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Immunotherapy has revolutionized the field of cancer therapy. Nanomaterials can
further improve the efficacy and safety of immunotherapy because of their tunability
and multifunctionality. Owing to their natural biocompatibility, diverse designs, and
dynamic self-assembly, peptide-based nanomaterials hold great potential as
immunotherapeutic agents for many malignant cancers, with good immune
response and safety. Over the past several decades, peptides have been
developed as tumor antigens, effective antigen delivery carriers, and self-
assembling adjuvants for cancer immunotherapy. In this review, we give a brief
introduction to the use of peptide-based nanomaterials for cancer immunotherapy
as antigens, carriers, and adjuvants, and to their current clinical applications. Overall,
this review can facilitate further understanding of peptide-based nanomaterials for
cancer immunotherapy and may pave the way for designing safe and efficient
methods for future vaccines or immunotherapies.
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Introduction

Peptide ligands as versatile cancer antigens to activate
immune systems

Cancer immunotherapy (CIT) is a validated and critically important approach for treating
patients with cancer. It utilizes the body’s immune system to target and eliminate cancer cells with
enduring anti-tumor responses to prevent cancer metastasis and recurrence (Rosenberg et al., 2004;
Pardoll, 2012). In human bodies, two major immune systems—the innate and adaptive immune
systems—successfully recognize and eliminate hidden cancer niches (Zhang et al., 2019). Thus,
cancer vaccines must be potent enough to be recognized and then activate the related immune
response. Peptide-based vaccines have attracted much attention and interest in cancer
immunotherapy, owing to their high affinity, easy preparation, and safety, and they have been
proven to have significant efficacy in inhibiting tumor growth and preventing tumor relapse and
metastasis (Zhang et al., 2019; Cai et al., 2020; Malonis et al., 2020). After immunization, antigen-
presenting cells (APCs) usually capture and internalize the peptide-based cancer vaccines. Then,
they present antigenic fragments on the surface MHC class I/MHC class II (MHC I/MHC II) alleles
of APCs, thereby stimulating the activation of CD4 T cells or cytotoxic T lymphocytes. Activated
T cells release cytokines and induce cytotoxic T lymphocyte (CTL) responses, and CD4 T cells
promote B-cell proliferation and IgG production (Feng et al., 2016). Although peptide vaccines have
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showed promising anti-cancer effects in vivo, their low stability and
penetration properties have hindered their further clinical application
(Kuai et al., 2017).

Advanced biomaterials and drug delivery systems have become useful
tools for improving CIT potency while reducing toxic side effects in a
safer, more controlled manner, and for adjusting the tumor immune
environment to increase the response to immunotherapies (Duan et al.,
2019; Aikins et al., 2020; Gong et al., 2021). Peptide-based nanomaterials
are promising agents in cancer therapy, serving as target ligands, carriers,
antigens, or adjuvants in these nanomedicines with good efficiency and
safety (Jiang et al., 2019; Cai et al., 2020; Dersh et al., 2021; O’Neill et al.,
2021). Peptides are designed as versatile cancer vaccines due to their
multifunctional properties. For instance, peptides can modify the
pharmacokinetics and biodistribution of nanomedicines for
immunotherapy and can efficiently deliver immunotherapeutic agents
to tumor tissues (Zhang et al., 2010; Zhao et al., 2013). Meanwhile,
peptides themselves participate in activating the tumor immune response.
In this mini-review, we briefly summarize recent progress in peptide
antigen design, nanomaterials for peptide antigen delivery, peptide-based
nanomaterials as carriers or adjuvants to enhance the effect of CITs, and
the clinical applications of these peptide-based nanomaterials in cancer
therapy. Finally, we discuss the challenges that peptide-based vaccines
meet in further clinical cancer immunotherapy.

