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Systemic lupus erythematosus (SLE) is a common multisystem, multiorgan

heterozygous autoimmune disease. The main pathological features of the

disease are autoantibody production and immune complex deposition.

Autophagy is an important mechanism to maintain cell homeostasis.

Autophagy functional abnormalities lead to the accumulation of apoptosis

and induce the autoantibodies that result in immune disorders. Therefore,

improving autophagy may alleviate the development of SLE. For SLE,

glucocorticoids or immunosuppressive agents are commonly used in clinical

treatment, but long-term use of these drugs causes serious side effects in

humans. Immunosuppressive agents are expensive. Traditional Chinese

medicines (TCMs) are widely used for immune diseases due to their low

toxicity and few side effects. Many recent studies found that TCM and its

active ingredients affected the pathological development of SLE by

regulating autophagy. This article explains how autophagy interferes with

immune system homeostasis and participates in the occurrence and

development of SLE. It also summarizes several studies on TCM-regulated

autophagy intervention in SLE to generate new ideas for basic research, the

development of novel medications, and the clinical treatment of SLE.
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1 Introduction

Systemic lupus erythematosus (SLE) is an autoimmune

disease (Marianthi Kiriakidou and Cathy Lee Ching, 2020)

that tends to occur in young women (Zhang et al., 2019a). It

is primarily characterized by abnormal T cells, overactive B cells,

and the production of large amounts of autoantibodies that affect

various organs and threaten human life (Tsokos et al., 2016). The

clinical manifestations of SLE are often serious and often include

inflammation of the kidney, lung and vascular system and central

nervous system injury (Qi et al., 2019). Genetic, environmental,

and hormonal factors contribute to the occurrence of SLE (Perl,

2009a; Parks et al., 2017; Stojan and Petri, 2018). However, the

etiologies of SLE is not certain.

Autophagy is an adaptive metabolic pathway that commonly

occurs in eukaryotic cells, and it is highly dependent on

lysosomes, which eliminate damaged and aging organelles and

biological macromolecules (Levine and Klionsky, 2004).

Autophagy is also involved in the delivery of antigens to

MHC compartments, lymphocyte survival/homeostasis

regulation, and cytokine production (Levine and Deretic,

2007; Virgin and Levine, 2009; Levine et al., 2011). Therefore,

autophagy is involved in most aspects of immunity. Autophagy

dysregulation is involved in the occurrence and development of

SLE. Many studies showed that natural product extracts and their

derivatives were effective treatments for SLE. The present review

outlined the related concepts and the link between autophagy

and SLE and summarized the current status of TCM ingredients

that modulate autophagy in the treatment of SLE.

We searched PubMed, Science Citation Index-Expanded

(SCIE) database, SpringerLink, and Chinese National

Knowledge Infrastructure (CNKI) for domestic and foreign

studies. The keyword “autophagy”, “systemic lupus

erythematosus”, “immunity”, “active ingredients of traditional

Chinese medicine”, and other keywords were used to search for

relevant studies.

2 SLE

SLE is an autoimmune disease involving multiple systems

and organs, including the kidneys, heart, blood vessels, central

nervous system, skin, lungs, muscles, and joints, with an

incidence of approximately 0.3–31.5 per 100,000 inhabitants

per year. The male-to-female ratio is 1:9 (Fanouriakis et al.,

2021), and approximately 15% of patients are children under the

age of 18 years (Charras et al., 2021). Females represent 90% of

SLE cases (Furst et al., 2013), and marked racial/ethnic disparities

are very common. Genetic factors, the environment and lifestyle

also induce SLE. However, the mechanism and contribution of

these factors induce SLE are the focus of current research, but its

detailed pathogenesis has not been elucidated (Cross et al., 2014;

Barbhaiya and Costenbader, 2016; Woo et al., 2022).

The disease is characterized by innate and adaptive immunity

disorders and the abnormal production of autoantibodies. The

etiology of SLE generally includes genetic and environmental

factors. Individual genetic risk factors may account for only one-

third of the heritability observed in individuals with a family

history of SLE. A substantial portion of the remaining risk may be

attributable to environmental exposures and gene‒environment

interactions. Environmental factors include chemical and

physical factors, such as dust, heavy metals, organic

pollutants, chemicals, smoking, and UV exposure, and lifestyle

factors include diet, drinking and sleep quality. Substantial SLE

clustering has been observed in family units with a history of SLE

or related autoimmune disease (Dedrick et al., 2020). An 86-fold

increased relative risk of SLE was observed in identical twins,

with an estimated heritability between 44% and 66% (Ulff-Moller

et al., 2018). Genome-wide association studies estimate that

genetic risk factors account for only approximately 30% of the

observed heritability (Morris et al., 2016). This result suggests

that environment and environment-gene interactions are key

contributors to the induction of SLE (Ulff-Moller et al., 2018).

Approximately 60% of SLE risk may be attributable to

environmental exposures (Kuo et al., 2015). The risk in many

cases may be due to an environmental triggering of epigenetic

modifications that favor differential gene expression. This

hypothesis is supported by the fact that in two people with

similar genetic risk factors, one person developed SLE due to

environmental triggers), and the other person did not

develop SLE.

