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Seismo-induced Thermal infrared (TIR) anomalies has been proposed as a significant
precursor of earthquakes. Several methods have been proposed to detect Thermal
infrared anomalies that may be associated with earthquakes. However, there is no
comparison of the influence for Thermal infrared extraction methods with a long
time statistical analysis. To quantify the effects of various techniques used in Thermal
infrared anomaly extraction, in this paper, we offer a complete workflow of their
comparative impacts. This study was divided into three parts: anomaly detection,
statistical analysis, and tectonic factor research. For anomaly detection, daily
continuous nighttime surface temperature (ConLST) data was obtained from the
Google Earth Engine (GEE) platform, and each different anomaly detection method
was used to detect Thermal infrared outliers in the Sichuan region (27°-37°N, 97°-
107°E). During statistical analysis, The heated core model was applied to explore
Thermal infrared anomalies which is to filter anomalies unrelated to earthquakes by
setting time-space-intensity conditions. The 3D error diagram offers scores to
assume the best parameter set using training-test-validation steps. In the final
part, we considered information on stresses, active faults, and seismic zones to
determine the optimal parameters for extracting the Thermal infrared anomalies. The
Kalman filter method detected the highest seismic anomaly frequency without
considerating the heating core condition. The Autoencoder and Isolation Forest
methods obtain the optimal alert type and parameter set to determine if the anomaly
is likely earthquake-related. The RST method performs optimally in the final part of
the workflow when it considers physical factors such as active faults, seismic zones,
and stresses. However, The six methods we have chosen are not sufficient to contain
the entire Thermal infrared anomaly extraction. The consideration of tectonic factors
in the research remains poorly developed, as statistical methods were not employed
to explore the role of constructive factors. Nevertheless, it is a significant factor in
comparing anomaly extraction methods and precursor studies.
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1 Introduction

Earthquakes often occur with a rapid release of energy from
Earth’s crust, resulting in enormous casualties and damages (Jin
et al., 2019). It is a very complex and broad topic, related to
motions of the Earth’s surface mass and interior at various scales,
as well as microscopic processes, such as the generation of electric
charge and chemical reactions (Jin et al., 2006; Jin et al., 2007; Jin et al.,
2010; Cambiotti et al., 2011). From the time of ancient Greek
civilization to the present, information on earthquake precursors,
including tilt, global positioning system (GPS) data, hydrological
data, the temperature variations and chemical substances in
groundwater, electromagnetic fluctuations, and emissions of radon
and other ionized gases, have been collected in abundance (Molchanov
et al., 1992; Jin et al., 2006; Hayakawa et al., 2011; Hayakawa et al.,
2013, 11; Hayakawa, 2018). Therefore, strengthening the monitoring
of seismic activity using different techniques is necessary (Jiao et al.,
2018). With the evolution of technology, many multidisciplinary
earthquake monitoring systems have been constructed, providing
fundamental infrastructure for studying and using pre-earthquake
phenomena.

Remote sensing techniques that contribute to numerous aspects of
earthquake risk prediction are widely deployed (Geiß and
Taubenböck, 2013). Satellite remote sensing technology has unique
advantages over traditional, ground-based monitoring methods.
Remote sensing data offer a variety of geophysical and geochemical
parameters, providing abundant data for pre-seismic anomaly
detection (Bakun et al., 2005; Jiao and Shan, 2022). Moreover,

remote sensing data are characterized by round-the-clock
availability, long timescale, multi-resolution and convenient
acquisition. This has led to widespread use in volcano monitoring,
flood forecasting, landslide simulation, and precursor prediction.

Since the last decade, themal infrared (TIR) anomalies have been
regarded as observable precursors before earthquakes by instruments
on board satellites (Hassanien and Darwish, 2021). Many geophysical
parameters, such as top-of-atmosphere (TOA) brightness temperature
(BT), outgoing longwave radiation (OLR), surface temperature, and
latent heat flux, that reflect thermal radiation information using
satellite observations and products were employed (Ouzounov
et al., 2006; Ouzounov et al., 2007). The precursors we focus on in
this paper are land surface temperature (LST) anomalies, using
satellite observations before earthquakes. Although many LST
products have been used in earthquake prediction (e.g., Terra/Aqua
moderate-resolution imaging spectroradiometer (MODIS), national
oceanic and atmospheric administration-advanced very-high-
resolution radiometer (NOAA-AVHRR) and Landsat), MODIS LST
data are the most products used till nowwith spatial resolution of 1 km
and temporal resolution of daily scales (Wan, 2014, 6; Bhardwaj et al.,
2017). Researchers have conducted several long-term statistical studies
to demonstrate the correlation between TIR anomalies and
earthquakes (Zhang and Meng, 2018; Genzano et al., 2021). Once
the statistical correlation between earthquake precursors and
earthquakes is determined, the next step is to elucidate the
mechanism of the generation of pre-earthquake signals. In addition
to TIR anomalies, other researchers found other quantities that are
statistically related to the earthquake such as ionospheric anomalies

FIGURE 1
(A) is the location of the study area and the distribution of active faults, (B) illustrates that the study area is at the junction of Yunnan, Sichuan and Gansu in
China, and (C) is the magnitude 3–8 earthquakes that have occurred in the study area in 2010-2020.
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(Parrot and Li, 2018). As we all know, the relationships regarding TIR
anomalies and earthquake mechanisms are still not completely
understood. Therefore, in this paper, we attempted to demonstrate
the relationship between TIR anomalies and earthquakes from a
statistical approach.

To identify the TIR anomalies that may relate to earthquakes, many
differentmethods analyzing remote sensing products (LST data) have been
used. Thesemethods are classified and discussed as follows. First, statistical
or mathematical methods are, such as the mean, median, interquartile
range (IQR), Kalman filter, and z-score often used to extract TIR
anomalies. (Blackett et al., 2011; Qin et al., 2012; Zoran, 2012). The
robust satellite techniques (RST) approach has been widely implemented
for environmental problems such as seismic anomaly detection, volcano
monitoring, and oil spill events (Zhang and Meng, 2018; Eleftheriou et al.,
2021; Filizzola et al., 2022; Genzano et al., 2015; Tramutoli et al., 2018). The
RST approach was applied to define and discriminate possible pre-seismic
TIR anomalies from other signal variations commonly related to known or
unknown natural/observational factors that can be responsible for the”
false alarms” proliferation (Wang et al., 2015). Wavelet analysis, which has
the features of multi-resolution analysis in space-time, is one of the most
popular methods for detecting seismic anomalies. With the rapid
development of artificial intelligence, machine learning methods such
as artificial neural network (ANN), particle swarm optimization (PSO),
support vector machine (SVM), and adaptive network based fuzzy
inference system (ANFIS) are being increasingly used for detection of
TIR anomalies that is possibly related to earthquakes. Overall, the machine
learning method is a strong tool for both earthquake prediction and
precursor detection. However, there is a lack of evaluation criteria for
seismic thermal anomaly extraction methods based on the extensive
practice of numerous extraction methods.

