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The introduction of single-cell RNA sequencing (scRNA-
seq) opened a new era in cell biology, where cellular identity and 
heterogeneity can be defined by transcriptome data [1]. One 
cell type with tremendous phenotypic and functional heteroge-
neity is neurons in the brain. Indeed, scRNA-seq has revealed 
diverse neuronal cell types in the mouse brain [2]. However, cell 
isolation by enzymatic tissue dissociation may damage neurons, 
and most human brain samples are not available as fresh tissues. 
Among the alternative approaches attempted, the isolation of 
single nuclei and subsequent RNA sequencing have enabled high-
throughput transcriptome profiling at a single-cell resolution 
[3,4]. In addition to neurons, single-nucleus RNA sequencing 
(snRNA-seq) has been applied to diverse hard-to-dissociate tissues 
and cell types, including the kidney, heart, liver, adipocytes, 
and myofibers [5-9]. For most tissues, snRNA-seq is more pow-
erful at recovering attached cell types, whereas scRNA-seq is bi-

ased towards immune cell types [5,10-12]. Moreover, the enzy-
matic dissociation required for scRNA-seq induces a stress 
response that alters the cellular transcriptome [9,10,13]. Using 
snRNA-seq can reduce cellular and stress response biases. The 
different gene expression fractions in the nucleus and cytoplasm 
make it necessary to generate snRNA-based data references, and 
these have recently been provided [14]. Combining scRNA-seq 
and snRNA-seq data will enable more comprehensive tran-
scriptome profiling and cell-type annotation in tissues. 

EXPERIMENTAL PROCEDURES FOR 
SINGLE-NUCLEUS RNA SEQUENCING

snRNA-seq was developed as a method to obtain transcrip-
tome data from cells that cannot be successfully dissociated due 
to their size and/or fragility, such as neurons, adipocytes, and epi-
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thelial cell types from the kidney (Fig. 1A). Multi-nucleated cells, 
such as trophoblasts, osteoclasts, and skeletal myocytes, can be 
inimitably interrogated using snRNA-seq. Archived frozen tis-
sues with broken cell membranes are also the primary targets of 
this method. The isolation of single nuclei, instead of whole cells, 
is achieved by cell membrane lysis, and nuclear transcriptome 
data are generated using scRNA-seq workflows (Fig. 1B). Both 
chemical and mechanical forces are used for cell membrane lysis. 
Competent buffers with nonionic detergents that disrupt cell 
membranes, but preserve nuclear membranes, have been tested for 
nuclear isolation [12]. Mechanical force is exerted using a Dounce 

homogenizer or other types of tissue lysers. To obtain high-quality 
nuclei containing transcripts, the buffers and wash conditions 
are important and need to be optimized for different tissue types. 
The inclusion of bovine serum albumin and a high concentration 
of RNase inhibitors, during and after the isolation process, is 
critical. After isolation, nuclear morphology indicative of intact nu-
clei are confirmed by microscopy at 40–60 × magnification (Fig. 
1C). Overlysis results in clumping and poor transcript recovery, 
whereas under-lysis causes contamination by cytoplasmic RNAs.

In addition to the isolation of intact nuclei, brain tissues require 
an additional clean-up process to remove excessive myelin debris. 

Fig. 1. Summary of the single-nucleus RNA sequencing (snRNA-seq) experimental process. (A) Representative cell types and tissues fit for 
snRNA-seq–based transcriptome profiling. (B) Experimental workflow to isolate intact nuclei for snRNA-seq. Frozen tissue is dissected, 
chemically and mechanically lysed, and then filtered to obtain a single-nucleus suspension. Sucrose gradient centrifugation or flow cytometry 
analysis is used for nuclei enrichment (Optional). After reverse transcription and amplification, a cDNA library is constructed for sequencing. 
(C) Representative image of extracted nuclei stained with Trypan blue. High-quality (blue arrowhead) and poor-quality (red arrowhead) nuclei 
are marked. Scale bar = 20 μm. FACS, fluorescence-activated cell sorting; FSC, forward scatter; SSC, side scatter.
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Iodixanol (OptoPrep, San Diego, CA, USA) or a sucrose gradient 
[15], a myelin removal column (Miltenyi, Bergisch Gladbach, 
Germany), and sorting by flow cytometry have been used for this 
extra clean-up process (Fig. 1B). The most frequently used buffer 
recipe for neurons in the brain is a combination of 250–320 mM 
sucrose and a low-concentration of non-ionic detergent, whereas 
the commercial EZ Prep Kit (Sigma, St. Louis, MO, USA) is the 
method of choice for kidney preparations. Sorting by flow cytom-
etry is not recommended for kidney tissue. The use of commercial 
buffers other than EZ Prep, such as those from 10 × Genomics 
(Pleasanton, CA, USA) is also increasing, because of the minimal 
optimization requirement. Studies providing nuclear isolation 
protocols for snRNA-seq are listed in Table 1. The details of the 
buffer recipes and complete protocols can be found in these pub-
lications.