The development of SLE is closely related to sex hormones,

especially estrogen. Estrogen levels are significantly higher in

patients with active SLE than inactive SLE and significantly

higher than normal (Costenbader et al., 2007; Roach et al.,

2015). Estrogen controls development, homeostasis, gene

expression, and signaling processes in T and B lymphocytes,

which influences their function in health and disease (Moulton,

2018). The importance of sex hormone disorders in the

pathogenesis of SLE has received much attention over the

years. Therefore, understanding the role of estrogen in the

pathogenesis of SLE and the efficacy of TCMs associated with

estrogen in SLE patients is important (Xiaolan, 2009). Estrogen

receptor α/β (ERα/ERβ) balance regulates the activation and

proliferation of immune cells and the secretion of cytokines,

which play a role in the development and progression of SLE

(Moulton, 2018). Based on the pathological mechanism of ERα/
ERβ balance in SLE, most TCM clinics use detoxification,

elimination of blood stasis and nourishment of the kidney to

adjust ERα/ERβ balance as the basic therapy for SLE (Zhou et al.,

2015a).

Despite the relatively high heritability of SLE in related

individuals, no important susceptibility gene has been

identified in the clinic (Mathias and Stohl, 2020). Most of the

known SLE susceptibility genes (or genotypes) are not common

or sufficiently specific to be used for diagnosis. This factor
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hinders the early diagnosis and screening for SLE. Patients are

often grouped according to known SLE-associated variants with

potential roles in SLE pathogenesis, particularly with innate

immunity, cellular homeostasis, and adaptive immunity

(Teruel and Alarcon-Riquelme, 2016; Teruel et al., 2017).

3 Autophagy

The word “autophagy” originally comes from the Greek word

meaning “self-eating” (Rout et al., 2014), which is known as type-

II cell death (Rouschop and Wouters, 2009). Recent studies

rediscovered the physiological phenomenon of autophagy and

showed that the process of autophagy had important

physiological significance (Singh et al., 2009; Wu and

Adamopoulos, 2017; Li and Chen, 2019; Lin et al., 2021).

Autophagy at basal levels contributes to the physiological

turnover of proteins and the clearance of some old or

damaged organelles (Levine and Kroemer, 2019). Various

factors, such as lack of trophic factors, hypoxia, accumulation

of protein aggregates, and bacterial and viral infections, increase

the levels of autophagy (Zhou and Zhang, 2012). Therefore, any

changes in the process of autophagy may affect the normal

metabolism of cells and result in cell dysfunction. Recent

studies showed that autophagy played a very important role in

the development, differentiation and maturation of the immune

system (Barbhaiya and Costenbader, 2016; Woo et al., 2022).

Autophagy also occurs in autoimmune diseases due to impaired

immune tolerance. Autoimmune disorders damage organs, such

as the pancreas in type 1 diabetes, and systemic lupus

erythematosus, which damages tissues and organs throughout

the body (Clarke et al., 2015).

Synthesis and degradation are the most important processes

in maintaining balance in the body. There are two main protease

degradation systems in organisms, the ubiquitin-proteasome

degradation pathway (Ulff-Moller et al., 2018) and the

autophagy-lysosomal degradation pathway. According to the

mode of delivery of cytoplasmic material to lysosomes,

autophagy has three common forms, macroautophagy,

microautophagy, and chaperone-mediated autophagy (CMA),

which differ in the mode of cargo delivery to the lysosome

(Galluzzi et al., 2017), as shown in Figure 1. Microautophagy,

macroautophagy and chaperone-mediated autophagy are

coordinated and complementary processes (Li et al., 2012).

3.1 Macroautophagy

Macroautophagy is the most studied autophagy pathway.

Macroautophagy (hereafter referred to as autophagy) is the

process of degrading cytoplasmic components by isolating and

encapsulating cytoplasm using unique bilayer vesicles

FIGURE 1
Types of autophagy in mammalian cells.
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(autophagosomes) that fuse with lysosomes to form autophagic

lysosomes (Glick et al., 2010). Macroautophagy is characterized

by the appearance of newly synthesized autophagosomes, fusion

with lysosomes, and the degradation of lysosomes (Levine et al.,

2011). Autophagy includes 5 key processes: 1) formation of the

phagophore, 2) Atg5-Atg12-Atg16L complex formation and

fusion with the phagophore, 3) (microtubule-associated

protein light chain 3 (LC3) transformation from a soluble

form (LC3-I) to a lipid-soluble form (LC3-II) and binding

with the phagophore to form autophagosomes, 4)

autophagosome capture of proteins, organelles and other

substances for degradation or removal, and 5) autolysosome

formation via the combination of autophagosome and

lysosome followed by degradation of the content in the

autophagic lysozyme membrane (Wu and Adamopoulos,

2017). The process is shown in Figure 1.

