to erroneous results of
the proportion of sound occurring in each frequency band when
calculating ADI and AEI.

In order to provide an intuitionistic demonstration associated with
the aforementioned SNR influence, Figures 5A, B present the signal
waveforms under 0 dB and 35 dB SNR conditions, respectively. The
corresponding spectrograms are also shown in Figures 5C, D, in which
each red dot marks the position of the time-frequency bin with the
strongest power.

It can be observed that the position of the time-frequency bin with
the strongest power changed obviously at different SNR conditions.
Specifically, when the SNR was high, the position was located at the
time-frequency bin corresponding to birds (red dot in Figure 5D).
Most of time-frequency bins stronger than the threshold were
associated with biotic sound and can be correctly used for ADI
and AEI computation. In such case, the ADI value was able to
reflect the acoustic diversity of the monitoring area with the AEI
value reporting the acoustic evenness situation. Nonetheless, under the
low SNR condition, the position moved to a noise-dominated bin (red
dot in Figure 5C) since the environmental noise in the low frequency

FIGURE 4
The relationship of four acoustic indices with varying SNR. The points represent the mean and the error-bars represent the standard deviation.
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zone became protruding as compared with relatively weak biotic
sound. This implied that a large number of time-frequency bins
corresponding to low frequency noise were selected for ADI and
AEI calculation in which the number of bins associated with expected
biotic sound considerably decreased at the same time.
Consequently, the fraction values of sound within each frequency
band across all frequency bands were more unbalanced in Eqs. 1, 2,
leading to decreasing ADI and increasing AEI results as is shown in
Figure 4.

3.2.2 BIO
BIO is calculated as the area under the curve defined as the

difference between the sound level within each frequency band and
the minimum sound level, i.e.,

BIO � ∑
N

i�1
Si − Smin( ) × Δf, forΔf � fmax − fmin

N
(3)

where Si is the sound level of the i-th frequency band in dB, Smin is the
minimum value of the sound level among all frequency bands, Δf is the
width of frequency band, and N is the number of frequency bands ranging
from the minimum frequency fmin to maximum frequency fmax.

Theoretically, Smin in Eq. 3 is expected to represent the sound level of
the noise-dominated spectrum. As is shown in Figure 6, the sound level of
the background noise spectrum gradually decreased with increasing
frequency (black points). When the SNR was high, Smin corresponded
to the sound level of the noise spectrum (purple dot) just as expected, and
the difference between Si and Smin only contained biotic components.
However, under the low SNR condition, Smin moved to the frequency
band composed of much weak biotic sound plus noise (green dot),
implying that a large amount of noise components were incorrectly
included in the calculation. Furthermore, it is also worth mentioning that
the value of Si dropped dramatically when the SNR declined (red points in
Figure 6 as compared with blue points), so that the accumulation in Eq. 3
decreased accordingly, which could explain the BIO curve in Figure 4.

3.2.3 ACI
In the ACI calculation, the recording is divided into several

temporal steps. In a single temporal step, the summation of the
differences between temporally adjacent amplitude values is first
computed for each frequency bin and then divided by the total
sum of those amplitude values. The ACI result of each temporal
step is obtained by the accumulation across frequency bins, yielding

FIGURE 5
Waveforms and spectrograms under the two cases in Experiment 2 when calculating ADI and AEI. (A,B) present the signal waveforms under 0 dB and
35 dB SNR conditions, respectively. The corresponding spectrograms are shown in (C,D). Each red dot marks the position of the time-frequency bin with the
strongest power. Note that the amplitude scale of (A) is different from (B).

FIGURE 6
Influencemechanism analysis concerning BIO in Experiment 2. The
red and blue points represent the sound level of each frequency band for
the experimental recording under 0 dB and 35 dB SNR conditions,
respectively. The green and purple dots mark the minimum values
of the sound level in 0 dB and 35 dB SNR conditions, respectively. The
black points denote the sound level of the background noise spectrum,
which was fixed in Experiment 2.
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ACIΔt � ∑
F

f�1

∑
k�1

N−1
I k, f( ) − I k + 1, f( )
∣∣∣∣

∣∣∣∣

∑
k�1

N

I k, f( )
, 1≤Δt≤M (4)

where I(k, f) is the intensity registered in a single time-frequency bin
with f and k indexing frequency bins and temporal frames, Δt denotes
temporal steps, F is the number of frequency bins, N is the number of
time frames in each temporal step, and M represents the number of
temporal steps in the entire recording. If more than one temporal step
is specified, the values obtained for each step are accumulated,
resulting in the final ACI value as

ACItot � ∑
M

Δt�1ACIΔt (5)

Conventionally, biological sound and noise are uncorrelated. The
intensity registered in each time-frequency bin can be considered as a
composition of two parts, i.e., biotic components and noise components.
In this way, the sum of absolute difference, i.e., the numerator in Eq. 4, can
be approximately considered to be composed of the biological intensity
difference and the noise intensity difference, while the sum of intensity,
i.e., the denominator in Eq. 4, can be regarded as the total sum of
biological intensity and noise intensity. Note that when the background
noise is stationary during the recording, the total difference between two
adjacent values of noise intensity is eliminated theoretically. Meanwhile,
the sum of the noise intensity is unchanged. However, the biotic sound
intensity reduces with SNR decreasing (e.g., vocalizing organisms flying
away from the recorder), implying that both the total difference of biotic
sound intensity and the total sum of biotic sound intensity decrease
accordingly.