Self-assembled peptide-based materials used
as cancer antigens

The epitope for developing peptide-based therapeutic cancer
vaccines is a short amino sequence derived from tumor antigens
with immunogenicity and HLA allele compatibility (Shemesh et al.,
2021). Peptide-targeting antigens can be classified into two categories:
tumor-associated antigens (TAAs) overexpressed in tumor tissues and
tumor-specific antigens (TSAs) specifically expressed in tumor tissues
but not in normal tissues and which include the mutated protein,
cancer testis antigens, and virus-related antigens (Garcia-Soto et al.,
2017; Vitiello and Zanetti, 2017; Peng et al., 2019; Liu et al., 2021).
TAA-targeting peptide vaccines have been widely developed from
various cancer-related proteins such as VEGFR (Okuyama et al.,
2013), HER2/neu (Knutson et al., 2001), CEA (Antonilli et al.,
2016), MUC1 (Antonilli et al., 2016), survivin (Ciesielski et al.,
2010), EGFR (Chen et al., 2018), and FR (folate receptor), and they
have been applied in various cancers such as lung cancer (Mami-
Chouaib et al., 2002), breast cancer (Peres Lde et al., 2015), liver cancer
(Shen et al., 2017), melanoma (Ruiter et al., 1991), leukemia
(Sugiyama, 2002), and ovarian cancer (Antonilli et al., 2016). For
instance, the peptide vaccine (LEEKKGNYVVTDHC) derived from
epidermal growth factor receptor variant III (EGFRvIII) has showed
stronger immune responses and longer median progression-free
survival in patients with newly diagnosed EGFRvIII-expressing
glioblastoma in a phase 2 trial (Sampson et al., 2010; Chen et al.,
2018). The FR-derived peptide vaccines E39 (FR-α 191−199) and E41
(FR-α 245−253) are efficiently presented to CD8+ T-cells and have
showed potent anticancer effects in ovarian-cancer animals and good
safety but weak immune response in ovarian cancer patients in a phase
II clinical trial (Chianese-Bullock et al., 2008). TSA-based vaccines
derived from mutation-derived epitopes can be presented as foreign
antigens on the surfaces of tumor cells and APCs, which could increase
the frequency of recognition by cytotoxic T lymphocyte (CTL)

precursors and induce strong and fast CTL activation (Herlyn and
Birebent, 1999; Gubin et al., 2015). These peptide vaccines usually use
multiple cancer peptides with an appropriate, individualized selection
to complement pre-existing host immunity, which induces stronger
and more rapid antitumor immunity in comparison with inoculation
of conventional peptide vaccines (Shemesh et al., 2021). Thus, TSA-
derived peptide vaccines have great potential for personalized cancer
therapy.

Peptide vaccines can be classified into two groups according to their
activation functions: one group can activate the innate immune system by
interacting with tumor-associated macrophages (TAMs), dendritic cells
(DCs), neutrophils, and natural killer (NK) cells, and the other group can
activate the adaptive immune systemby interactingwith T cells and B cells
(Figure 1A) (Rosenberg et al., 1998; Zhang et al., 2019). Peptide vaccines
targeting TAMs are aimed at blocking protumoral M2-TAMs activities
impeding the recruitment of macrophages to tumors and switching M2-
TAMs into protumoral M1-TAMs (Tang et al., 2013; David, 2017). To
prolong the presentation of an MHC class I-restricted self-peptide on
DCs, the peptide vaccines were loaded in DCs to activate T cells for over
24 h, protecting immunized mice from tumor progression and
suppressing lung metastases (Wang and Wang, 2002). HLA-A24
peptide- (CEA652-) loaded DC vaccines could prevent further tumor
growth and decrease the levels of carcinoembryonic antigen (CEA) in
serum (Ueda et al., 2004). NK cells are cytotoxic lymphocytes able to
recognize stressed cells and rapidly respond to tumor formation without
the aid of antibodies and MHC (Caligiuri, 2008). Chapel et al. 2017
reported that an HLA-C*06:02-presented peptide could bind to the NK-
activating receptor KIR2DS1, which was sufficient for the activation of
primary KIR2DS1 (+) NK cells (cytotoxic CD8+ T cells are responsible for
killing cancer cells, a process that can be blocked by inhibitory receptor
ligands like PD-L1 or PD-L2 expressed on cancer cells) (Thomas and
Massague, 2005). Li et al. 2018 identified a PD-L1-targeted peptide
(SGQYASYHCWCWRDPGRSGGSK) with high affinity, which was
able to retard tumor growth in mice to a larger degree than a PD-L1
antibody (56% vs. 71%, respectively), demonstrating its high therapeutic
efficiency. B cell targeting peptide vaccines are derived from immunogenic
proteins containing B cell epitopes that can induce B cells to create
antibodies (Yuen et al., 2016). Another method is the use of B cell peptide
mimics that can directly bind to tumor-specific cellular receptors to block
downstream signals and induce cancer death (Kaumaya, 2015). Recently,
B cell-based peptide cancer vaccines have been developed targetingHER2/
neu receptors (Wiedermann et al., 2010), EGFR (Zhu et al., 2013), and
others, which can produce specific IgG antibodies and have demonstrated
strong antitumor activity in mice. Based on these successes, the HER-2 or
EGFR targeting peptide vaccines have been tested in cancer patients in
phase I or II clinical trials (Riemer et al., 2005; Wiedermann et al., 2010).