In this study, we constructed a set of thermal anomaly extraction
evaluation systems to compare different methods to extract thermal
anomalies that may be associated with earthquakes, All the developed
systems can be classified as coarse-graining problems. Section 2
introduced the data and the method used in this study. Then,
Section 3 presents the results. Finally, we present the discussion
and conclusions from the study in Sections 4 and Sections 5,
respectively.

2 Materials and methods

2.1 Study area

The demonstration area (Figure 1B) is located at the junction of
the Qinghai, Gansu, Sichuan, and Yunnan provinces. The area is

delimited by 27°–37°N,97°-107°E, at the southeastern margin of the
Qinghai–Tibetan plateau (Figure 1A). A series of faults are located in
the region, among which the most prominent is the sinistral
Xianshuihe–Anninghe–Zemuhe–Xiaojiang fault system (Yuan,
2008). The majority of faults in the study area trend northwest,
north-south, and northeast. A number of strong earthquakes
(Figure 1C) have occurred in the past, including the 12 May
2008 Ms 8.0 Wenchuan earthquake, the 3 August 2014 Ms
6.6 Ludian earthquake, and the 1 June 2022 Ms 6.1 Lushan
earthquake (Chen et al., 2016, 5; Wang and Shen, 2020). The local
deformation rates in the region of the sinistral shear across the
southeast section of the Xianshuihe fault were about 9–10 mm/yr.
Across the Anninghe and Zemuhe sections of the fault system
deformation rate was approximatively 10 mm/yr (Wang et al.,
2015).

2.2 Data and preprocess

2.2.1 Earthquake catalog and decluster
The earthquakes in our study extended geographically between 27°

and 37°N and 97° to 107°E, and temporally between 2010 and 2020.
The initial data we used were downloaded from the China Earthquake
Networks Center (http://data.earthquake.cn). Usually, seismic studies
use the magnitude-frequency distribution (MFD) to estimate
earthquake rates and b-values according to the Gutenberg-Richter
law (Gutenberg and Richter, 1949). Therefore, we performed a
fundamental analysis of the above data, which should be identified
using the “declustering process” for foreshocks, aftershocks, and
seismic swarms.

Reasenberg’s algorithm determines mainshocks and aftershocks
by constructing the time-space domain of the seismic sequence. The
algorithm assumes an interaction zone centered on each earthquake,
which is dynamically modeled with spatial (Rfact) and temporal (τmax)
parameters (Reasenberg, 1985, 1969–1982). Given t>0, the probability
of observing n earthquakes in the time interval [t, t+C] is given by Eq. 1
(Talbi et al., 2013)

P ξ t, t + τ[ ]( ) � n � e−λ t( )τ λ t( )τ[ ]n
n!

(1)
λ t( ) follows theOmoril law: λ t( ) � k t + c( )−p (2)

Where Rfact is proportional to the source dimension, τmax is
determined using a heterogeneous Poisson process for aftershocks,
and ξ is the process that counts the number of aftershocks occurring in
the time interval [t, t+τ]. where k, c, and p are positive constants
representing the Omori law parameters.

2.2.2 Satellite data and pretreatment
We used the datasets required for investigation from the GEE,

including the Moderate Resolution Imaging Spectroradiometer
(MODIS), land surface temperature (LST and National Centers for
Environmental Prediction (NCEP) Climate Forecast System Version 2
(CFSv2)) (Saha et al., 2011). Since there were missing values and cloud
masks in the MODIS LST data, We used the CFSv2 coupled with
temporal Fourier analysis (TFA) (Shiff et al., 2021). We obtained a
continuous data set for our study to extract thermal infrared anomalies
(TIR), which we called conLST on the GEE platform. Therefore, the
daily nighttime conLST data for 2010–2020 used for our research were
derived with 1 km spatial resolution.

TABLE 1 The thresholds of the different methods.

Methods Threshold(θ)

RST 2,2.5,3,3.5,4,4.5,5

IQR 2,2.5,3,3.5,4,4.5,5

Wavelet transform 2,2.5,3,3.5,4,4.5,5

Kalman filter 2,2.5,3,3.5,4,4.5,5

Isolation forest 0.5,0.6,0.7,0.8,0.9,0.95

Autoencoder 0.02,0.025,0.03,0.035,0.04,0.045,0.05
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The spatial resolution of the data determines the speed of the
calculations and result is an issues that must be considered.
Thereforce, in our study, we downscaled the spatial resolution
from the initial spatial resolution of the ConLST data 1–50 km,
according to a study of the effects of data at different spatial scales
in seismic thermal anomalies by (Zhan et al., 2022).

2.3 Methods

We introduced coarse-graining into the TIR anomaly study to
express the research process, was initially similar to adjusting the
objective working distance in observing cells with a microscope. In
this paper, we proposed a group of relative concepts, including coarse
thermal infrared anomaly (CTIR) and refined thermal anomaly infrared
(RTIR), which aimed to distinguish between anomalies obtained by
anomaly detection techniques on time-series satellite data and thermal
anomalies that may be linked to earthquakes. The method section
includes (CTIR) extraction, RTIR detection, and evaluative criteria,
looking at the advantages and disadvantages of the different methods.

2.3.1 CTIR detection methods
Six anomaly detection methods were selected, including robust

satellite techniques and interquartile range in statistical methods,
wavelet transform in signal analysis, Kalman filter in filtering
techniques, isolated forest in machine learning, and autoencoder in
deep learning. Some of these have been widely used for seismic thermal
anomaly extraction, while others are better methods for anomaly
extraction techniques. In Table 1, the thresholds for various methods
to determine CTIR and the choice of foundation are shown.

2.3.1.1 Robust satellite techniques (RST)
The RST method was proposed by Tramutoli et al., 2013, and

is based on satellite data rather than requiring ancillary data.

Therefore, they can be entirely automated for operational real-time
monitoring purposes (Eleftheriou et al., 2016). This method is based
on multi-temporal analysis of a historical dataset of satellite
observations acquired under similar observational conditions
(Panda et al., 2007).

Because the RST was applied to thermal monitoring of
earthquake-prone areas, TIR fluctuations were identified using the
robust estimator of TIR anomalies (RETIRA). With different data
sources and application environments, the index was eventually used
as an absolutely local index of change in the environment (ALICE),
which was computed as follows:

⊗ΔT x, y, t( ) � ΔT x, y, t( ) − μ△T x, y( )
σ△T x, y( ) (3)

Where x,y represent the coordinates of the center of the ground
resolution unit; and t is the time of the image, t ∈ τ, where t defines the
homogeneous domain of multi-annual satellite images acquired at the
same time of day and the same period of the year (month).
ΔT(x, y, t) � T(x, y, t) − T(t) is the difference between the on-time
value of the TIR brightness temperature T (x,y,t) measured at locations
x, y, at acquisition time t, and its spatially calculated average value T(t)
over the study area. μ△T(x, y) is the time average (t ∈ τ) of ΔT (x,y,t)
calculated on the cloud-free records of the selected dataset for
locations x, y. σ△T(x, y) is the standard deviation value of ΔT
(x,y,t) for image positions x, y (t ∈ τ).