3.2 Microautophagy

Microautophagy is classified into two types according to the

molecular mechanism of cargo uptake: fission-type and fusion-

type microautophagy (Schuck, 2020). Microautophagy is the

phagocytosis of substrate molecules in the cytoplasm via

invagination of the lysosomal membrane. The substrate of

microautophagy is directly involved in the structure of

microtubule vesicles by a lysosomal membrane, which are

phagocytosed instead of degraded by the formation of

autophagosomes (Mijaljica et al., 2011). Microautophagy

primarily includes 5 processes: 1) microautophagy

invagination and formation of autophagic tubes, 2) vesicle

formation, 3) vesicle expansion, 4) vesicle rupture, and 5)

vesicle degradation (Li et al., 2012).

Microautophagy is inherent in mammalian cells (Zhou

et al., 2015a). Similar to macroautophagy, starvation and

rapamycin induce microautophagy, which may be due to the

absence of rapamycin target proteins or starvation-induced

autophagy in macrophages (Li et al., 2012). Microautophagy

plays an important role in the maintenance of membrane

homeostasis. The membrane consumption rate of

microautophagy must be equal to the membrane influx rate

of macroautophagy for membrane homeostasis (Todde et al.,

2009). Most autophagosomes are derived from

microautophagy, and microautophagy and macroautophagy

help cells withstand starvation to maintain physiological

functions via continuous nutrient and energy circulation

(Muller et al., 2000; Dalby et al., 2010). Microautophagy

plays an important role by regulating the ratio of lipids-to-

proteins on the surface of lysosomes (Iwata et al., 2005).

Membrane proteins may be renewed by microautophagy in

endosome chaperone-mediated autophagy (Saksena and Emr,

2009) or used as an energy transfer pathway (Takikita et al.,

2009).

3.3 Chaperone-mediated autophagy

The main feature of CMA is that neither vesicles nor

membrane invaginations are required for substrate delivery to

lysosomes. Substrates reach the lysosomal lumen via a protein-

translocation complex at the lysosomal membrane. The substrate

protein binds to the molecular chaperone and is transported

directly into the lysosome (Zhou and Zhang, 2014; Galluzzi et al.,

2017). Chaperone-mediated autophagy is a unique and selective

autophagy that degrades proteins with KFERQ sequences in the

cytoplasm via the lysosomal-protein pathway.

3.4 Commonly used methods for
autophagy monitoring

Electron microscopy, detection and quantification of

Atg8 family proteins, SQSTM1 and related LC3-binding

protein conversion analysis are commonly used methods for

monitoring autophagy. Electron microscopy observes autophagic

vesicles, and TEM (Cardenal-Munoz et al., 2017) tracks

sequential morphological changes during autophagy. The

maturation of phagosomes via autophagic lysosomes is a

dynamic and continuous process (Eskelinen, 2005). Atg8 is a

ubiquitin-like protein. Atg8 exists in the conjugated form of

Atg8-PE and possibly to phosphatidylserine in yeast and some

other organisms (Sou et al., 2006). Atg8 and Atg8 family proteins

are the most widely monitored autophagy-related proteins.

SQSTM1 protein acts as a link between LC3 and

ubiquitinated substrates, and SQSTM1 protein and its bound

polyubiquitinated proteins are integrated into intact autophagic

vesicles and degraded in autophagic lysosomes, which supports

its use as an indicator of autophagic degradation (Bjorkoy et al.,

2005).

4 Autophagy and immunological
aberrations in SLE

Autophagy is a programmed intracellular degradation

mechanism. An increased number of autophagosomes are

observed in many diseases, including autoimmune diseases,

tumors, infections, and cardiovascular and cerebrovascular

diseases (Choi et al., 2013; Deretic et al., 2013). The

pathogenesis of SLE is likely based on genetic susceptibility

factors of the body due to infection, ultraviolet (UV)

irradiation, and other factors, inducing immune disorders

that result in an abnormal activation of autoreactive T and B

lymphocytes, the production of a large number of

autoantibodies, immune complex formation and deposition,

which lead to deregulated inflammation and multiorgan

injuries (George and Tsokos, 2011; Lech and Anders, 2013;

Marianthi Kiriakidou and Cathy Lee Ching, 2020). Jian Zheng
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(Zheng et al., 2022)analyzed the B and T cell subsets comparing

SLE patients in the low activity phase and healthy controls, and

the T and B cell axes showed abnormalities, and the proportion

of double negative B cells and CD8+ T cells was significantly

reduced, the results indicated that the immune phenotype and

the incidence of the disease were closely related. Autophagy

affects the pathogenesis of SLE in many ways. Autophagy is

recognized as a central pathogenic factor in immune

abnormalities of SLE, and it affects innate and adaptive

immunity (Harley et al., 2008; Han et al., 2009). The

immune system is responsible for surveillance and

communication between different organs and cell types, and

the role of autophagy and the consequences of autophagy

deficiency go far beyond the degradation of this pathway

(Deretic, 2012; Bhattacharya and Eissa, 2013). Autophagy is

involved in many aspects of SLE, including the clearance of

dead cells, intracellular DNA and RNA, regulation of the

response to type Ⅰ interferon (IFN), and control of the long-

term survival of B and T cells (Rönnblom and Pascual, 2008;

Clarke et al., 2015; Bhattacharya et al., 2015). Recent studies

showed that defects in macroautophagy/autophagy contributed

to the pathogenesis of SLE, especially in adaptive immunity

(Zhou et al., 2019). The link between environmental stimuli and

autophagy in SLE is indirect, but we can speculate about their

relationship (Figure 2).