Many clinical trials have shown that peptide-based vaccines are
safe and effective in various cancer types. However, further studies are
needed to identify and evaluate the peptide vaccines in different cancer
patients, who will derive the greatest benefit from this approach, and to
optimize the therapeutic protocols.

Peptide-based materials serve as potent
vaccine carriers

Peptide nanomaterials are considered to be promising carrier
structures and have been proved to be capable of delivering peptide
antigens and immunoadjuvants with good stability and high cargo
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loading capacity (Koutsopoulos et al., 2009; Lyu and Azevedo, 2021).
Many one-dimensional filaments or nanofibers based on self-assembly
of peptides and peptide derivatives could be intertwined to form
hydrogels or nanoparticles, facilitating the controlled delivery of
peptides and adjuvants (Lyu and Azevedo, 2021).

Hydrogel has been used as a good delivery system, which has great
prospects in the combination of antigen delivery and therapeutics to
induce potent CTLs (Figure 1B) (Binaymotlagh et al., 2022). Collier’s
research group developed vaccines using a Q11 self-assembling domain
(Ac-QQKFQFQFEQQ-Am) from chicken egg ovalbumin (OVA323-
339), applied for the linkage of a MUC1-derived peptide (Rudra et al.,
2010). Q11 is a self-assembly peptide that can aggregate into
nanofibers in salt-containing aqueous environments (Rudra et al.,
2012). These vaccines induced robust antibodies, and their antibodies
could effectively recognize breast cancer cells. As an improvement of
the strategy, a fully synthetic self-adjuvanting vaccine with a self-
assembling Q11 domain was designed to aggregate into fibrils and
show multivalent B-cell epitopes under mild conditions, further
enhancing the immunogenicity of the TAAs (Huang et al., 2012).
Recently, novel self-assembling peptide epitopes (SAPEs) were
successfully applied to vaccine delivery systems and were generated
using a peptide (Ac-AAVVLLLW-COOH) or a thermosensitive
polymer poly (N-isopropylacrylamide (pNIPAm)) attached
covalently to different peptide antigens. Compared to sham-treated
mice, tumor-bearing mice inoculated with SAPEs could inhibit tumor
growth and prolong survival time (Rad-Malekshahi et al., 2017).

The self-assembly of antigenic peptides into hydrogels is a feasible
strategy to augment anti-tumor immunity. For instance, Leach and
others reported the use of the hydrogel of the self-assembling

multidomain peptide (MDP) (K2(SL)6K2) for encapsulation of
stimulator of interferon genes-(STING-) agonist cyclic
dinucleotides (CDNs; STINGel) (Leach et al., 2018). STINGel is a
peptide hydrogel that prolongs overall survival in a challenging
murine model of head and neck cancer. Recently, Leach et al.
loaded a drug-mimicking peptide hydrogel (L-NIL-MDP) with a
STING agonist (CDN), resulting in 4- and 20-fold slower drug
release than with commercially available hydrogels (Leach et al.,
2021). Consequently, L-NIL-MDP+CDN is an effective, bioactive
carrier material for cancer immunotherapies and successfully
increased the survival of tumor-burdened mice. Li and coworkers
took a further step by developing a tumor cell-derived cancer vaccine
(PVAX) for postsurgical immunotherapy (Wang et al., 2018). PVAX
was prepared by encapsulating BRD4 inhibitor (JQ-1) and
indocyanine green (ICG) co-loaded tumor cells through a hydrogel
matrix, which could simultaneously elicit antitumor immunity and
block the PD-L1/PD-1 checkpoint to prevent tumor recurrence and
metastasis. In order to expand the application of hydrogels, (Xiao et al.
2022) proposed a ternary hydrogel composed of polyvinyl alcohol
(PVA), polyethylenimine (PEI), and magnesium ions, which can
upregulate PD-L1 expression and promote the polarization of M1-
like macrophages, thus achieving excellent immunomodulation
function. Additionally, (Wang et al. 2022) developed a hydrogel
(CM@Gel) to encapsulate MnO2 nanosheets and the vascular-
disrupting CA4P, which not only enhanced immunotherapy but
also avoided the possibility of vascular disruption during systemic
administration.