2.3.1.2 Interquartile range (IQR)
Interquartile range (IQR) is a well-known method for anomaly

detection, In descriptive statistics that represents a set of data
arranged in order. Regarding seismic anomaly extraction, some
researchers used the upper quartile and lower quartile to
distinguish seismic anomalies from data (Liu et al., 2004;
Akhoondzadeh, 2013). This method can be calculated using the
following equations:

FIGURE 2
Graph example illustrating n trees of an isolate forest. It consists of two steps: step 1. isolation operations of data points using randomly constructed
binary search tree; step 2. binary tree with the isolated point. The average path in red is the shortest, the earliest to be distinguished and is probably the outlier
point.
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xupper � M + θ × IQR (4)
xlower � M − θ × IQR (5)
xlower < x<xupper (6)

x, xupper, xlower, M, IQR and θ are parameters, higher bound, lower
bound, median value, interquartile range and threshold for exceptions,
respectively. The data parameters for the θ values are in Table 1.

2.3.1.3 Wavelet transformation (WT)
The wavelet transform is a representation of the function time

domain (spatial domain) and frequency (Gao et al., 2020). This was
used as a data-mining tool to detect seismic anomalies with satellite
data. Xiong et al. (2009) assessed several wavelet methods and
selected two real continuous Daubechies Wavelets and Gaussian
Derivative Wavelets (Xiong et al., 2009). In this study, we used the
following to calculate conLST times series of earthquakes anomalies
with respect to the temporal background field. Due to the variability
of our data, the Daubechies 8D wavelet was applied to identify
anomalies in the data. The low-frequency seasonal components and
high-frequency noise were eliminated using the wavelet transform
components.

WT(a, b) � f(t)φ(t) � 1��
a

√ ∫+∞

−∞
f(t)φ( t − b

a
)dt (7)

Where, the a is the scaling factor, b is the location parameter, f is the
complex conjugate of continuous wavelet function and f (t) is the time
series under analysis.

2.3.1.4 Kalman filter (KF)
The Kalman filter is a recursive solution to optimize the described

systems in the state space. This is a collection of mathematics
equations to optimize prediction equations using an estimation of
state variables and minimization of error covariance (Saradjian and
Akhoondzadeh, 2011). Multiple iterations of this calculation may
obtain the best estimate. Assuming the state equation of the
dispersive Kalman filter is as follows

xk+1 � ϕk+1xk + Fkμk (8)
Yk � HkXk + vk (9)

Where Xk+1 is the state vector, Φk+1 is the transfer matrix, FK is the
system driver matrix, Yk is the observation vector, Hk is the observed
coefficient vector, ]k is the noise of observation, and μk is the noise-of-
state sequence, the mean value of which is 0

2.3.1.5 Isolation forest (IF)
Isolation Forest proposed different types of model-based

method that explicitly isolates anomalies rather than profiling
normal instances. It has been widely used for anomaly
extraction by (Liu et al., 2008). The method builds an ensemble
of iTrees for a given dataset; anomalies are the instances with short
average path lengths on the iTrees. Figure 2 provides a graph
illustrating an example of the structure of n trees in the Isolation
Forest.

In the article, isolation forests were used to extract CTIR, although
they were seldom applied in earthquake precursor studies. The first

FIGURE 3
Graph example illustrating the encoder–decoder architecture of auto-encoder. First the input passes through the encoder, which is a fully-connected
ANN, to produce the code. The decoder, which has the similar ANN structure, then produces the output only using the code. Final calculation of the original
and reconstructed image as anomalies.
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(training) stage builds isolation trees using subsamples of the training
set. The second (testing) stage passes the test instances through
isolation trees to obtain an anomaly score for each instance.

Given a sample set of m instances, isolation forests gives the
average path length of unsuccessful searches in Binary Search Tree as
(Liu et al., 2012):

c m( ) � 2H m − 1( ) − 2 m − 1( )
m

(10)

where n is the testing data size,m is the size of the sample set and H
is the harmonic number, which can be estimated by H(i)
=ln(i)+gamma, where gamma =.5772156649 is the Euler-
Mascheroni constant.

Then, the anomaly scores s∈[0,1] of a test pixel x are defined as
follows:

s x,m( ) � 2−
E h x( )( )
c m( ) (11)

Where E (h(x)) is the average value of h(x) from a collection of iTrees.
It is interesting to note that for any given instance x:if s is close to
1 then x is very likely to be an anomaly.if s is smaller than .5 then x is
likely to be a normal value.if for a given sample all instances are
assigned an anomaly score of around .5, then it is safe to assume that
the sample does not have any anomaly.

2.3.1.6 Autoencoder (AE)
Autoencoder is an unsupervised neural network that uses a neural

network to generate a low-dimensional representation of a high-
dimensional input. Autoencoder contains two main parts, encoder,
and decoder (as shown in Figure 3). The encoder is used to discover a
compressed representation of the given data, and the decoder is used
to reconstruct the original input. During training, the decoder forces
the autoencoder to select the most informative features, which are
eventually saved in the compressed representation. The final

compressed representation is in the middle coder layer. The
difference between the original input vector x and the
reconstructed vector z is called the reconstruction error ‖x − z‖
(Hinton and Salakhutdinov, 2006). The autoencoder updates the
weight of the network by minimizing the reconstruction error L
(Bao et al., 2021):

h � σ Wxhx + bxh( ) (12)
z � σ Whxh + bhx( ) (13)

x − z‖ ‖ (14)
The encoder in Eq. 12 maps the input vector x to the

hidden representation h using a non-linear affine mapping. The
decoder in Eq. 13 maps the hidden representation h back to the
original input space as a reconstruction by the same transformation
as the encoder. The difference between the original input vector x
and the reconstructed z is known as the reconstruction error, as in
Eq. 14.

2.3.2 RTIR detection methods
We obtained CTIR (i,α) from different methods, as shown in

Section 2.3.1, to further obtain RTIR (i,α), the thermal anomaly
possibly associated with the earthquake. In this section, we used
the heating core proposed by (Zhang et al., 2021). To obtain RTIR
(i,α). The model can remove noise that is unrelated to the seismic
activity. We set the following limits: a series of time-space intensity
(TSI) qualifications (Table 3), including the temporal persistence rule,
spatial coverage rule, spatial persistence rule, and intensity persistence
rule. All the CTIRs will be filtered with the above four rules, and the
thermal infrared anomalies patches (CTIRs) are the remaining filtered
results of CTIR (i,α), CTIR (i,α+1), and CTIR (i+1, β). CTIRs will be
merged into TIR anomalies after the above rules are satisfied. The
above extraction process depends on the parameters (θ, Areamin,
Areamax, iou, T, D, M).