SINGLE-NUCLEUS RNA SEQUENCING DATA 
PROCESSING AND ANALYSIS

The data analysis pipeline for snRNA-seq is similar to the pipe-
line used for scRNA-seq (Fig. 2A). The most frequently used se-

quencing procedure for snRNA-seq is Chromium 3' scRNA-
seq (10 × Genomics), and the sequencing read mapping process 
(Cell Ranger 7.0, 10 × Genomics) currently used is identical for 
scRNA-seq and snRNA-seq. During this process, both exonic 
and intronic reads that map the sense orientation to a single gene 
are used for gene counting using the default option. In previous 
Cell Ranger versions, intronic mapped reads were not used for 
the default read count option in the scRNA-seq pipeline, and the 
option parameter, “--include-introns = true” needed to be added 
for snRNA-seq read counting. The inclusion of intronic reads in 
snRNA-seq is critical, as more than 50% of nuclear RNAs are 
typically intronic compared to 15%–25% of total RNAs [13,16]. 
Immune cell populations such as neutrophils and other granulo-
cytes are more likely to be identified when intronic reads are in-
cluded. Detection of neutrophils is difficult because of their low 
RNA content and low gene count [17]. Since neutrophils have a 
higher amount of introns compared to other cell types [18,19], 
the inclusion of intronic reads may enhance the recovery of neu-
trophils. According to the guideline by 10 × genomics, experi-
mental steps are also important to enhance the neutrophil recov-
ery such as immediate processing, sample preparation at room 

Table 1. Representative studies reporting nuclei isolation protocols for the single-nucleus RNA sequencing

Tissue type PMID Nuclei extraction buffer components and additional nuclei clean up stepsa

Frozen human brain 26890679 250 mM Sucrose/0.1% Tritonx-100/optional iodixanol gradient/FACS
Frozen human brain 27339989 1% NP40 or nuclear extraction buffer (320 mM sucrose, 0.1% Triton X-100)/iodixanol gradient
Frozen human/mouse brain 28846088 EZ lysis buffer
Mouse brain 29220646 250 mM Sucrose/0.1% Tritonx-100/sucrose gradient
Frozen human/mouse brain 31932797 0.025% NP-40/sucrose gradient
Mouse 32507042 10 × Genomics reagent and protocol
Human brain 32997994 320 mM Sucrose/0.1% Igepal (0.1%)/iodixanol gradient
Frozen human/mouse brain 33495627 1% Formaldehyde fixation/100 mM sucrose/0.5% Triton-X-100/sucrose gradient
Frozen human brain 33972803 0.05% NP-40/iodixanol gradient
Human kidney 31249312 320 mM Sucrose/0.1% Triton X-100
Human kidney 31506348 EZ lysis buffer
Mouse kidney 30510133 EZ lysis buffer
Mouse kidney 32571916 EZ lysis buffer
Mouse kidney 32673289 EZ lysis buffer
Mouse kidney 33239393 EZ lysis buffer
Mouse kidney 33444290 EZ lysis buffer
Mouse kidney 34155061 EZ lysis buffer
Mouse heart 30939177 320 mM Sucrose/0.2% Triton-X-100
Brown adipose tissue 33116305 0.1% CHAPS (human) or EZ lysis buffer (mouse)
Human panscreas 33212097 250 mM Sucrose
Mouse skeletal muscle 33311464 250 mM Sucrose/0.4% Triton-X100/FACS
Mouse skeletal muscle 34382019 0.1% NP-40/FACS
Human liver 34792289 CST/NST/TST 
Human liver 35581624 0.1% IGEPAL
Human tumor 32405060 EZ lysis buffer or ST (salts and tris) with 0.49% CHAPS (CST), with 0.03% Tween20 (TST) or with 0.2% NP-40 (NST)