Virus-like particles (VLPs) are constructed by self-assembly of
viral envelope proteins and can be used as potent delivery systems for

FIGURE 1
Peptide-based nanomaterials used in cancer immunotherapy via various delivery systems, including peptide-based nanomaterials as antigens (A),
carriers (B) and adjuvants (C).
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cancer vaccines (Cai et al., 2020) (Wang et al., 2021). For example,
(Storni et al. 2004) demonstrated that VLP vaccination was capable of
inducing high levels of peptide-specific cytotoxic T cell responses and
eradicating established solid fibrosarcoma tumors. CpGs and
p33 peptide were packaged together into VLPs, enhancing their
stability and improving their immunogenicity. Additionally,
carcinoembryonic antigen (CEA) has been chosen as a promising
target structure in the construction of colorectal cancer vaccines. One
study indicated that an oral PV-CEA pseudovirus vaccine induced
high CEA-specific CTL responses and efficiently inhibited tumor
growth (Huang et al., 2005). Interestingly, Jemon’s research group
designed a rabbit hemorrhagic disease virus-based VLP (RHDV-VLP)
targeting HPV16-positive tumors. The RHDV-VLP vaccine was
comprised of the Th epitope PADRE on the internal surface of the
VLP and an MHC I-restricted peptide from the HPV16 E648-57 on
the external surface. E6-RHDV-VLP-PADRE not only improved the
overall efficacy of the cancer treatment but also prolonged the survival
rate of mice with HPV-based tumors (Jemon et al., 2013).

Peptide-based materials used as cancer
vaccine adjuvants

Molecular adjuvants are highly relevant to the development of
cancer immunotherapy and are widely applied in vaccination to
activate immune pathways, thereby enhancing antitumor immune
responses (Coffman et al., 2010). Many adjuvants are essential for
cancer immunotherapy, such as aluminum salts (Awate et al., 2013),
oil-in-water emulsions (Guy, 2007), low-toxicity QS-21 (Li and Li,
2020), toll-like receptor (TLR) agonist (Zhou et al., 2018), NKT-cell
agonist (Li et al., 2022), stimulator of interferon gene (STING) (Van
Herck et al., 2021), and other biological materials. However, the
participation of these molecular adjuvants makes understanding the
mechanisms and securing regulatory approval of cancer vaccines
challenging. Thus, the research and development of approaches for
self-adjuvanting or adjuvant-free delivery systems has become a hot
field in the treatment of cancers (Jiang et al., 2017).

Due to the advantages of self-assembled materials, such as low
immunogenicity, compatibility, versatility, and multivalence, they
have been explored as adjuvants of vaccines and have made much
exciting progress (Koirala et al., 2022). The most successful self-
assembly adjuvant is the bacterial lipopeptide Pam3Cys-Ser-(Lys)4
(Pam3CSK4) (Figure 1C) (Basto and Leitão, 2014). Boons and
coworkers developed several antitumor vaccines with Pam3CSK4 as
a built-in adjuvant, which elicited stronger CTL responses (Ingale
et al., 2007). In addition, Payne’s group showed that a
multicomponent vaccine incorporating Pam3CSK4 as an adjuvant
and a T-helper epitope of the tetanus toxoid protein covalently
linked to a MUC1 glycopeptide was significantly more
immunogenic and elicited remarkable levels of IgG antibodies
(Wilkinson et al., 2011). Meanwhile, they further developed a novel
conjugate vaccine with macrophage-activating lipopeptide (MALP2)
as an immunoadjuvant, which could provoke robust humoral immune
responses, since MALP2 is a potent activator of TLR2/6 in immune
cells (McDonald et al., 2014).