TABLE 2 The rules include rules for heating core model and rules for determining whether it is related to earthquakes.

Types Conditions Equation Notes

Heat core rules Temporal
persistence rule

∃β ∈ R, CTIRi,α ∩ CTIRi+1,β ≠∅ TIR anomalies should last for at least 2 days in the same
area

Spatial coverage area min ≤AREA(CTIRi,α)≤ area max AREA (CTRi) is the area of DTRi,∝

Spatial
persistence

AREA(CTIRi,α ∩ CTIRi+1,β)≥ μ*Min {AREA(CTIRi,β), AREA(CTIRi+1,β) Min{A, B} is the minimum of the value A and B. µ a is the
threshold factor (0, 1)

Intensity
persistence rule

CTIRi,α ∩ CTIRi+1,β � △i,α
i+1,β ≠∅

AREA CTIRi,α( )>AREA CTIRi+1,β( )∑
x,y( )∈△

i + 1, βi,α conLST x, y, i( ) − θ{ }≤
∑

x,y( )∈△
i + 1, βi,α conLST x, y, i + 1( ) − θ{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
OR

CTIRi,α ∩ CTIRi+1,β � △i,α
i+1,β ≠∅

AREA CTIRi,α( )≤AREA CTIRi+1,β( )∑
x,y( )∈△

i + 1, βi,α conLST x, y, i( ) − θ{ }≤
∑

x,y( )∈△
i + 1, βi,α conLST x, y, i + 1( ) − θ{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

As the stress increases or decreases, the thermal anomaly
strength of the heated core and the range of thermal
anomaly effects should also increase or decrease

In this section, we introduce the iou factor to calculations

Area(CTIRi,α ∩ CTIRi+1,β)
Area(CTIRi,α ∪ CTIRi+1,β)> iou

The
correspondence
rules

Temporal rule t − T last(RTIRn)≤T

Distance rule DEuclidean(P,Q) � max(|Pi − Qi|) We used Euclidean distance in this part

Magnitude rule m≥M M is a magnitude threshold
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Next, we set a series of rules to determine the correspondence
between earthquakes and RTIR anomalies in Table 2, including the
temporal, distance, and magnitude rules. In the distance rule, we used
the Euclidean distance as the shortest distance between the EQ (x, y, t,
m), which is an event occurring at (x, y) on day t with magnitude m.
RTIRn is less than or equal to D. To set parameters that consider
different geological, meteorological, and environmental backgrounds.
A training-test-validate approach was used to determine the best
parameters for extracting TIR anomalies associated with
earthquakes. We can obtain the optimal set of parameters and
perform outlier extraction using the above parameters.

2.3.3 3D error diagram
In this part, we used P1, P2, and loss parameters to evaluate

the effectiveness of different methods in CTIR anomalies in
training–test–validation sets. P1 is the p-value for the false negative
rate (FNR)-based alarms and P2 is the p-value for the positive
predictive value (PPV)-based alarms. The significance level is a range
of estimates for an unknown parameter, the 95% confidence level is the
most commonly used to set. Therefore, the confidence interval for both
P1 and P2 was set to .05 in this study, and loss (Eq. 15) is the evaluation
score given by the 3D error diagram (Zhang et al., 2023; Zhang et al., 2021).

Loss �
������������������������������������
w1 p STCW2 + w2 pFNR2 + w3 p 1 − PPV( )2

√
(15)

The w2 and w3 are weights measuring the relative costs of the y
and z-axis. In this study, we set w1=w2 =w3 = 1. STCW is a space-time
correlation window corrected by the Molchan diagram, weighted by
the relative intensity (RI) index (Zechar and Jordan, 2008).

FNR � FN/ TP2 + FN( ) (16)
TP2 is the total number of earthquakes that correspond to RTIRs,

FN is the total number of earthquakes that do not correspond to
RTIRs.

PPV � TP1/ TP1 + FP( ) (17)
FDR � 1 − PPV (18)

TP1 is the total number of RTIRs that correspond to earthquakes,
FP is the total number of RTIRs that do not correspond to earthquakes.

We used the training–testing–validating step to evaluate the best
parameters from the 56,700 different vectors (Table 3). This can avoid
mistaking normal seasonal warming for TIR anomalies to some extent.
In the test step, the RTIRs data and earthquake catalog data from

2010.01.01 to 2012.12.13 will be used as the training dataset. At the
same time, we performed the model on the validation set, which
contains RTIRs data and earthquake catalog data from 2013.01.01 to
2016.12.31 in the test step and the data from 2017.01.01 to
2020.12.31 as the test dataset, called the validation step. The values
of P1,P2, Loss are given in the above steps.

We obtained the values of P1 and P2 for each group of
parameters. We determined a threshold of .05 for P1 and
P2 based on the method of confidence levels in statistics. The
values of P1 and P2 have divided the given alerts into four classes
based on the results in the training-test-validation step: Type I:
P1≤.05 and P2≤.05, Type II: P1>.05 and P2≤.05, Type III:
P1≤.05 and P2>.05, and Type IV: P1 > .05 and P2>.05. Type I,
II, and III alarms effectively predict earthquakes, although type II
and III are not optimal. Type IV alarms are not effective at
predicting earthquakes.

3 Results

3.1 Declustering result

The results of the original earthquake catalog and declustering
data, analysis using R, are shown in Figure 4A, original; b,
declustering). According to the earthquake catalog description,
there were 1,140 seismic events in the region, and 899 events
remained in the catalog after declustering, including seven with
Ms>6. This produced a plot consisting of six subplots: Figures 4A,
B show the spatial distribution of events, while Figures 4D–F, J–L plots
show how the latitude (Figures 4D, J), longitude (Figures 4E, K) and
magnitude of events change over time (Figures 4F, L), with two plots
visually inspecting the completeness and time stationarity of the
catalog. Figures 4C, I allows for cumulative magnitude to denote
the number of events in the catalog with a magnitude greater than or
equal to m (we selected m=3 in the article). The plot (Figures 4B, H) of
log10(Nm) versus m shows the linear relation expected from the
Gutenberg-Richter law. The plot of Nt versus t is linear during the
considered study period. Despite this, a non-linear trend is evident
over the time span 2010–01-01–2021-01-01 (4,018 days), probably
due to the Mw=6.7 20 April 2013 Lushan earthquake occurrance. The
Gutenberg–Richter law states that log10(Nm) = a—bm for some a and
b, which is equivalent to assuming that m follows an exponential
distribution (Roeloffs, 1988; Pulinets 2006).