FACS, fluorescence-activated cell sorting.
aCell membrane disruption was achieved using isotonic sucrose and/or a nonionic detergent. The other buffer components were omitted from the analysis.
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Fig. 2. Summary of single-nucleus RNA sequencing (snRNA-seq) and single-cell RNA sequencing (scRNA-seq) analyses. (A) Schematic 
workflow of snRNA-seq and scRNA-seq analysis processes. (B) Distribution of confidently mapped snRNA-seq and scRNA-seq reads. 
Transcriptome, the fraction of reads mapped to the exons of an annotated transcript. Genome, fraction of reads mapped to exonic and non-
exonic loci. PC, principal cells; PCA, principal component analysis; UMAP, uniform manifold approximation and projection.

temperature, increasing polymerase chain reaction cycles during 
cDNA amplification, adding RNase inhibitors in the wash and 
suspension buffers, and enrichment by fluorescence-activated cell 
sorting into 0.04% bovine serum albumin solution in scRNA-
seq [20].

From the filtered cell by gene matrices of snRNA-seq data, fur-

ther quality control (QC) filtering, normalization, feature selec-
tion, scaling, dimensional reduction, and clustering can be per-
formed for cell-type annotation, as in scRNA-seq data analyses. 
Mitochondrial or ribosomal gene contents, which are often used as 
QC parameters for scRNA-seq, are not robustly used in snRNA-
seq, as mitochondria and ribosomes are excluded during the ex-
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perimental procedure. The differences in sequencing reads be-
tween scRNA-seq and snRNA-seq are shown in Fig. 2B. 

Differential expression analysis using bulk RNA sequencing 
data has demonstrated a high correlation between nuclei and 
whole-cell samples [21,22]. However, at the single-cell or single-
nucleus levels, cell-to-cell or nucleus-to-nucleus correlations de-
crease and replicate variations become larger than the bulk samples 
[22]. Direct comparisons of matched scRNA-seq and snRNA-seq 
data from S1 cortex neurons have demonstrated differences in 
genomic read mapping to coding sequences, introns, or untrans-
lated regions [23]. Significant gene length bias exists, such that 
nuclear-biased genes show a length of 17 kb compared with 188 
kb for genes detected in both whole cells and nuclei. The total 
gene expression correlation between single-cell and single-nucleus 
data ranges from 0.21 to 0.74. In a study of adipocytes, the aver-
age gene expression correlation between whole-cell and nuclei 
data for white cells was found to be 0.5 or 0.6 (after normalization) 

Fig. 3. Comparison of cell types detected by single-nucleus RNA sequencing (snRNA-seq) and single-cell RNA sequencing (scRNA-seq). (A) 
Uniform manifold approximation and projection (UMAP) plots of snRNA-seq and scRNA-seq data for the human kidney. A bar plot repre-
senting the percentages of annotated nuclei and cell identities. AMB, ambiguous; CD, collecting duct; DT, distal tubule; IC, intercalated cells; 
LH, loop of Henle; LOH (AL), loop of Henle, ascending limb; LOH (DL), loop of Henle, distal limb; NK, natural killer; PC, principal cells; PT, 
proximal tubule. (B) UMAP plots of snRNA-seq and scRNA-seq data for lung tumors from a lung cancer patient.

[24]. Despite the relatively low correlations, diverse batch cor-
rection algorithms allow the co-clustering of identical cell types 
at a global scale in scRNA-seq and snRNA-seq data [24]. 

While data integration allows the combined clustering analysis 
of scRNA-seq and snRNA-seq data, direct comparisons of the 
two are difficult because of the differences in cellular and nuclear 
gene expression patterns. In addition, over-representation of im-
mune cells by scRNA-seq and the superior representation of 
epithelial cell types by snRNA-seq suggest that complementary 
analysis is more appropriate than integrated analysis (Fig. 3).

SPECIFIC TISSUE OR CELL 
TYPE APPLICATIONS

Neurons in the brain 

A high-throughput snRNA-seq protocol has been described 
for transcriptomic analysis of individual neurons from archived 
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postmortem human brain tissues [25]. Before the introduction of 
high-throughput applications, low-throughput methods, such as 
intracellular tagging by transcription in vivo analysis [26] and 
extraction of the cytoplasmic contents using a glass microcapil-
lary [27,28] or laser-capture microdissection [29] were explored, 
along with low-throughput snRNA-seq [22]. Lake and colleagues 
[4] applied snRNA-seq and identified 16 neuronal subtypes of 
the cerebral cortex from a postmortem brain. 

