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Naturally occurring microbial communities are able to decompose lignocellulosic
biomass through the concerted production of a myriad of enzymes that degrade its
polymeric components and assimilate the resulting breakdown compounds by
members of the community. This process includes the conversion of lignin, the
most recalcitrant component of lignocellulosic biomass and historically the most
difficult to valorize in the context of a biorefinery. Although several fundamental
questions on microbial conversion of lignin remain unanswered, it is known that
some fungi and bacteria produce enzymes to break, internalize, and assimilate lignin-
derived molecules. The interest in developing efficient biological lignin conversion
approaches has led to a better understanding of the types of enzymes and organisms
that can act on different types of lignin structures, the depolymerized compounds
that can be released, and the products that can be generated through microbial
biosynthetic pathways. It has become clear that the discovery and implementation of
native or engineered microbial consortia could be a powerful tool to facilitate
conversion and valorization of this underutilized polymer. Here we review recent
approaches that employ isolated or synthetic microbial communities for lignin
conversion to bioproducts, including the development of methods for tracking
and predicting the behavior of these consortia, the most significant challenges
that have been identified, and the possibilities that remain to be explored in this field.
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Introduction

Lignocellulosic biomass is the most abundant source of renewable carbon on Earth, making
it a top candidate for conversion to biofuels and bioproducts as part of the strategies to
transition to a sustainable bioeconomy (Rajesh Banu et al., 2021). This carbon is stored in plants
in the form of large, interlinked polymers: cellulose, hemicellulose, and lignin. These polymers
have evolved to withstand physical, chemical, and biological degradation, and provide plants
with rigidity and resistance to environmental aggressions (Bomble et al., 2017). Therefore,
numerous efforts have been devoted to developing technologies that would enable the cheap,
efficient, and sustainable deconstruction and upgrading of lignocellulosic biomass (Hassan
et al., 2018; Bhatia et al., 2020).

Considerable progress has been made in the last two decades to convert cellulose and
hemicellulose to monomeric sugars and ferment them to ethanol or other biofuels (Balan et al.,
2013; Raud et al., 2019; Saravanan et al., 2022). Lignin, on the other hand, has proven to be the
most recalcitrant component of lignocellulosic biomass. This is due to its heterogeneous
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chemical structure comprising large chains of phenolic rings
interlinked through different types of chemical bonds, resulting in
poor solubility in aqueous systems (Li et al., 2016). Although the
relative amounts, chemical composition, and structure of each of the
main components is known to be highly variable (Ralph et al., 2019),
lignin valorization has been deemed essential to improve the
economics of lignocellulosic refineries (Martinez-Hernandez et al.,
2019).

Thermochemical approaches to lignin depolymerization such as
pyrolysis, hydrolysis, gasification, and oxidative or reductive
approaches have been effective to produce low molecular weight
compounds, usually aromatic compounds (Liu et al., 2020).
However, these procedures typically require high temperature and
pressure conditions, which can be costly to implement and difficult to
tune in order to obtain high amounts of specific products (Schutyser
et al., 2018). On the other side, biological approaches to depolymerize
lignin may be a cost- and energy-effective solution that involves
utilizing microorganisms that secrete cocktails of lignin-
depolymerizing enzymes (Martínez et al., 2018; Kamimura et al.,
2019).

Early experiments on biological lignin conversion indicated that
the white-rot fungi Phanerochaete chrysosporium and Coriolus
versicolor can degrade 14C-labeled lignin and convert it to 14CO2

(Kirk et al., 1975). This led to the discovery of the first lignin-
degrading enzyme, lignin peroxidase (LiP), an H2O2-dependent
enzyme system that was detected in the extracellular medium of
ligninolytic cultures with P. chrysosporium (Tien and Kirk, 1983).
Other types of fungal peroxidases include manganese-dependent
peroxidase (MnP) and versatile peroxidase (VP) that can work in
synergy with LiP, which has a higher redox potential (Martínez et al.,
2018). Some bacteria and fungi also produce dye-decolorizing
peroxidases (DyP) with lignin-degrading activity. Although the
bacterial DyPs are not efficient at degrading non-phenolic
compounds and therefore unlikely to act on most of the native
lignin molecule (Linde et al., 2021), they are proposed to
contribute to the degradation of small phenolic compounds
released by the attack of fungal enzymes on lignin. Lastly, laccases
are known to play an important role in lignin biosynthesis and
degradation in nature and are found in fungi, bacteria and plants.
Since laccases do not require H2O2 and use oxygen as electron
acceptor, they are truly green and industrially attractive enzymes;
however, the production and purification of fungal laccases at high
concentrations has proven challenging (Leynaud Kieffer Curran et al.,
2022).