TABLE 3 Parameters to extract DTIRs and determine the correspondence between DTIRs and earthquakes.

Parameter Value Description

θ The θ for the different methods is shown in Table 1 The upper threshold for identifying the anomalies

areamin 3,6,9 (50 km × 50 km) The minimum area of TIR anomalies

areamax 20,30,40 (50 km × 50 km) The minimum area of TIR anomalies

iou 0.1,0.2,0.3,0.4,0.5 Iou is a stricter factor iou (intersection over union) todetermine the threshold of spatial persistence rule

μ 0.6 A factor to help us determine the area of “heating core”

T 10,20,30,40,50,60 (day) Duration of the anomaly

D 2,4,6,8,10 (50 km) The Euclidean distance between the earthquake and the anomaly

M 3,3.5,4,4.5,5,5.5 M is the minimum threshold for a new seismic catalogue
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3.2 Result for the type of alarms

We used six different methods to extract CTIRs in Section 2.3.1
without filtering by the rules (Table 2) that effectively predict
earthquakes. First, we used alarm types to evaluate the
advantages and disadvantages of the different methods, which
was carried out by calculating the alarm types generated by
56,700 sets of parameters during the training–test–validation
process.

In the training steps, we focused on the number of type alarms
generated in the 56,700 parameters set. The number of alerts of each
type was calculated as a ratio of the total alert data volume. The results
indicate that (Figure 5A) the autoencoder and isolation forest methods
produced more type-Ⅰ alarms than the other methods, and the Kalman
filter method was the worst performer. Among the type Ⅰ alarms,
the significant percentages were AE and IF, accounting for 58.49%
and 16.37% of the total. Although type II and type III alarms
are unlike type I alarms, which are effective for predicting

FIGURE 4
(A) is the original seismic catalog, (B) is the de-clustering seismic catalog. Location of epicenters (A, G), logarithm of frequency by magnitude (B, H),
cumulative frequency over time (C, I) and latitude, longitude and magnitude against time (D–F), (J–L) of 1140 earthquakes with magnitude greater than or
equal to 3 occurred between 2010-01-01 and 2021-01-01 in Sichuan and its vicinity (27◦–37◦N and 97◦–107◦E), extracted from the China Earthquake
Networks Center (http://data.earthquake.cn). The plots are created by R.
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earthquakes from the FNR and PPV perspective, they are still
counted and analyzed. Therefore, other alert types were given in
proportion to the ones generated by the above methods
(Figure 5A). Below we showed the number of alerts with type Ⅰ:
AE>IF> IQR>RST>KF>WT.

To test the effect of the 56,700 sets of parameters obtained in the
training step, we filtered the above parameters in CTIRs and
earthquake catalogs from 2013 to 2016 with the heat core. The
plots (Figure 5B) were also presented below regarding the type of
alert. In test step results, the AE and IF methods, which generated the
most alerts, remained optimal. Among the type Ⅰ alarms, the
significant percentages were AE and IF, accounting for 53.6% and
16.02% of the total. Below, we give the number of alerts for the type Ⅰ
method from major to minor: AE>IF>WT>IQR>RST>KF.

We obtained the alert types corresponding to 56,700 sets of
parameters through a training–test steps, which led us to explore
the strength of each method. However, in the paper, we should add
validation step to explore the impact of the method. In terms of the
type Ⅰ alarm, the proportion of the number of alarms for AE are
72.14%. Below, we provide the number of alerts for the type Ⅰ method
from greater to lesser: AE>IF> WT> IQR>RST>KF (Figure 5C).
Overall, the AE and IF methods generated more data for type Ⅰ
alerts in the training–test–validation steps. In the following, we will
further determine the parameters of each method corresponding to
type Ⅰ alarms and obtain the optimal parameters for each method.

3.3 Result of optimal parameters

Each parameter produces P1 and P2 values at each step, so three
P1 and P2 values should be available for each parameter. In Section
3.2, we obtained the parameters of type Ⅰ alarms (P1≤.05,P2≤.05) in
each method’s training–test–validation steps. To further evaluate the
various methods for refining the extraction of infrared thermal (RTIR)
anomalies, the optimal parameters of each method were searched.
(trainp1 ∩ trainp2) are parameters of type Ⅰ alarms in the training step;
(testp1 ∩ testp2) are parameters of type Ⅰ alarms in the test step;
(validationp1 ∩ validationp2) are parameters of type Ⅰ alarms in the
validation step. We classified type Ⅰ alerts (P1≤.05,P2≤.05) parameter
sets into three categories according to the values of P1, P2, and loss in

the training–test–validation stages D1 (D1 � (trainp1 ∩
trainp2) ∩ (testp1 ∩ testp2) ∩ (validationp1 ∩ validationp2) ≠∅)
represents parameters that passed the significance tests of FNR and
FDR in the training–test–validation steps D2
(D2 � (trainp1 ∩ trainp2) ∩ (testp1 ∩ testp2) ≠∅) and D3
(D3 � (trainp1 ∩ trainp2) ∩ (testp1 ∩ testp2) � ∅) represent the
parameter set intersection in the training-test, respectively, while
no parameters produced intersection in the three steps.

In order to distinguish between the three types and visualisation, we
labeled the correspondingD1,D2, D3with the red, yellow and blue signs
presented in Figure 6. Loss is the weighted sum of FDR, FNR and
STCW, the lower the Loss is the better the alarms are. Only Loss values
that pass the P1 and P2 tests are significant, D1 corresponds to three
steps of Loss values (Losstrain, Losstest, Lossvalidation), D2 has two Loss
values (Losstrain, Losstest) and D3 has one Loss value (Losstrain).
Obviously, the corresponding Loss values are generated in the
training-test-valiadtion phase. The Lossm is the mean value of the
above three session loss value. Finding the optimal set (θ, Areamin,
Areamax, iou, T, D,M) of parameters is determined by the alert types and
Loss values we have described above. Only the parameters of AE and IF
methods resulted in D1, where it passed significance in the
training–test–validation steps for both P1, P2. In terms of the
autoencoder (Figure 6A), the symbol marked in red is the result
with the lowest Lossm=.754. The best parameter set of D1 (θ=.015,
Areamax=30, Areamin=9, iou=.2, T=10, D=10, M=3) was tested in test
and validation steps. The result of the next steps (in test step: PPV =
72.4%, FNR = 44.4%, STCW =45.1%, P1= 9*10−9 and P2 = 2*10−9, in
validation step: PPV= 67.6%, FNR= 50.9%, STCW=45.1%, P1= .00602,
and P2 = .00115) indicates that these alarms are type I alarms. The
lowest Lossm (.703) is presented in Figure 6B, with a red point showing
the isolation forest. The optimal parameters for D1 consist of (θ=.6,
Areamax=20, Areamin=9, iou=.2, T=10, D=40, M=4.5). The result can be
described by these parameters (in test step: PPV = 47.8%, FNR = 42.1%,
STCW = 31.1%, P1= .0119 and P2 = .0114, in validation step: PPV =
42.5%, FNR = 44.1%, STCW = 37.8%, P1= .000898, and P2 = .016).