4.1 Autophagy and innate immunity in SLE

The effects of autophagy on the occurrence and development

of SLE are partially due to the influence of innate immune

dysregulation. Autophagy plays a role is the elimination of

pathogens in innate immunity. Autophagy controls pathogen

recognition and intracellular killing. Macrophages are

professional phagocytic cells in the body that engulf

pathogens, foreign bodies, and dead cells. Autophagy is

necessary for the removal of dead cells. Apoptotic cells release

lysophosphatidylcholine (LPC) as a marker signal to induce

phagocytic cells and upregulate phosphatidylserine (PS) as a

phagocytosed signal on their surface. The efficient release of

LPC is critical for autophagy genes, and apoptotic cells cannot

normally express PS on their surface in the absence of autophagy

(Qu et al., 2007). The main mechanism in SLE patients is

abnormal immune type I IFN secretion by macrophages. High

expression of IFN-α inhibits mTORC1 and activates reactive

oxygen species to induce autophagy in podocytes, which leads to

FIGURE 2
The role of autophagy in the dysregulation of innate immunity and adaptive immunity.
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microtubule-associated protein 1 light chain 3 accumulation and

a decrease in p62 (Dong et al., 2015). These alterations block the

degradation of mitochondrial components, such as autophagic

degradation of mitochondrial DNA, and lead to inflammation.

Neutrophils prevent infection in the body and are the most

important phagocytic cells. Increased expression of neutrophil-

specific transcripts correlates with the development of nephritic

disease (Bennett et al., 2003). Neutrophils immobilize and kill

invading microorganisms by forming a neutrophil extracellular

trap. Neutrophils exhibit an enhanced ability to form neutrophil

extracellular traps (NETosis) containing self-antigens in SLE

patients, including chromatin, dsDNA, and granulin. NETosis

is increased in SLE, which results in an excess load of nuclear

autoantibodies (Pieterse and van der Vlag, 2014). The clearance

of NETs is diminished in SLE patients, and dendritic cells are

stimulated to produce type I interferons, which contribute to the

pathogenesis of SLE (Garcia-Romo et al., 2011).

Another potential factor is the suppressor of T-cell receptor

signaling 1 (STS-1), which promotes IFN-α-activated JAK1-

STAT1 signaling via c-cbl dephosphorylation, inhibits the

PI3K-mTOR signaling pathway and activates autophagy

(Dong et al., 2015). The protein tyrosine phosphatase STS-1 is

significantly overexpressed in B cells in SLE patients and MRL/

lpr mice (Dong et al., 2015). Notably, STS-1 inhibits autophagy

via JAK1-STAT1 and activates the autophagy pathway via the

mTOR pathway, which may serve as an important target for the

future treatment of SLE.

4.2 Autophagy and adaptive immunity
in SLE

4.2.1 B cells
The dysregulation of humoral immunity in SLE leads to

the abnormal differentiation of B cells. B cells are primarily

involved in chaperone-mediated autophagy (CMA), and the

occurrence of SLE leads to enhanced autophagy activity,

which leads to further abnormal B-cell differentiation that

participates in the pathogenesis of SLE. Inhibiting the

autophagy of B cells in SLE patients blocked the

production of antinuclear antibodies and sharply reduced

the secretion of inflammatory factors, which caused the

inflammation to disappear (Weindel et al., 2015).

Molecular chaperone-mediated autophagy in B cells is

involved in the pathogenesis of SLE, and the abnormal

level of this autophagy is closely related to the progression

of the disease.

Studies showed that (Page et al., 2011; Macri et al., 2015)

SLE altered the activity of CMA. The CMAmarkers LAMP-2A

and HSPA8 were overexpressed, in spleenic B cells of lupus-

prone MRL/LPR mice, and CMA-associated lysosomes were

1.6-fold higher than non-lupus-prone CBA/J mice. Due to the

increase in CMA activity in SLE patients, many autoantigens

are processed and loaded onto MHC II molecules and

presented to autoreactive CD4+ T cells, which promotes

autoreactive B cells to proliferate and differentiate into

plasma cells. Many harmful autoantibodies are secreted and

eventually cause the pathogenesis of SLE.

4.2.2 T cells
Autophagy is regulated by the PI3K/Akt/TSC/mTOR

signaling pathway, which is closely associated with SLE

(He et al., 2019). The mitochondrial hyperpolarization site

is located upstream of mTOR, which promotes mTOR

activation and leads to the upregulation of intracellular

calcium influx. This influx abnormally activates T

lymphocytes and ultimately leads to the occurrence of SLE

(Alessandri et al., 2012). One study found a reduced number

of CD8+ memory T cells in the peripheral blood of SLE

patients (Fernandez and Crow, 2018). The number of

memory CD8+ T cells was increased after treatment with

the mTOR inhibitor rapamycin (RAPA). These results

showed that the differentiation of naive CD8+ T cells was

closely associated with the activation of mTOR in the

peripheral blood of SLE patients. Therefore, we conclude

that mTOR may be involved in the development of SLE. Kato

et al. found that IL-21 activated mTORC1 and mTORC2,

inhibited autophagy, hindered the differentiation of initial

CD4+ T cells in the peripheral blood of SLE patients and

healthy people to Tregs, and inhibited the function of Tregs.