Enzymatic lignin-degradation strategies can be combined with
biological lignin-valorization strategies that incorporate microbes that
have evolved intracellular metabolic pathways for assimilation of
lignin fragments produced during depolymerization (Kamimura
et al., 2017; Lee et al., 2019). The use of microorganisms to funnel
an array of depolymerized lignin compounds into selected metabolic
intermediates has been explored during the last decade as a potential
solution to counter the heterogeneity in depolymerized lignin
solutions (Beckham et al., 2016). Some studies have shown a
synergy between lignin-modifying enzymes and bacteria for lignin
degradation. For example, cell growth and selective degradation of
different functional groups was observed when the bacterium
Rhodococcus opacus was incubated with lignin in the presence of a
laccase (Zhao et al., 2016). The heterologous expression of a laccase in
Pseudomonas putida also resulted in improved growth and lignin

degradation (Cao et al., 2021). Regarding substrate conversion
capabilities, R. opacus was found to consume lower-molecular
weight compounds obtained from lignin, such as guaiacol (Ravi
et al., 2019). Similarly, an engineered Amycolatopsis sp., strain was
also able to consume guaiacol and produce cis,cis-muconic acid, a
precursor of commercial plastics (Barton et al., 2018). In a separate
work, a higher extent of lignin depolymerization was observed when P.
putida was incubated with a fungal secretome and lignin (Salvachua
et al., 2016). Engineered P. putida strains have also been constructed to
produce cis,cis-muconic acid from depolymerized lignin such as
catechol and other monomeric aromatics (Kohlstedt et al., 2018).

Although these developments represent only a few examples of the
numerous achievements in microbial conversion of lignin in recent
years (Weiland et al., 2022), some disadvantages have become evident.
These include lignin repolymerization by the same enzymes involved
in depolymerization, low solubility of lignin and lignin-derived
compounds in water, and microbial toxicity caused by the
depolymerized compounds (Bugg and Rahmanpour, 2015;
Beckham et al., 2016). One of the biggest challenges is the
difficulty in predicting which compounds can be produced from
certain lignins and which of them are amenable to microbial
conversion (Davis and Moon, 2020). In addition, an organism that
has been engineered to overproduce a specific metabolite from a
lignin-derived substrate will direct less carbon to biosynthetic
pathways, which could limit its ability to grow and the productivity
of a bioprocess. The metabolic burden of expressing different enzymes
required for depolymerization and conversion of multiple lignin-
derived compounds in a single organism could also significantly
impact the growth rate of the engineered strains and limit their
usefulness (Roell et al., 2019).

The use of microbial communities for valorization of
lignocellulose has steadily gained interest as an alternative to
overcome some of the current limitations in biological conversion
processes because communities exhibit favorable traits such as
increased resilience and metabolic diversity, compared to single
organisms. However, more research is needed to understand the
dynamics and tackle the complexity of systems comprised of a
heterogeneous substrate such as lignin and multiple
microorganisms. We provide a discussion of recent advances
related to the development of lignin valorization processes using
microbial consortia in the sections below.

Studies on natural microbial consortia

Beneficial relationships of microorganisms in the natural
environment have been exploited for agriculture, food, medicine,
and bioremediation purposes, with many examples available (Frey-
Klett et al., 2011; Ijoma and Tekere, 2017). Different aerobic and
anaerobic communities containing fungal and bacterial species were
found to be able to degrade lignin-derived compounds (Chen et al.,
1985a; 1985b; Jokela et al., 1985; Tuomela et al., 2000). Mixed bacterial
cultures were also able to degrade lignin, and in some cases, auxiliary
activity families and metabolic pathways of aromatic compounds were
identified by metagenomic studies (Jiménez et al., 2016; Silva et al.,
2021).

It has been suggested that bacteria can catabolize low molecular
weight compounds produced by fungal lignin depolymerization.
However, it remains unclear to what extent bacteria can
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depolymerize larger compounds, including high molecular mass
lignin, and some studies indicate that bacteria have significantly
less lignin-degradation ability than fungal systems (Bugg et al.,
2011; Brown and Chang, 2014). If the prevailing paradigm is that
both fungal and bacterial species are required for the complete
mineralization of lignin, this means that it should be possible to
identify metabolites that can only be consumed by specific members of
a community and synergistic interactions that can be exploited to
improve the conversion process. However, it remains difficult to draw
such conclusions from data in the scientific literature, since variations
in the source of lignin, organisms, and cultivation conditions dictate
the composition of the resulting community and the extent of lignin
depolymerization (Mendes et al., 2021; Azubuike et al., 2022). It has
been demonstrated that certain microbes can degrade specific C-C and
C-O bonds in lignin while also changing the content of H, G, and S
lignin moieties (Bugg et al., 2020; Xu et al., 2022; Zhu et al., 2022).
Similar in-depth structural characterizations of the effects of
treatments with microbial consortia are currently lacking and
future structural studies will be critical to progress in the field.