The yellow sign in Figures 6C–E means that they are the best
parameters of type D2 for the IQR, WT and RST methods. They
indicate that P1 and P2 passed the significance test in the training–test
steps (P1≤.05,P2≤.05), which are the relative optimal parameters in
the method. For IQR methods, the best parameter is θg = (θ=2,

FIGURE 5
The result of type alarms. (A–C) represent the ratio of each type of alert generated by different methods to the overall training (A), test (B) and validation
(C) steps. (A–C) display relatively consistent features; warm and cold color scatter represent the proportion of alerts of that type generated by the method,
with warm colors representing the proportion and cold colors the opposite.
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Areamax=40, Areamin=3, iou=.3, T=10, D=10, M=3) with the lowest
Lossm= .842 ((in test step: PPV = 64.6%, FNR = 7.59%, STCW =
76.7%, P1= .0282 and P2 = .000173). The optimal parameters of the
two remaining methods can be described as follows: WT = (θ=4.5,
Areamax=30, Areamin=6, iou=.3, T=10, D=10, M=3) with the lowest

Lossm= .677 (in test step: PPV = 61.3%, FNR = 45.4%, STCW =73.8%,
P1=.001671 and P2 =.003098); RST= (θ=2, Areamax=20, Areamin=3,
iou=.4, T=10, D=10, M=3) the lowest Lossm= .809 (in test step: PPV =
67.3%, FNR = 15.9%, STCW = 70.4%, P1= .0181 and P2 = .00000622).
In the validation step, the alert types for the different methods are type

FIGURE 6
The result of the best parameters for methods. (A–F) represent the optimal parameters of eachmethod to the overall training step [(A): AE, (B) IF, (C) IQR,
(D)WT, (E) RST, (F) Kalman]. The x-axis and y-axis of the diagram are the fraction of space-time occupied by alarms and the FNR, respectively, and the z-axis is
the FDR (FDR= 1-PPV). The symbol marked by red, yellow, and blue are the parameter sets with the lowest Lossm.
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II(IQR: P1=.999, P2=.000258,WT: P1=.012, P2=.00014, RST: P1=.99,
P1=.0000429), which are effective for predicting earthquakes from the
view of FNR. People can effectively avoid as many false alarms as
possible if they reducing risk according to these alarms.

The optimal parameter of type D3 is indicated by the blue symbol
(Figure 6F) for the Kalman filter method with the lowest Lossm= .833.
The best method is θg = (θ=2, Areamax=20, Areamin=3, iou=.4, T=10,
D=20, M=5, in the training step: PPV = 29.5%, FNR = 42.9%, STCW=
83.3%, P1= .01048 and P2 = .00254). The alert types in the test step are
type IV(P1=.842, P2=.879). In the validation step, The alert types are
type III(P1=.00365, P2=.0998).

The alarm type is our main concern for the above results and
indicates the best parameter for each step. Therefore, we have
plotted Figure 7 to indicate the loss values at each stage for the
different methods. As shown in Figure 7, the optimal parameters
fall into the D1 of AE and IF methods which means that the optimal

parameters pass both the P1 and P2 significance tests in the
training-test-validation step. The other three methods are
optimal parameters for the D2 class including RST, IQR and
WT. These approaches best parameters produce intersection sets
in the training-testing phase. Only the optimal parameters of the
KF is in the training phase. We obtained the optimal set of
parameters for the minimum Lossm. They can be found in
Table 4 for each method. It can be observed that the M and D
parameters of the optimal parameters are relatively uniform across
the six methods. RTIR anomalies are generated from the above
parameters as the basic parameters for subsequent analysis results.
Results of TIR anomalies.

3.4 Results of TIR anomalies

In Section 3.3, we obtained the optimal parameters for each
method to extract TIR anomalies correlated with a statistically
significance to the seismic activity. We extracted RTIR anomalies
using the above parameters based on the heating core rule in our
other work. To better compare the results generated by the different
steps of the workflow, we have named the TIR exceptions
corresponding to the steps CTIR anomlies, RTIR anomlies. The
‘heating core’ rules are effective in eliminating these TIR-anomalous
signals, which are unlikely to be associated with earthquakes. We
compared the number of anomalies for each method between
unfiltered suspected TIR anomalous signals and filtered suspected
TIR anomalous signals. Coarse-graining will be further discussed in
this section.

FIGURE 7
The result of the Loss values for six methods. (AE,IF,RST,IQR,WT,KF). The x-axis is the Loss value and the y-axis represents the different methods. Three
colors correspond to the training-test-validation steps (red is the training phase, blue is the test phase and black is the validation phase).

TABLE 4 The optimal parameters for each method.

Methods θ areamax areamin Iou D T M

AE .015 30 9 0.2 10 10 3

IF 0.6 20 9 0.2 10 40 4.5

IQR 2 40 3 0.3 10 10 3

WT 4.5 30 6 0.3 10 10 3

RST 2 20 3 0.4 10 10 3

Kalme 2 20 3 0.4 10 20 5
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To study the filtering effect of the non-seismic anomalies of the
heated kernel model on different methods, we showed the number of
day with thermal anomalies for RTIR and CTIR, representing
anomalies with filtering before and after. The average CTIR
anomalous signal number of the day, derived using the AE

method, is 2731, while the average RTIR abnormal signatures
number of the day, derived using the AE method, is 1021. The
abnormal days of CTIR anomalous signatures for the IF method
are 1125, compared to 2961 for the RTIR anomalous signals. The RST
and IQR methods indicate that the number of abnormal days in the
RTIR session is 3677 and 2524, while in CTIR, the results are strongly
filtered, and the number is 1523 and 1040. The 3002 days generated
RTIR anomalies that consisted of many non-seismic anomalous factors,
extracted under the WT method; meanwhile, 1,168 days of anomalies
were identified as CTIR unusual signatures. Only 225 days presented the
RTIR anomaly, which is apparently less relative to the 11-year time
interval derived by the Kalman filter method based on the CTIR being
3967. As a result, we can see the heating core rules that we set for
different ways, which can effectively filter non-seismic anomalous
signals. The identification rules significantly reduce the number of
TIR anomalies in the coarse-graining process (from RTIR to CTIR
anomalies).