After 4 weeks of treatment with rapamycin, autophagy

reappeared, and the function of Tregs returned to normal,

which confirmed the role of mTOR in the pathogenesis of

SLE via autophagy regulation from a qualitative point of view

(Kato and Perl, 2018; Crino, 2019). The increase in

mTORC1/mTORC2 activity in SLE patients is due to

stimulation of the secretion of the inflammatory factor IL-

21, which reduces autophagy and blocks the differentiation

function of CD4+ and CD25+ Tregs. One form autophagy

removes abnormal mitochondria. Because the reduction in

autophagy in T cells leads to mitochondrial dysfunction, the

accumulation of a large number of mitochondria will further

lead to T-cell dysfunction and aggravation of SLE.

Constitutive autophagic damage in T lymphocytes in SLE

patients is associated with an abnormal accumulation of α-
synuclein aggregates (Colasanti et al., 2014).

Although the exact mechanism leading to dysregulation of

autophagy in SLE is not clear, altered levels of autophagy have

been implicated in the survival of autoimmune T and B cells. A

link between autophagy and SLE has been established.

Observations that drugs modulating autophagy, including

hydroxychloroquine (Ruiz-Irastorza et al., 2010), rapamycin

(Perl, 2009b; Page et al., 2011), and the P140 peptide (Page

et al., 2011), provide beneficial effects in lupus mouse models and

lupus patients support that modulating autophagy levels may be

an important therapeutic target.
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4.3 Genome-wide association study of SLE

With the advancement of genome-wide association studies

(GWAS), the number of established genetic associations with

SLE is also increasing. Several studies found that ATG5

(Pierdominici et al., 2012) and ATG7 were closely related to

the pathogenesis of SLE (Han et al., 2009; Yang et al., 2010).

Another study found significant hypomethylation of

differentially methylated sites associated with several

interferon-related genes, including MX1, IFI44 L, PARP9,

DT3XL, IFIT1, IFI44, RSAD2, PLSCR1, and IRF7, which

suggests the importance of the I-IFN pathway in the

pathogenesis of SLE (Joseph et al., 2019). Environmental

factors stimulate the initiation of autoimmunity in genetically

susceptible individuals, and the expansion of its role in

autophagy initiation and SLE development may help elucidate

the etiological role of autophagy in SLE. These findings provide

interesting clues for elucidating the mechanism of autophagy in

the pathogenesis of autoimmune diseases, such as SLE, and

identify a new layer of biological avenues for future targetable

treatments.

Autophagy affects the pathogenesis of SLE via many

aspects. Therefore, autophagy pathway genes have become

a new direction for SLE target therapy. Bortezomib,

cyclosporine A, rapamycin, P140 phosphopeptide, vitamin

D, and glucocorticoids are related to autophagy (Perl,

2009b; Ruiz-Irastorza et al., 2010; Page et al., 2011; Lai

et al., 2013; Harr et al., 2014; Lamanna et al., 2014;

Lesovaya et al., 2015; Gu et al., 2016).Glucocorticoids and

immunosuppressants are the basic treatment regimens for this

disease, but mortality is increased due to complications and

infections associated with the long-term use of hormone drugs

(Qi et al., 2013). One study showed that combined therapy

with Chinese medicine may improve the survival of SLE

patients, and traditional Chinese medicine has good safety

(Ma et al., 2016).

5 Traditional Chinese medicine as an
autophagy modulator for SLE
treatment

At present, the treatment of SLE with TCM is mainly focused

on theoretical research stage, and clinical research is less

reported. Previously, the research of TCM for SLE mainly

focused on some compound drugs, and with the development

of natural medicinal chemistry, the active ingredients of TCM

gradually became the focus of research. TCM has become an

important field of new drug research and development in the

search for drugs that interfere with SLE by regulating autophagy.

TABLE 1 Novel treatment strategies targeting SLE via autophagy.

Category Compounds Herbs Function References

Glucosides Total glucosides of
paeony

The roots of Paeonia lactiflora The expression rates of CD4+, CD25+T cells in SLE patients were
significantly increased

(Lai et al., 2013; Gu et al.,
2016)

Glycyrrhizin Glycyrrhiza uralensis Fisch Autophagy increased the expression level of CD4+ and

CD25+T cells

(Shang-shang, 2015; Li
et al., 2019)

Polysaccharide Pachyman
polysaccharides

Poria cocos (Schw.)Wolf Regulated the balance of Th17/Treg Pastorino et al. (2018)

Astragalus
polysaccharides

Astragalus
membranaceus(Fisch.)Bye

Regulated T-cell subsets to return to normal (Kim et al., 2012; Xu
et al., 2020)

Flavonoids Micromeraceae.
Icaritin

Epimedium brevicornum
Maxim.