Typically, top-down approaches must be performed when
working with natural consortia to narrow down the diversity of
organisms and conversion pathways, as well as identifying
community members that promote high lignin conversion
(Puentes-Tellez and Falcao Salles, 2018; Gilmore et al., 2019). For
example, Fang et al. (2018) performed enrichment of microbial

consortia isolated from rotten wood by screening for microbes that
can degrade guaiacol and a sequential transferring of the cultures to
medium containing tree trimmings, which led to the isolation of a
community able to degrade up to 28% of the lignin in the biomass.
Complementary approaches such as “dilution-to-extinction” have also
been applied to identify species in minimal active consortia for
lignocellulose conversion (Diaz-Rodriguez et al., 2022). For
comparison purposes, Table 1 lists the most prevalent
microorganisms in consortia with high reported degrees of lignin
conversion. A strong appeal of studying natural consortia is the
possibility of discovering novel genes and organisms that can be
used to rationally design pathways for degradation and utilization
of lignin (Moraes et al., 2018; Díaz-García et al., 2020).

One important point of discussion is the feasibility of using natural
communities to not just deconstruct but valorize lignin. Although they
represent an untapped resource of enzymes and metabolic reactions,
the added complexity of promoting carbon conversion to specific
bioproducts is still an important barrier to overcome. For example, the
number of organisms that interact in a specific ecosystem can be
extremely large, and not all organisms can be cultivated in laboratory
conditions. Moreover, only a small fraction of those that can be
cultivated will have genetic engineering tools available, making it
difficult to promote conversion of lignin-derived compounds into
defined products. In this regard, anaerobic communities isolated from
the rumen of herbivores have been found to degrade lignin in

TABLE 1 Most abundant organisms present in microbial consortia with reported lignin conversion capabilities.

Microbial genera or species Biomass/lignin type % lignin conversion Products detected References

Anaerocolumna, Thauera,
Pseudomonas

Rice straw 30% Cell biomass (OD = 0.95) Xu et al. (2021)

Achromobacteri, Paenarthrobacter,
Pseudaminobacteri, Paenibacillus,
Candida, Rhodosporidium,
Trichosporon

Low molecular weight lignin
from sugarcane bagasse

Consumption of low molecular
weight components

Cell biomass (OD = 1.4) from
organic acids, glycerol,
hydroxycinnamic acids, sugars

Moraes et al. (2018)

Saccharomycetales, Shinella,
Cupriavidus, Bosea

Alkali lignin 54% 2-methoxy-4-vinylphenol, 2,3-
dimethoxy-benzenebutyric acid, 2-
ethylhexanoic acid, octadecanoic
acid

Zhang et al. (2021)

Stenotrophomonas maltophilia,
Paenibacillus sp., Microbacterium sp.,
Chryseobacterium taiwanense,
Brevundimonas sp.

Sugarcane bagasse, sugarcane
straw

44% Not reported Puentes-Tellez and Falcao
Salles, (2018)

Mesorhizobium, Cellulosimicrobium,
Pandoraea, Achromobacter,
Stenotrophomones

Tree trimmings 28% Cell biomass (OD = 0.9) Fang et al. (2018)

Sulfuricurvum, Clostridium,
Treponema, Chytridiomycota,
Rozellomycota

Reed (Phragmites australis) 28% Not reported Song et al. (2019)

Micrococcus, Citrobacter,
Exiguobacterium, Klebsiella,
Lactococcus, Vanrija, Sugiyamaella

Softwood sawdust 57% Methane (after anerobic digestion)
(180 L per kg of volatile solids)

Ali et al. (2017)

Clostridiales, Geovibrio,
Desulfomicrobium, Pseudomonas,
Azoarcus, Thauera, Paenibacillus,
Cohnella, Acinetobacter,
Microbacterium

Reed straw 61% Not reported Wang et al. (2013)

Alcaligenes, Pseudomonadales,
Bacteroidales, Clostridium

Wheat straw 41% Acetic acid (2.82 g/L), propanoic
acid (0.84 g/L), butanoic acid
(1.67 g/L), glycerol (0.83 g/L)

Hui et al. (2013)
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lignocellulosic substrates and convert it to methane (Ahring et al.,
2015), expanding the possibilities for implementing lignin conversion
processes with mixtures of anaerobic organisms (Podolsky et al.,
2019). Although anaerobic digestion has the potential to improve
the economics of a biorefinery, the extent of lignin degradation under
these conditions remains low and, unless converted, lignin will have a
negative impact on the process (Ali et al., 2018). Improvements in this
area may require the implementation of oxidative pretreatment
approaches (Khan and Ahring, 2019) coupled with efficient
lignolytic consortia that include more specialized organisms with
potentially impactful bioconversion capabilities (Liu et al., 2019;
Lankiewicz et al., 2022).