In order to further demonstrate the influence mechanism
associated with varying SNR on ACI, Figures 7A, B present the
values of numerator and denominator at each frequency bin within
a certain temporal step under 0 dB and 35 dB SNR conditions,

respectively. The corresponding quotient at each frequency bin in
Eq. 4 is also shown in Figure 7C, where the black and purple points
denote the values in 0 dB and 35 dB SNR conditions, respectively.

It can be observed that when the SNR declined the sum of absolute
difference in intensities decreased faster than the sum of intensities in
almost all frequency bins (black points in Figure 7C as compared with
purple points), leading to decreasing ACI value after the accumulation
of all quotients along frequency bins in Eq. 4. This could also explain
the ACI curve shown in Figure 4.

3.3 Future work

To date, many scholars have mentioned in their works that the AIs
values were influenced by geophysical noise and anthropogenic noise
(Depraetere et al., 2012; Fairbrass et al., 2017). In general, two simple
ways have been employed to reduce the impact when using AIs. One is
to use filters to remove low frequency sound from recordings
(Depraetere et al., 2012; Towsey et al., 2014a; Pieretti et al., 2015;
Bradfer-Lawrence et al., 2020), which could be problematic due to the
empirically determined cutoff frequency. The other is to manually or
semi-automatically identify and remove the recordings containing
biasing sounds (Aide et al., 2013; Gasc et al., 2013b; Rodriguez et al.,
2014; Gagne et al., 2022), which could be impractical considering the
large volumes of data typically generated by ecoacoustic monitoring
(Towsey et al., 2014b).

In practice, since both the background noise level and vocalization
intensity may change in the recordings, variation in SNR is almost
inevitable. For instance, given a stationary background noise during
the monitoring period, vocalizing organisms may move away from the
recorder, resulting in decreasing SNR. Alternatively, although
vocalizations are produced with fixed intensity as well as the
distance to the recorder, varying background noise level also leads

FIGURE 7
Influence mechanism analysis on ACI in Experiment 2. (A,B) present the values of the numerator and denominator at each frequency bin within a certain
temporal step under 0 dB and 35 dB SNR conditions, respectively. The red bars represent the total differences in intensities at each frequency bin while the
blue bars represent the total sum of intensities at each frequency bin. The corresponding quotient at each frequency bin is shown in (C), where the black and
purple points denote the values in 0 dB and 35 dB SNR conditions, respectively.
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to changes in SNR. According to experimental results in Subsection
3.1 that three indices (ADI, ACI, and BIO) decreased while the trend
of AEI was in the opposite direction as SNR declined, it should be
emphasized that in the context of rapid biodiversity assessment (RBA)
that popularly relies on AIs, variation in SNR should be also taken into
account when interpreting calculated AIs’ results.

In this work, we analyzed the influence mechanism of SNR on four
commonly used AIs. The results presented in the previous section
enlightened us with preliminary ideas to improve the robustness of
certain AIs. For instance, for ADI and AEI, a fixed detection threshold
is commonly used (−50 dBFS as default), which is inappropriate as
SNR decreases. A possible improvement may be to use a floating
threshold that is adaptive to the noise level to reduce the impact of
noise, leading to a more robust detection of biotic sounds. When it
comes to BIO, the ambient noise level in each frequency band could be
estimated and then can be used to replace Smin in Eq. 3.

Moreover, another idea may be to incorporate microphone array
signal processing technique. Theoretically, a microphone array
consists of a set of microphones positioned in a way that the
spatial information is well captured. Thus, conventional and/or
adaptive beamforming methods for spatial filtering in the context
of signal enhancement can be employed when the array and AIs are
considered in noisy environments. For instance, when the geophysical
noise (and/or anthropogenic noise) and biotic sounds concurrently
come from different directions, this technique can attenuate noise
while keeping the desired signal (i.e., biotic sounds) undistorted, which
could be particularly useful in urban areas.

4 Conclusion

Autonomous sound recordings and acoustic indices are regarded as
time-efficient assessment tools in the biodiversity conservation context. In
this work, four indices (ADI, ACI, AEI, and BIO) were investigated
concerning the potential associations between acoustic indices and SNR
conditions. Controlled computational experiments were conducted using
field recordings collected in a suburban park in Xuzhou, China, in which
bird vocalizations were employed as typical biotic sounds. Experimental
results suggested that, in addition to different sound unit shapes,
variations in SNR also contributed to the differences in AIs values.
Furthermore, we analyzed the corresponding influence mechanism of

SNR on AIs, based on which we also provided some preliminary ideas for
further improvement of AIs’ robustness.
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