Regulated autophagy level and inhibited T-cell overactivation Yarley et al. (2021)

Dihydromyricetin Ampelopsis megalophylla Diels
et Gilg

Autophagy inhibited the activity of mTOR Talaat et al. (2015)

Terpenoids Triptolide the root of Tripterygium
wilfordii

Autophagy Alunno et al. (2012)

Inhibited the JAK/STAT signaling pathway Tang et al. (2021)

Artemisinin Artemisia annua L. Regulated autophagy Zhang et al. (2018)

Others Resveratrol Polygonum cuspidatum Inhibited the proliferation of B lymphocytes and the activation
of CD4+ T cells

Wu et al. (2018)

Curcumin Curcuma longa L. Enhanced the function and number of Treg cells Jacqueline et al. (2021)

Embelin Embelia ribes Burm. f. Regulated the balance of Th-cell subpopulations and inhibited
the excessive activation of Th and B cells

Han et al. (2009)
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Pharmacological methods to activate or inhibit autophagy are

necessary because autophagy plays a protective role in

pathological conditions and at different stages of the same

diseases. TCMs are typically categorized as alkaloids,

flavonoids, saccharides, saponins, terpenoids, and polyphenols

based on their chemical properties (Table 1).

5.1 Glucosides

Glycosides are sugars or derivatives of sugar compounds that

are linked to another type of monosaccharide by an anomeric

carbon atom of the sugar. Total glucosides of peony (TGP) are

glycosides extracted from the roots of Paeonia lactiflora, a plant

of the Ranunculaceae family (Li et al., 2019). TGP inhibits CD11a

gene expression by enhancing the DNA methylation of a

promoter in CD4+ T cells, CD11 (Shang-shang, 2015), and

autoimmunity by inducing Treg cell differentiation (Zhao

et al., 2012). There is a correlation between the course of SLE

and the level of CD4+ and CD25+ T cells (Sun et al., 2008). The

expression rate of CD4+ and CD25+ T cells in active SLE patients

was significantly lower than healthy control group. The

expression rates of CD4+ and CD25+ T cells in SLE patients

were significantly increased after treatment. TGP therapymay act

on CD4+ and CD25+ T cells (Yiping et al., 2014). These results

provide evidence for the mechanism of action of TGP in the

treatment of SLE.

Licorice is a Chinese herb tonic that exhibits anti-

inflammatory, antibacterial, antiviral, and antitumor effects

(Sun et al., 2021). The compound glycyrrhizin is the main raw

material, and it contains glycyrrhizin, glycine, cysteine,

glycyrrhizin, and other components. The combination of

compound glycyrrhizin and prednisone had a good effect

on SLE (Kim et al., 2012; Pastorino et al., 2018; Sun et al.,

2021). Autophagy promotes the survival of T lymphocytes and

plays an important role in inducing apoptosis during T

lymphocyte proliferation (Xu et al., 2020). Autophagy was

observed at different stages of T-cell activation in patients

with SLE (Zhou et al., 2015b). CD4+, CD25+Treg cells are a

subset of regulatory T cells that maintain autoimmune

tolerance and regulate the immune response. Dysfunction

or a decrease in the number of CD4+, CD25+ Treg cells is

an important cause of autoimmune diseases (Xu et al., 2020).

Compound glycyrrhizin with prednisone more effectively

increased the expression levels of CD4+, CD25+ T cells to

regulate the immune state of SLE patients and achieve

immune balance (Li and Yang, 2011).

5.2 Polysaccharides

A polysaccharide is a sugar composed of more than

10 monosaccharides connected by a glycosidic bond.

Polysaccharides produce a variety of pharmacological effects,

and its biological activity is closely related to the type of glycosidic

bond, degree of branching, and functional groups (Zhang et al.,

2019b; Yarley et al., 2021). Polysaccharides have

immunomodulatory and anti-inflammatory activities (Li et al.,

2018). A significant imbalance of Th17/Treg was observed in the

pathogenesis of SLE, which suggests that Th17/Treg affect the

occurrence and development of SLE (Talaat et al., 2015).

Pachyman polysaccharides regulate the balance of Th17/Treg

by reducing Th17 and increasing Treg cells, which provides a

new strategy and entry point for the treatment of SLE (Wang

et al., 2017). Astragalus membranaceus is the root of the legumes

Astragalus mongolicus and Astragalus membranaceus. It has

many functions, such as anti-inflammatory, hypoglycemic,

and lipid-lowering activities, and contains a variety of active

ingredients, such as flavonoids, polysaccharides, amino acids,

alkaloids, and linoleic acid. Astragalus polysaccharides (APS)

have the strongest immune activity (Jiang et al., 2020). APS

returned T-cell subsets to normal in patients with SLE (Wei et al.,

2021). Autophagy promotes the survival of T lymphocytes and

plays an important role in inducing apoptosis during T

lymphocyte proliferation (Zhou et al., 2015b). Therefore, the

activation of autophagy and regulation of T-cell homeostasis may

be the main mechanism of polysaccharide compounds in the

treatment of SLE.