Studies on synthetic or engineered
consortia

Although the use of natural communities is a promising approach
to degrade complex substrates, the stability and behavior of members
of the community could be difficult to control. This has encouraged
biologists to leverage systems-level knowledge on natural
communities to assemble defined consortia of organisms using
bottom-up approaches, which sacrifices diversity for a higher
degree of control and the ability to perform specific tasks more
efficiently (Lin 2022). Some examples of engineered communities
for production of value-added compounds from lignocellulosic
biomass involve the production of butanol from hemicellulose
(Jiang et al., 2020), isobutanol from cellulose (Minty et al., 2013),
and butyric acid from cellulose (Shahab et al., 2020). A multi-species
consortium has also been used to consume not just the lignocellulosic
substrates present in hydrolysates but also compounds that can be
toxic to some species (Lee et al., 2021).

These examples highlight the value of using engineered consortia
to produce biofuels and bioproducts; however, their specific
application to lignin conversion is still an uncharted territory. One
research group focused on building 65 synthetic communities with
combinations of 18 strains found in a native consortium, to evaluate
their potential to degrade polymeric sugars and lignin when fed with
raw biomass (Puentes-Tellez and Falcao Salles, 2018). The authors
found synergies and demonstrated that a minimal community of
5 organisms was able to degrade up to 44% of the lignin in the biomass.
In a different work, synthetic bacterial-fungal consortia have been
found to be capable of deconstructing and growing on wheat straw
biomass (Wang et al., 2021). However, the microbial activity was
determined as function of the total substrate weight loss and not the
specific degree of lignin conversion, which can be difficult to measure
accurately.

Several challenges need to be addressed to achieve microbial
community-based lignin conversion to bioproducts. Firstly,
different species of known degraders (i.e., bacteria and fungi) have
different growth and substrate consumption rates, which are crucial
parameters in a bioprocess. The reaction conditions (pH, temperature,
media components) required for optimal growth or enzymatic lignin
depolymerization could be vastly different for each organism or
enzyme (Janusz et al., 2017), resulting in members of the
community with compromised activity or stability. Another hurdle
is the differential consumption of substrates and intermediates from
members of the community and the difficulty of mapping and
controlling these carbon fluxes. It is also difficult to predict the

type of relationship that can exist if two or more species are
cultivated together and recognize when antagonistic interactions
may be present (Jimenez et al., 2020). One way to approach these
issues could be to design a synthetic community where the tasks
related to converting lignin to a bioproduct are divided among the
members. One can envision this concept with organisms called cutters,
likely white-rot fungi, which deconstruct lignin into smaller fragments
that are captured by a scavenger, likely a bacterium or yeast (Figure 1).
Synergism in lignin depolymerization and increased ligninase activity
has been observed in co-cultures of white-rot fungi (Cui et al., 2021),
signaling that fungal treatment via strong enzymes such as LiP, MnP,
and VP could be a reasonable first step in the process. Bacteria or
yeasts can then potentially contribute to the degradation of small
oligomers with the help of etherases, laccases, DyP, and other oxidases
and auxiliary enzymes (Bugg et al., 2020; Putra et al., 2022).
Considering that microbes have the ability to scavenge different
types of compounds, it should be possible to evaluate the
performance of different organisms in a consortium to funnel
lignin-derived compounds to specific metabolites. A database of
microbial lignin catabolism such as eLignin could be an important
resource when selecting scavengers for conversion experiments (Brink
et al., 2019). Success in this task would allow for the introduction of
specialized organisms (“manufacturers”) that are easy to engineer and
can convert one or more of these secreted metabolites into a higher
value bioproduct without the need to harbor lignin assimilation
pathways.