In the above, we discussed the number of anomalous days to
describe the filtering effect of heating cores on different methods.
We designed the process to study the coarse-grained seismic thermal
anomaly, which sets a series of time, spatial, and intensity conditions
based on the heating core model to obtain the CTIR anomalies from
RTIR signals. In Figure 8, we show the spatial distribution of the
proportion of RTIR and CTIR anomaly frequencies and the
associated proportions generated by each method in 2010–2020.
Figures 8A–E corresponds to each method, while each left, middle,
and right subplot represents RTIR anomalous and CTIR signals,
respectively, showing the ratio of the frequency of removed TIR
anomalous signals to the frequency of RTIR anomalies. As shown in
Figure 8 a-left, for the unfiltered results of AE method results, the
frequency of the RTIR signal in the middle is much lower than that in
the west, east, north, and south. In the CTIR step, Figure 8 a-middle
shows that the signal frequency of the results were significantly lower
throughout the study area, and the frequency was highest in the
northwest corner, followed by the north and south, and lowest in
the center. As shown in Figure 8A-left, 90% of RTIR signals were
removed in the middle, while in the north and south, about 80% RTIR
signals were removed. Similar descriptions are used to express the spatial
distribution of TIR anomalies for different methods, including RTIR,
CTIR, and proportion. The left and middle panels of Figure 8B show a
similar spatial distribution, with high-frequency anomalies in the four
corners and many banded anomalous frequencies in the middle using
the IF method. The overall anomaly removal rate is 90%. The TIR
anomalies extracted by RST and IQR show the same spatial distribution
characteristics in Figures 8C, D. As the left panels show, the study area
was covered by RTIR anomalies, where the highest frequency of
anomalies occurred in the southeast corner. From the RTIR to CTIR
steps, the TIR anomalies in the southwest corner were more reserved
and showed banding under the RST method. This process still removes
70%–80% of the RTIR signal, even though 20%–30% of the anomalies
are retained in the southwest. The RTIR anomalies extracted by theWT
method are mainly distributed in the southeast, as shown in Figure 8.
e-left. High-frequency anomalies appear in the southwest after filtering
the anomalies in Figure 8E-middle. The filtration percentage is still
between 10% and 20%, which means that most of the RTIR is removed
with Figure 8E-left. The Kalman filter method contributes the highest
anomaly frequency values, with high values distributed in the south-east
in Figure 8F-left. The filtered result is similar to the previous method in
Figure 8F-middle.

FIGURE 8
The result of frequency of the RIT and CTIR anomalies generated by
each method in 2010–2020 [(A): AE, (B) IF, (C) IQR, (D) RST:, (E) WT, (F)
Kalman], The x-axis represents the longitude; the y-axis represents the
latitude. Subplot-left is the frequency of RIR Signal of the whole
area, while Subplot-center is the frequency of CTIR Signal. Subplot-right
is the ratio of the frequency of removed TIR anomalous signals fromRTIR
to the frequency of CTIR results (ratio = (TIRRTIR-TIRCTIR)/TIRRTIR).
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3.5 Results of comparison among different
methods

In Section 3.4, we analyzed the spatial anomaly frequency
distribution of TIR anomalies using each method. There are
anomalies in the southwest region, extracted by the different
techniques in Figure 8. Meanwhile, the southwest region is the
junction zone of plate tectonics between the India Plate and
Gansu–Qinghai–Tibetan Plate, as shown in Figure 1. In the
precursor study, Ishibashi et al. divided the LST anomalies into
tectonic precursor types, which are a link in a chain of particular
local tectonism in each individual area preceding the earthquake
(Molchan, 1990). Therefore, we further determined the advantages
of the above methods using the relationship between the above RTIR
anomaly and active fracture zones, stress distribution and seismic
belts. Several active fracture zones exist, such as the Xianshui
River–Anning River faultline and the Longmenshan faultline. As
shown in Figure 9-left, the stress distribution is similar to the fault belt.

The CTIR thermal anomalies extracted show no tectonic features
using the AEmethod since the frequency anomalies distribution of the
extracted multi-year did not correspond to stresses, seismic belts and
fracture zones. Surprisingly, the CTIR anomaly frequency spatially
corresponded to the Xianshui River–Anning River rift zone extracted
by the IF method, but its frequency is lower in value between 300 and
400 days. For the first time, isolated forests were used for seismic
thermal anomaly extraction, and the results suggest that this is a
promising method. The spatial distribution of the RTIR anomaly
frequencies extracted by RST and IQR is similar to those mentioned
previously. When we consider the tectonic factors, we found that the
RTIR anomaly frequency extracted by RST is consistent with the stress
distribution characteristics near the fracture zone. RTIR anomalies are
not correlated with stress, the active fault distribution extracted by the
IQR method, even though the CTIR results are similar to those
extracted by the RST method. The RTIR anomaly frequency
distribution has a block shape, which is not relative to the
constructive factors extracted using the WT method. The Kalman
filter method produced lower quality results because no TIR anomaly
was corresponding to the physical/geographical factors.

Finally, we attempted to present a comparative summary of each
method based on the previous results. In the RTIR result, the Kalman
filter method produced a higher frequency of TIR anomalies
compared to other methods. This result is consistent with the
study that showed that the Kalman filter method performed best,
with the most extreme and erratic variations in the LST (Molchan,
1991). In the CTIR step, AE and IF showed the optimal parameters
and the type of alert, while the poorly performing method was the
Kalman filter. The IQR and RST methods are robust, as shown in
both RTIR and CTIR results, including the RTIR results showing a
high frequency of anomalies, and the optimal parameters in CTIR
are the category II optimal parameters. Type III optimal parameters
indicate a weak statistical correlation between anomalies and
earthquakes under the heated core filtering rule. We introduced
tectonic information to view the CTIR anomaly and determined the
correlation between the anomalies and earthquakes. By integrating
the relationship between the RTIR anomalous signal and the
constructive factors, we found that RST maintains a relatively
favorable anomaly frequency and spatial distribution. It is worth
further examining the IF method because it produces RTIR
anomalies that fit the space characteristics of the construct
distribution. Therefore, we ranked the advantages of the following
methods in different steps, according to the results:

CTIR: KF>RST> IQR >WT>AE> IF;
RTIR: AE> IF>RST> IQR >WT>KF;

Rank: RST> IF> IQR >WT>KF>AE.

4 Discussion

4.1 Choice of data input

The current LST products are limited, due to missing data due to
pixels that are overcast by clouds. To solve this problem, we
implemented NCEP and LST data to fill in the missing data based
on the GEE platform. Therefore, we used conLST data derived from a
Google Earth Engine with Temporal Fourier Analysis (TFA) as the

FIGURE 9
Left subplot is stress map of the study area (the data are provided by http://www.world-stress-map.org/); right subplot is 3D seismic belts–earthquake
distribution map; there are three seismic belts, including the Western Yunnan belt, Western Yunnan belt, and Anning river belt.
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experimental data for anomaly extraction, which can generate daily,
daytime and nighttime data. Regarding the temporal resolution, the
daily nighttime data are used to exclude the conLST data covered by
the cloud. To reduce the efforts of computational and anomaly
continuity, we resampled the conLST data with 50 km spatial
resolution. We declustered the seismic catalog using the
Reasenberg method to separate earthquakes in the seismicity
catalog into independent and dependent earthquakes.