More interestingly, fibroblast-stimulating lipopeptide 1 (FSL-1,
Pam2CGDPKHPKSF) has also been used as an immunoadjuvant to
prime TLR2/6 and TLR2/1 signaling pathways (Zhou et al., 2018). To
improve the immunogenicity of TAAs, Zhao et al. reported that a

novel type of MUC1-FSL-1 conjugate as a self-adjuvanting (glyco)
lipopeptide cancer vaccine could induce T-cell mediated responses
capable of killing tumor cells (Liu et al., 2016). GFFY-based adjuvants
as another series of self-assembly adjuvants were successfully
developed for the construction of vaccines. For example, Yang’s
research group reported that an antigen-mixing supramolecular
hydrogel of a D-tetra-peptide (GDFDFDY) and a naphthylacetic
acid-modified derivate (Nap-GDFDFDY) were capable of serving as
attracting adjuvants to prime both humoral and cellular immune
responses (Luo et al., 2017; Yang et al., 2018). Additionally, Yang et al.
proposed a new strategy, using the low-toxicity cholesterol-modified
antimicrobial peptide (AMP) DP7 (DP7-C), which has dual functions
as a carrier and an immune adjuvant, which effectively improves the
efficiency of antigen presentation and enhances the efficacy of
individualized cancer immunotherapy (Zhang et al., 2020).
Considering these advantages, these self-assembly adjuvants are
potential strategies for cancer immunotherapy.

Clinical applications of peptide-based
nanoparticles for cancer immunotherapy

Currently, numerous peptide-based therapeutic cancer vaccines
have been tested in cancer patients and have achieved significant
clinical benefits. The clinical peptide vaccines were mainly from
tumor-associated antigens (TAAs) and tumor-specific antigens
(TSA) and targeted malignant cancers including melanoma
(Kawakami et al., 1994), lung cancer (Mami-Chouaib et al., 2002),
breast cancer (Wiedermann et al., 2010), and leukemia
(Schwartzentruber et al., 2011) in phase I, II, and III clinical trials.
The targeted peptide vaccines can induce the immune response and
are well tolerated in cancer patients in phase I clinical trials. However,
in phase II and III clinical trials, these peptide vaccines had limited
therapeutic effects (Malonis et al., 2020). For example, the HER2-
derived peptide vaccine NeuVax can stimulate specific CD8+ CTLs
that recognize and destroy HER2-expressing cancer cells (Brossart
et al., 1998). In a phase III clinical trial, NeuVax did not impact breast
cancer recurrence as compared to a placebo (Mittendorf et al., 2019).
Clinical treatment with NeuVax combined with trastuzumab is
ongoing for HER2-positive breast cancer patients
(NCT02297898 and NCT01570038), which may pave the way for
the clinical application of peptide vaccines. Single-peptide vaccines
may have limited immune response; thus, multiple peptide vaccines in
combination are being investigated in ongoing clinical trials. The
phase I clinical trial using five-FR-α peptide (FR30, FR56, FR76,
FR113, and FR238) admixed with GM-CSF, called TIPV200, was
tested in ovarian and breast cancer patients (Kalli et al., 2018).
TIPV200 was well tolerated, and more than 90% of the patients
slowly developed immunity within five months, which persisted for
at least a year. Currently, phase II clinical trials of TPIV200, alone or
combined with the cancer immunotherapy drug durvalumab, are
ongoing in ovarian cancer patients (Kalli et al., 2018). TAA-derived
peptide vaccines had limited immune response, especially for patients
with low-expressing targets. TSA-derived peptide vaccines can be
regarded as personalized peptide vaccines (PPVs), which can cause
an increased frequency of recognition by CTL precursors, thus
inducing strong and fast CTL activation (Shemesh et al., 2021).
Thus, TSAs are attractive for personalized cancer immunotherapy
with good efficiency and tolerance (Kimura et al., 2017). The first
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randomized phase II trial of PPVs in prostate cancer was reported in
2010 and showed that PPV, plus a low dose of estramustine phosphate
(EMP), led to longer median progression-free survival (PFS) and overall
survival than did EMP alone (Noguchi et al., 2010). Another clinical trial
also verified that PFS was significantly longer in the PPV-plus-
dexamethasone group than in the dexamethasone in castration-
resistant prostate cancer (CRPC) patients (Yoshimura et al., 2016).
To minimize tumor immune escape caused by antigen loss, peptide-
based vaccines in clinical trials often combine multiple targets with
multiple epitopes. To further improve therapeutic efficacy, peptide-
based vaccines are used in combination with other immunotherapies or
chemotherapeutics in clinical trials, where they have demonstrated
superior efficacy in cancer therapy (Kimura et al., 2017).