Simulation and optimization of synthetic
communities

An important topic when utilizing synthetic communities is the
development of tools and methods to guide their rational design,
testing, and optimization, which involves considering the complexities
of the interactions among community members that influence
properties such as stability and productivity. It is evident that new
developments in these areas will have an impact beyond lignin
conversion, and methods for monitoring and predicting the
dynamics of microbial communities have recently been published.
For example, programmable interactions between organisms have
been created using synthetic gene circuits (Kong et al., 2018). A
pipeline to select organisms based on meta-data analysis of their
microbial physiologies and subsequent screening has been reported for
the production of biohydrogen (Ergal et al., 2021). Another work
describes a high-throughput phenotypic screening using a droplets-
based platform to rapidly assemble variable microbial communities
(Kehe et al., 2019). Immobilization of community members as shown
by Huang et al. (2019) can tackle some of the challenges associated
with stability and toxicity. Finally, molecular methods that allow for
systematic screening of lignin-related enzymes and products such as
biosensors could be key to the discovery and implementation of robust
microbial consortia (Gonçalves et al., 2020).

One of the areas with highest potential impact are studies on the
structure of communities enriched on lignin and the interaction of
their members. However, the development of consensus communities
and consensus interactions among members can be difficult to
understand because 1) the relationships between species
(mutualism, commensalism, or facultative symbioses) are difficult
to determine, and 2) interacting does not necessarily mean cause
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and effect. To this end, in silico simulation approaches provide a
means for describing, understanding, and optimizing microbial
systems in diverse environments. Approaches using individual-
based modeling (IBM) in which microbes and their interactions are
defined, and the temporal-spatial evolution of the system is simulated,
are becoming increasingly powerful. For example, BacArena models
individual microbes using flux-balance analysis and simulates their
interactions and community evolution using IBM. This approach has
been used to obtain insights into Pseudomonas aeruginosa biofilm
formation and a seven species community of the human gut (Bauer
et al., 2017). Martin et al. (2012), integrated Dynamic Energy Budget
(DEB) theory into IBM to enable exploration of the evolution and
dynamics of both individual microbes and their community as a
function of the set of DEB parameters of each species and their
interactions with their environment (Martin et al., 2013; García-
Jiménez et al., 2021). Applying these IBM approaches to lignin-
associated microbial communities may be an effective strategy
towards optimizing synthetic microbial consortia for lignin
valorization.

Discussion

In this article we argue that the isolation, enrichment, and de novo
design of microbial communities can provide solutions to some of the
issues associated with the structural diversity and recalcitrance of
lignin for valorization purposes. While there are many publications on
the use of microbial consortia for lignocellulose conversion, there are

fewer reports on the use of natural or engineered consortia strictly for
lignin conversion. This alone indicates significant challenges to obtain
efficient processes for the microbial conversion of lignin, such as
limitations in methods and tools available for systematically
assembling and assessing microbial communities.

From the examples discussed here, it is evident that considerable
progress has been made in terms of proving that microbial conversion
of lignin is a feasible approach. Nevertheless, the different temporality
in lignin breakdown (mostly performed by slow-growing fungi) and
assimilation (ideally performed by fast growing bacteria) could be one
of the main hurdles to overcome when testing and designing a
bioprocess. For example, if one organism is engineered to achieve
high yields of a product, its ability to grow efficiently in a challenging
environment may be negatively impacted. In order to maximize
carbon assimilation and conversion of lignin-derived compounds to
a high-value product by a specific organism, it may be desirable to have
organisms that do not consume the depolymerized fragments, which
can prove challenging given their scavenging nature and diverse
metabolism (del Cerro et al., 2021). This would add the
requirement of having an additional carbon source for those
“cutter” organisms and possibly use genetic engineering to
inactivate some of their natural assimilation pathways. Therefore,
biorefinery streams that are lignin-rich but also contain traces of
sugars and other assimilable components could be a more compelling
substrate than high purity lignins.

Finally, if multiple species of fungi are included in a consortium, it
may be necessary to perform compatibility assays due to the known
extensive secretion of potentially toxic metabolites and enzymes.

FIGURE 1
A concept for building a synthetic microbial community for conversion of lignin to valuable products. Cutters represent fungi that secrete lignin
degrading enzymes, scavengers represent microbes that catabolize lignin fragments and potentially convert them to a shareable intermediate, and
manufacturers represent engineered hosts that convert either lignin fragments or a shared intermediate to bioproducts. The arrow at the bottom depicts
hurdles that may be present at various stages of the conversion process.
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Depending on the application, it will also be necessary to differentiate
between a community that is able to share a number of metabolic
intermediates and a co-culture of organisms where different species
individually convert a substrate to different products. Considering the
rising interest from the scientific community on the biological
valorization of lignin and the important progress reported in recent
years, we are confident that these hurdles will be overcome.
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