4.2 Methods of TIR detection

There are several methods for extracting TIR precursors of
earthquakes more than these six methods mentioned in our article.
We summarize the current types of TIR precursor extraction methods
using the meta-analysis literature methods, including mathematical/
statistical methods, wavelet transforms, filtering methods, machine
learning and deep learning. However, many classical methods and
intelligent approaches are not used, for example autoregressive
integrated moving average (ARIMA), artificial neural network
(ANN), support vector machine (SVM) (Akhoondzadeh, 2013),
Eddy field method and Z-score method. On the other hand, many
methodological improvements were not considered and implemented,
such as the wavelet transform, which can be improved in several ways.
At the same time, there is no more in-depth study of machine learning
and deep learning methods like CNN, LSTM and random forest.

The threshold effect continues throughout our research. We used a
survey of the literature or the principles of anomaly extraction methods to
determine the thresholds for each session. Thus, there are problems: the
parameters may be absent or inherently incorrect, as obtained from the
publications. The threshold θ is slightly different for each method in table
2-1. For example, AE and IF have no thresholds for reference as there is no
literature on their application to seismic anomaly extraction. Therefore we
can only define the threshold based on the characteristics of the method
(e.g. .5 for IF as an important exception threshold). Only the RST threshold
has a lot of thresholds in long-term studies for the other four methods.

Many works have been conducted to statistically analyze the
relationship between TIR anomalies and earthquakes. However,
there are still doubts regarding the correlation between earthquakes
and TIR precursors. Recently, Zhang et al., 2021 provided strong
statistical evidence of TIR anomalies and earthquakes by constructing
the heating core model (Zhang et al., 2021). To filter thermal
anomalies in CTIR that are unrelated to earthquakes, we used
training–testing–validation steps to set many parameters to extract

RTIR anomalies and determine the correspondence between TIR
precursors and earthquakes in the next step (train–testing steps in
the original study). We obtained the optimal parameters for each
method by the above steps. In our research, the optimal global
parameters are discussed more, ignoring the most local parameters
that can be extracted under the characteristics of the study area. The
spatial variable parameters will be studied in the future to better
understand the mechanism of TIR anomalies and earthquakes.

Although we used statistical methods to evaluate the influence of TIR
anomaly extraction, tectonic background factors were not quantified and
statistically analysed in this study. For example, Yang et al., 2022 studied
the relationship between quantified bright temperature anomalies and
stress. (Qi et al., 2021). showed the evolution process of positive
microwave brightness temperature (MBT) anomalies basically reflected
the joint effect of crustal stress and seismogenic environment and regional
coversphere on surface microwave radiation. Therefore, Extending the
heating core model may be an important tool to improve mechanistic
understanding with additional physical/geological contexts.

4.3 Declustering

Seismicity declustering is widely used to separate an earthquake
catalog into foreshocks, mainshocks, and aftershocks in seismology
(Talbi et al., 2013). Many declustering methods have been proposed
over the years such as Reasenberg, Window Methods, Stochastic
Declustering et, al. There is the doubt whether declustering the seismic
catalog when we perform a correlation study between TIR anomalies and
the earthquake. In fact, declustering implies the extraction of mainshocks
of higher magnitude than foreshocks and aftershocks. Therefore,
associating the anomaly with the largest magnitude earthquake may
imply relating it to the mainshock. (Marchetti et al., 2022). found is
beneficial to extract possible seismo-anomalies after comparing the effect
of the presence or absence of declustering. Of course it needs further
research to discuss the necessity of declustering.

4.4 Limitations

This study still has a lot of limitations. There are many parameter
settings in multiple study sessions, but the selection of parameters did not
take more factors into account. Although we have demonstrated the
relationship between anomalies and earthquakes using statistical analysis,
the mechanism of TIR seismic anomalies is yet unclear. In order to set the

FIGURE 10
TIR anomaly method evaluation flow chart.
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parameter for each step, we use information from the literature. However,
we admit that the existing literature is descriptive rather than exploratory.
We use a training-test-validation approach to obtain the optimal
parameters, but the original set of parameters still affects our results. It
is well known that the mechanism of TIR precursors has never been
determined, However, There are theories such as p-hole activation theory,
remote sensing rock mechanics, and seismo-ionosphere coupling theory
(Saraf et al., 2009; Freund, 2011). Therefore, from a statistical perspective,
we can only determine whether the anomaly is related to the earthquake.
The improvements from MD were applied in research, but the 3D error
diagram is still is under review (Zhang et al., 2023). Threshold questions
about each method of quantifying the impact of parameters remains
unresolved. Perhaps it can be resolved in future study.

5 Conclusion

In this paper, we proposed an evaluation process used to compare
the effectiveness of TIR anomaly extraction methods. As shown in
Figure 10, the process was divided into three parts: CTIR anomaly
extraction, RTIR anomaly extraction and constructive factor filtering.
Eleven years (2010–2020) of daily conLST data, acquired from GEE,
were used to identify LST fluctuations relationship with M≥3 that
earthquakes occurred in the study area over the same period. Multiple
parameters or sets of parameters were used in various parts of the
research to avoid the mistakes caused by one parameter. Therefore, we
employed the training–test–validation steps to obtain the optimal
parameters and determined the merits of this method, determine from
the optimal parameter type. To verify and improve the evaluation
process that we have proposed, we selected some previously studied
methods (RST, IQR, WT, KF), and methods that have not been used
for seismic thermal anomaly extraction (IF, AE).

The results of our experiments are as follows:

• The heating core model can effectively improve the detection of
TIR anomalies caused by earthquakes, and remove to some degree
the TIR anomalies not caused by earthquakes. At the same time,
the heated core model plays a filtering role for different anomaly
extraction methods This can establish a strong statistical
relationship between TIR anomalies and earthquakes.

• The ranking is given below for each step regarding the merits of
the method through our proposed evaluation process: In the
RTIR step: Kalme filter>RST>IQR>WT>AE>IF; in the CTIR
step: CTIR: AE>IF>RST>IQR>WT>Kalme filter; the results
after considering the constructive factors:
RST>IF>IQR>WT>Kalme filter>AE. We introduced tectonic
factors to avoid the non-causal correlation problem, although a

high statistical correlation was generated between the TIR
anomalies and the earthquake in the previous two steps.

• No method that can completely extract the thermal anomalies
associated with earthquakes. The process provides a multifaceted
evaluation of the extraction method, including the number of
anomalies, statistical relationships, and physical/geographical factors.
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