Currently, snRNA-seq is extensively used to determine brain 
cell type complexity. The U.S. government’s Brain Research 
Through Advancing Innovative Neurotechnologies (BRAIN) 
Initiative [30] launched a project known as the BRAIN Initia-
tive Cell Census Consortium to pursue a comprehensive human 
brain cell atlas [31]. These resources will serve as a reference for 
delineating brain functions and alterations in neurodegenera-
tive and neurological diseases. To construct the brain cell atlas, 
electrophysiological, morphological, and transcriptional features 
were used for neuronal cell type specifications, signifying the im-
portance of transcriptome-based cell type annotation in functional 
and anatomical contexts. Transcriptome-based neuronal identi-
fication was accomplished using both scRNA-seq and snRNA-
seq [31] after regional dissection. Due to the under-representation 
of neuronal cell types in scRNA-seq data and the availability of 
frozen postmortem brains, more recent cell applications have con-
centrated on snRNA-seq.

Nonetheless, differences in the nuclear and cytoplasmic gene 
expression patterns, and limitations of snRNA-seq in the capture 
and characterization of non-neuronal cell types [32] necessitate 
the complementary use of scRNA-seq and snRNA-seq for cell 
type identification in the brain.

Epithelial cells in the kidney

Whereas the studies agree that average nephron number is ap-
proximately 900,000 to 1 million per kidney, numbers for indi-
vidual kidneys range from approximately 200,000 to > 2.5 mil-
lion [33]. Each nephron contains a glomerulus, which is a bundle 
of vessels through which waste materials are filtered from the 
blood. The glomerulus is enclosed in Bowman’s capsule, and fil-
tered water, ions, and small molecules are collected in Bowman’s 
space. Podocytes in the epithelial lining of the Bowman’s capsule 
wrap around the capillaries of the glomerulus and leave filtration 
slits between them. Filtered materials leave Bowman’s space 
through a proximal tubule where reabsorption occurs. Epithelial 
cells lining the proximal tubule are covered with dense microvilli 
to facilitate transport. The modular characteristics of the kidney 
make biopsy an accessible and efficient sampling method for the 

characterization of the glomerulus. 
Glomerular cell types in the kidney have been characterized 

using both scRNA-seq and snRNA-seq protocols. For the mouse 
kidney, an snRNA-seq experimental protocol yielded 20-fold 
more podocytes than an scRNA-seq protocol [9,34]. The Kidney 
Precision Medicine Project developed a reference tissue atlas for 
the human kidney with single-cell resolution and spatial context 
[35]. Rare epithelial cell types and states can be captured by sn-
RNA-seq; however, immune components in the kidney are not 
well captured by snRNA-seq (Fig. 3A) [36]. Thus, the kidney 
atlas data incorporate snRNA-seq and scRNA-seq data for tissue 
atlas generation [37]. 

Tumors from frozen tissues

A diverse range of solid tumor tissues have been subjected to 
scRNA-seq, and the biological features of tumor cells and their 
surrounding microenvironments have been extensively studied. 
However, scRNA-seq data shows a heavy bias towards immune 
cell types when compared with bulk tissue data after cell type de-
convolution (Fig. 3B). The use of snRNA-seq data may resolve 
this problem [12]. Side-by-side comparisons of scRNA-seq and 
snRNA-seq analyses of hepatocellular carcinoma [38] demon-
strated the predominant capture of hepatocytes and carcinoma 
cells in snRNA-seq data compared with the immune cell-domi-
nant landscape in scRNA-seq data. In a pancreatic cancer study, 
a combination of snRNA-seq and digital spatial profiling re-
vealed that gene expression programs in malignant tumor cells 
and fibroblasts were enriched after chemotherapy and radiother-
apy [39]. In addition to tumor-centric data analysis, snRNA-seq 
can be performed on longitudinal samples stored as frozen tissues. 
Similar to brain and kidney examples, immune cells in the tumor 
microenvironment can be efficiently captured by scRNA-seq.

CONCLUSION

Transcriptome-based cell type profiling by scRNA-seq has re-
markably enhanced our understanding of cellular diversity. While 
scRNA-seq shows good performance at capturing immune cell 
diversity, the cellular landscape depicted is biased against for at-
tached cell types and is missing fragile cells. In most tissues, sn-
RNA-seq can be used to obtain more information about these 
cell types, including epithelial cells, fibroblasts, neurons, and ad-
ipocytes. In addition, snRNA-seq can be used for frozen tissues, 
such as postmortem brain and archived tumor samples. After the 
successful isolation of nuclei, experimental and analysis pipelines 
used for scRNA-seq can be adopted for snRNA-seq. In the anal-
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ysis, data from the two methods should be combined with cau-
tion, considering the differences in cellular and nuclear RNA gene 
expression patterns. 
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