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In the Convolvulaceae family, around 1650 species belonging to 60 genera are

widely distributed globally, mainly in the tropical and subtropical regions of

America and Asia. Although a series of chloroplast genomes in Convolvulaceae

were reported and investigated, the evolutionary and genetic relationships

among the chloroplast genomes of the Convolvulaceae family have not been

extensively elucidated till now. In this study, we first reported the complete

chloroplast genome sequence of Ipomoea pes-caprae, a widely distributed

coastal plant with medical values. The chloroplast genome of I. pes-caprae is

161667 bp in length, and the GC content is 37.56%. The chloroplastic DNA

molecule of I. pes-caprae is a circular structure composed of LSC (large-

single-copy), SSC (small-single-copy), and IR (inverted repeat) regions, with the

size of the three regions being 88210 bp, 12117 bp, and 30670 bp, respectively.

The chloroplast genome of I. pes-caprae contains 141 genes, and 35 SSRs are

identified in the chloroplast genome. Our research results provide important

genomic information for the molecular phylogeny of I. pes-caprae. The

Phylogenetic analysis of 28 Convolvulaceae chloroplast genomes showed

that the relationship of I. pes-caprae with I. involucrata or I. obscura was
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much closer than that with other Convolvulaccae species. Further comparative

analyses between the Ipomoea species and Cuscuta species revealed the

mechanism underlying the formation of parasitic characteristics of Cuscuta

species from the perspective of the chloroplast genome.
KEYWORDS
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Introduction

Ipomoea. pes-caprae, which belongs to the Convolvulaceae,

grows on coastal beaches and dunes throughout the tropical and

subtropical areas of the world (Devall, 1992). This species has a

high-speed growth rate and long-trailing stems, being one of the

earliest species to colonize newly deposited dunes, contributing to

the initial stabilization of sand (Devall and Thien, 1989). I. pes-

caprae is widely distributed in southeast coastal areas of China, is

found on tropical and subtropical beaches, and belongs to

associated mangrove plants. It is common in Zhejiang, Fujian,

Guangdong, Guangxi, and Taiwan. I. pes-caprae is evergreen all

year round, with a particular leaf shape, strong growth potential,

long flowering, and fruiting period. It has flowers almost all year

round with bright colors. Its capsule is spherical, its pericarp is

leathery, and its leaves, flowers, and fruits are of high ornamental

value. The root system of I. pes-caprae is deeply grown into the soil

to be used for sand fixation or covering plants on the beach.

Recently, the medicinal value of I. pes-caprae has attracted the

attention of researchers. It has been reported that the chemical

components from I. pes-caprae have a wide range of biological

activities for their antioxidant, analgesic and anti-inflammatory,

antispasmodic, antinociceptive, antihistaminic, immunostimulant,

insulinogenic, hypoglycemic antimicrobial, antifungal, and

antibacterial characteristics (Bragadeeswaran et al., 2010).

Moreover, previous studies have reported that I. pes-caprae could

be used to inhibit platelet aggregation, diarrhea, vomiting, and piles

(Manigauha et al., 2015).

Chloroplast is a vital organelle for green plants on earth to

convert light energy into chemical energy (Jagendorf and Uribe,

1966; Neuhaus and Emes, 2000). The photosynthesis processes in

the chloroplast are strictly regulated by a complex group of genes

(Price et al., 2012). In plants, three organelles contain their

genomes, nucleus, mitochondria, and chloroplast. The

chloroplast genomes are highly conserved in genome structure,

gene order, gene content, and gene number (Mira et al., 2018).

Therefore, the chloroplast genomes were widely used as a valuable

information resource for investigating the evolutionary history

and taxonomic confirmation of land plants (Timme et al., 2007;

Dong et al., 2014; Curci et al., 2015; Ellegren et al., 2015; Ju and

Gao, 2016; Mira et al., 2018). The chloroplast genome is a circular
02
double-stranded DNA molecule with a size of 120-180 KB, which

is circular and consists of a large single-copy (LSC) region and a

small single-copy (SSC) region separated by a pair of inverted

repeats (Ozeki et al., 1989; Jansen et al., 2005; Petit et al., 2005;

Funk et al., 2007; Jansen and Ruhlman, 2012). The chloroplast

genome of land plants contains protein-coding genes and non-

protein-coding genes. The protein-coding genes are mainly

involved in photosynthesis and protein translation, and only a

few are related to the transcription in the chloroplast. The non-

protein-coding genes are the tRNA genes, whose transcripts are

the transporters of amino acids in the peptide elongation, and the

rRNA genes, composed of the ribosome (Jansen et al., 2005). The

chloroplast genome can replicate by itself inside the chloroplast

organelle. However, information communication and substance

exchange with cytosol are critical for this biological event, and the

genetic orders from the nuclei supervise all the metabolism in the

chloroplast (Bulychev and Komarova, 2015).