Besides exploring effective epitope peptides for activating CTLs,
nanomaterials have been exploited to optimize the efficiency of the
immune response of the epitope peptide to improve its clinical
application (Kuai et al., 2017; Aikins et al., 2020). Liposomes were the
first class of therapeutic nanoparticles to be approved for cancer
treatment and still represent a large proportion of clinical-stage
nanotherapeutics (Large et al., 2021). Liposome-based vaccines could
co-deliver peptides and adjuvants to promote their delivery to lymphoid
organs, an approach which shows great clinical potential for cancer
immunotherapy (Miyabe et al., 2014). Other nanostructures based on
amphiphilic dendrimers (Chahal et al., 2016) and cross-linked block
copolymer micelles (Wang et al., 2020) are also acceptable strategies.
Currently, only one peptide-basedmaterial (Pam3Cys) is being used as an
adjuvant in the clinic for Lyme disease vaccines (Steere et al., 1998). Most
peptide nanomaterial-based cancer vaccines are under preclinical study,
and improvements in their stability and permeability may also facilitate
the availability of peptide materials in clinical cancer immunotherapies.
For example, liposomal vaccines whose lipid membranes have good
fluidity and permeability (Senior and Gregoriadis, 1982) can allow
maximum drug release. In addition, cholesterol and DSPC can
enhance the structural stability of liposomes and enable maintenance
of liposomal size within two months (Maritim et al., 2021).

Discussion

Cancer immunotherapy is regarded as the most promising
method of cancer therapy, as it pursues prolonged tumor
regression by restoring and normalizing the immune surveillance
of patients (Yang, 2015). However, the poor immunogenicity of
cancer cells, low tumor infiltration of immune cells, and the
presence of multiple immune checkpoints lead to low benefits in
cancer immunotherapy (Topalian et al., 2012). Due to its tunability
and multifunctionality, nanotechnology can achieve specific
delivery of multiple cargos into tumors and immune cells to
improve the efficacy and safety of drugs (Zhang et al., 2019;
Gong et al., 2021). Peptide materials have received increasing
interest, as they are easy to manufacture and have excellent
safety profiles and relatively low costs, and they have showed
great potential for clinical cancer therapy (Jiang et al., 2019). In
this review, we summarize the design of peptide antigens, the use of
peptide-based materials as carriers for specific delivery, the use of
adjuvants to help stimulate the immune response, and current
clinical studies of these peptide-based vaccines. Peptide antigens
can significantly enhance systemic immune responses, generate
effective immune cell responses in tumor tissue, and inhibit

malignant tumor metastasis or recurrence. Additionally, these
peptide vaccines are relatively safe and well tolerated in clinical
trials. Peptide-based delivery systems can deliver therapeutic cargoes
into specific cell lines with low toxicity and high therapeutic effect.
Meanwhile, peptide-based adjuvants are effective enough to help
stimulate the immune response. Despite the noteworthy advances in
peptide-based vaccines for cancer therapy, peptide-based vaccines have
unfortunately failed in clinical trials due to the lack of continuous and
high immune response levels. As TAAs and MHC-I vary widely among
patients and tumors, it is necessary to create personalized vaccines for
individual patients. Peptide antigens should be widely screened to
ensure that they are potent enough to activate sustained immune
responses and inhibit cancer growth in patients; metabolomic,
proteomic, and genomic screening of natural products can be used
to identify bioactive peptides (Shemesh et al., 2021). Moreover, in order
to be clinically translated, these peptide-based materials must be stable
for large-scale production and storage (Zhang et al., 2019). The
combination of peptide-based vaccines with other therapies is also a
good direction for improving clinical outcomes for cancer patients, such
as chemotherapy, radiotherapy (RT), biological agents, and immune
checkpoint inhibitors (Liu et al., 2021). As the field of immuno-oncology
improves, we sincerely expect the synergistic development of peptide
materials with other immunotherapies to yield innovative strategies for
tumor immunotherapy.
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