5.3 Flavonoids

Flavonoids are a series of compounds formed by the

connection of two benzene rings with phenolic hydroxyl

groups via the central three carbon atoms. A large number

of studies demonstrated that cell and cell imbalance were

closely related to the occurrence and development of

autoimmune diseases, especially SLE (Alunno et al., 2012).

The development and proliferation of T lymphocytes depend

on autophagy (Alunno et al., 2012). The flavonoid icaritin

(ICT) is the metabolic product of icarioside. ICT inhibited

T-cell overactivation in SLE patients (Yue, 2014). Therefore,

ICT may improve SLE patients by regulating autophagy

levels and inhibiting T-cell overactivation.

Dihydromyricetin (DMY or DHM), also known as

ampelopsin, dihydromyricetin, and fukiencha, is a

dihydroflavonol flavonoid compound (Zhang et al., 2018).

Dihydromyricetin promoted the expression of LC3-II and

Beclin-1 autophagy genes in a dose- and time-dependent

manner and inhibited the activity of mTOR (Xia et al., 2014).

Autophagy is regulated by the PI3K/AKT/mTOR signaling

pathway, which is closely related to SLE (Jin et al., 2016).

Chen Yanwen et al. (Tao and Qing-Jun, 2015) found that the

autophagy level of T lymphocytes in SLE patients was higher than

normal subjects, and the autophagy level in the active group of

SLE patients was significantly higher than the stable group. The
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expression of a marker related to autophagy, mTOR, negatively

correlated with the disease condition. Therefore, regulating

autophagy via the mTOR signaling pathway may be the main

target of flavonoids in the treatment of SLE, but the specific link

and target must be further studied and clarified. There are few

studies on themechanism of flavonoid action on SLE, and further

studies are guiding the development of flavonoids into new

Chinese medicine drugs for the prevention and treatment of SLE.

FIGURE 3
Chemical structures of some compounds.
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5.4 Terpenoids

Terpenoids are the most abundant compounds in natural

products and are derived from the root of Tripterygium wilfordii

(Li et al., 2014). Terpenoids have many biological activities.

Triptolide (TP) is an epoxide diterpene lactone compound

that has strong anti-inflammatory and antitumor effects.

TLR7 agonists (R848 and imiquimod) induced excessive

autophagy in RAW264.7 cells in vitro and promoted the

expression of anti-dsDNA and the secretion of some

inflammatory IgM and IgG cytokines in vivo, which produced

symptoms of SLE disease (Yokogawa et al., 2014; Li et al., 2016).

Using SLE mice as a model, the levels of inflammatory factors

(IL-6, IL-10, TNF-α, and IFN-γ) were reduced in the triptolide

group compared to the model group, and the expression levels of

JAK, p-JAK1, STAT3, and p-STAT3 in renal tissues were

significantly reduced (p < 0.05). These results indicated that

triptolide inhibited the JAK/STAT signaling pathway, alleviated

the inflammatory immune response and improved the condition

of SLE in mice (Tang et al., 2021). Wu et al. (Wu et al., 2018)

found that R848 induced excessive autophagy in RAW264.7 cells

to form an SLE model in vitro, and the expression of the

autophagy-related proteins LC3II/I and P62 was significantly

decreased with TP intervention. These results suggested that

triptolide regulated the expression of autophagy proteins, and its

effects were related to the PI3K/AKT/mTOR signaling pathway.

Artemisinin is an active ingredient extracted from Artemisia

annua L. and is a sesquiterpene lactone (Feng et al., 2021).

Artemisinin and its derivatives have good anti-inflammatory

immunosuppressive effects. Artemisinin exerts anti-

inflammatory effects primarily by enhancing the level of

autophagy (Qian et al., 2017; Qi et al., 2019).

Dihydroartemisinin significantly upregulated the protein

expression levels of LC3-II and ATG5. The mTOR and

ULK1 signaling pathways regulate the generation of

autophagosomes (Kang et al., 2015). The effects of terpenoids

on SLE involve many mechanisms and may include the

regulation of autophagy. However, the specific targets of

terpenoids must be further explored.

5.5 Other agents

Resveratrol is a polyphenolic compound derived from

various plants that has antioxidant, antitumor, and anti-

inflammatory effects, and it may be used to treat

cardiovascular diseases (Wang et al., 2006; Soylemez et al.,

2008; Ingmer and Ingmer, 2019). Resveratrol regulates

autophagy via a variety of pathways (Jacqueline et al., 2021; Li

et al., 2021; Sha et al., 2021). Autophagy plays an important role

in the activation and proliferation of B cells. Activation of

autophagy is the survival mechanism of autoreactive B cells. It

plays an important role in the differentiation of B cells to plasma

cells and the humoral response and provided metabolic support

for proliferative lymphocytes (Bernard, 2014; Clarke et al., 2015).

Resveratrol inhibits the proliferation of B lymphocytes and the

activation of CD4+ T cells (Nakata et al., 2012) and the activation,

proliferation, immunoglobulin and proinflammatory cytokine

secretion of lupus B lymphocytes and differentiation into plasma

cells in vitro (Wang, 2012). The adaptive immune response is a

key feature of SLE, which leads to dysfunctional T cells and the

abnormal activation of B cells, and these functional alterations

are involved in the development and progression of SLE. In

summary, resveratrol may be a new drug for SLE treatment by

regulating autophagy in the future. One recent study showed that

Th17 and Treg cells in the peripheral blood of SLE patients were

upregulated by autophagy, which was associated with the

increased proinflammatory response of Th17 cells and

decreased immunosuppression of Treg cells (Xue et al., 2017;

Kato and Perl, 2018). Treg cells and their regulatory cytokines are

important mediators of autotolerance (Jia Nie et al., 2015).

Curcumin is a compound of polyphenols that reduces the

Th17-cell response by inhibiting cell proliferation and related

inflammatory cytokines and transcription factors. Curcumin

may become a natural compound to regulate inflammation in

autoimmune diseases, such as SLE, by increasing the secretion of

cytokines and enhancing the function and number of Treg cells

(Fu et al., 2020). Embelin is a benzoquinone compound extracted

from the fruit of Peperomia sylvestre. A study with an SLE mouse

model found that the Th1/Th2 and Treg/Th17 ratios were

significantly higher in the embelin group compared to the

control group (p < 0.05), and the expression levels of CD69,

CD86, and MHC-II on B cells, CD69 on Th cells, and

CD154 expression levels on B cells were significantly lower

(p < 0.05). Embelin exerted its therapeutic effect in SLE mice

by regulating the balance of Th-cell subpopulations and

inhibiting the excessive activation of Th and B cells (Shen

et al., 2022). Because autophagy is strongly implicated in

immune functions, such as the removal of intracellular

bacteria, inflammatory cytokine secretion, antigen

presentation, and lymphocyte development (Wu and

Adamopoulos, 2017), these compounds may exert therapeutic

effects in SLE patients by modulating autophagy to regulate

immune disorders.

6 Discussion and conclusion

SLE is highly heterogeneous, and its pathogenesis has not

been fully clarified. There is no effective curative treatment.

However, the role of autophagy in the innate and adaptive

immunity of SLE is clear because the environment, genetics,

and immunity are the chief factors that cause SLE. Under the

influence of autophagy genes, autophagy regulates the clearance

of apoptotic cells, the type Ⅰ interferon response, and the survival

of B cells and T cells, which participate in the occurrence of SLE
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from many aspects and levels. Autophagy pathway inhibitors

reduce patient autoantibodies, immune complexes in the

glomerulus, and proteinuria. Therefore, autophagy regulation

may provide a new strategy for the treatment of SLE.

The present review summarized some natural compounds

derived from herbal medicines that alleviate the progression of

SLE by modulating the immune system and directly or indirectly

modulating autophagy in SLE patients. Chinese herbal medicine

is only used as an adjuvant, and clinical research data on the

single application of herbal medicine for disease prevention and

treatment are scarce. Current studies lack in-depth exploration of

mechanisms, such as the relevant signaling pathways, pathways

of action, or specific targets. Exploring the synergistic effects of

several compounds with the same or different biological targets is

also a frontier for future research. It is important to investigate

the mechanisms of autophagy regulation in TCM for the

treatment of SLE and identify new therapeutic targets.

Glucocorticoids and immunosuppressants are the treatment

regimens and play a therapeutic role in SLE by inhibiting mTOR

and activating autophagy. However, the long-term use of

hormone drugs leads to some serious toxicity and side effects,

especially infection, which increases mortality. The use of TCM

combined treatment significantly improves drug safety and the

survival rate of patients with SLE. Notably, some types of TCMs

cause liver or kidney injury, and the number of reported cases is

increasing. Therefore, toxicological investigations must be

performed before clinical trials of TCM to determine toxic

doses and establish a reasonable standard for the use of TCM.

In conclusion, TCMs certainly regulate SLE disease by

promoting or inhibiting autophagy. TCMs consist of complex

components that interact with multifunctional targets and

pathway. Therefore, the mechanism of TCM treatment of

diseases is a complicated interaction network rather than a

single pathway. However, the mechanism of cell autophagy

regulation is complex and may involve multiple pathways and

target proteins, especially due to drug compatibility, dose, or

duration, and the same types of effective components may lead to

activation or inhibition of the same target protein. Therefore, the

material basis of TCM and the regulatory mechanism of

autophagy by TCM must also be further investigated and

discussed. The regulation of cell autophagy may provide a

new strategy for the treatment of SLE.

Research on the role of autophagy in the pathology of SLE,

especially in-depth research on the specific mechanism of action,

should be further studied. Research on the mechanisms of drug

interference with SLE via autophagy regulation is superficial, and

there is much space for research on the regulation of its specific

mechanism of action. The present review outlined the relevant

concepts, issues, and conclusions of existing studies. Further

extensive studies are needed to elucidate the precise functional

role of autophagy in SLE, especially biomarkers and therapy and

the molecular mechanism of drugs that interfere with the

occurrence and development of SLE via autophagy (Figure 3).
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