In this study, the complete chloroplast genome sequence of I.

pes-caprae was assembled, annotated, and comparatively

analyzed. The results show that the length of the chloroplast

genome is 161,667 bp with a GC content of 37.56%. The

chloroplast genome of I. pes-caprae has a canonical structure,

which is circular and composed of LSC, SSC, and IR regions,

containing 136 annotated genes. The chloroplast genomes of 26

Convolvulaceae species, including 14 Cuscuta species and 12

Ipomoea species, were used for phylogenetic analysis and

comparative analyses in codon preference and gene number,

and gene content. Phylogenetic analysis showed that the

relationship of I. pes-caprae with I. involucrata or I. obscura

was much closer than that with other Convolvulaccae species.

The phylogenetic and gene content analyses of Convolvulaccae

species also provided new insight into the evolution of parasitic

characteristics of Cuscuta species.
Materials and methods

Plant materials and DNA extraction

The I. pes-caprae L. plants used for this study were naturally

growing on the beach located in Changle, Fuzhou (Latitude 25°,
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54’, 33˝ N, Longitude 119°, 40’, 42˝ E), Fujian, China. The leaf

materials were used for DNA extraction using the modified

CTAB method (Li et al., 2013).
Chloroplast genome assembly
and annotation

The genomeDNA samples were subject to SMART laboratory

construction and then sequenced on the PacBio Sequel II

sequencing platform. The CCS (Circular Consensus Sequence)

reads corresponding to the chloroplast genome were extracted by

mapping all the reads to the chloroplast genomes of all the

Convolvulaceae species with Bowtie 2 (Langmead and Salzberg,

2012). Subsequently, the resulting CCS reads were considered to

be derived from the chloroplast genome and were used for

chloroplast genome assembly using Canu (V2.2) software (Nurk

et al., 2020). The complete chloroplast genome sequences were

annotated using the program PGA (Qu et al., 2019). Both tRNAs

and rRNAs were identified by BLASTN and BLASTP by searching

against the references composed of all the available chloroplast

genomes of Convolvulaceae species. The annotation results were

checked manually, and the codon positions were adjusted by

comparing them to a previously homologous gene from various

chloroplast genomes. The circular chloroplast genome map was

drawn by the program Chloroplot (Zheng et al., 2020). The

assembly and annotation of the chloroplast genome were

submitted to NCBI (Accession No: MZ557416).
Repeat sequence identification

Repeat elements in chloroplast genomes of I. pes-caprae were

investigated using two different programs. The program

MicroSAtellite identification tool (Katoh et al., 2002), (Beier et al.,

2017) was used to identify the SSR repeat, setting the parameters

with thresholds of 10, 5, 4, 3, 3, and 3 repeat units for mono-, di-,

tri-, tetra-, penta-, and hexa-nucleotides, respectively. The program

REPuter was used to detect the repeat sequences within the

chloroplast genome (Kurtz et al., 2001). Four types of repeats,

including forward repeats, reverse repeats, complement repeats, and

palindromic repeats, were investigated in this analysis.
Phylogenetic analysis

The chloroplast genome sequences of 26 Convolvulaccae

species, including 14 Cuscuta species and 12 Ipomoea species,

were used for phylogenetic analysis using three model species as

outgroups (Arabidopsis thaliana, Amborella trichopoda, and

Oryza sativa). The taxonomical details of the investigated

species and the accession numbers of their chloroplast genome

are listed in Supplementary Table 1. To accurately identify the
Frontiers in Plant Science 03
phylogenetic position of I. pes-caprae, two phylogenetic trees

were constructed based on the complete chloroplast genome

sequences and the protein sequences, respectively. The

alignment was conducted by MAFFT (Katoh et al., 2002), and

the phylogenetic trees were constructed by MEGAX using

Maximum Likelihood methods (Kumar et al., 2018).
Comparative analysis of chloroplast
genomes

To investigate the sequence divergence among Ipomoea

species chloroplast genomes, The chloroplast genome of I. pre-

caprae generated in this study, together with 11 released

Ipomoea chloroplast genomes retrieved from NCBI, were used

for comparative analysis. The sequences were aligned using the

mVISTA program with Shuffle-LAGAN mode (https://pgrc.ipk-

gatersleben.de/misa/) (Frazer et al., 2004).
Identification of SNPs and
hypervariable regions

To identify the SNPs and hypervariable regions within the

chloroplast genome of I. pes-caprae in comparison with other

Ipomoea species, the chloroplast genomes of other Ipomoea were

aligned to the chloroplast genome of I. pes-caprae using MAFFT

(Katoh and Standley, 2013). The nucleotide diversity (Pi) along the

chloroplast genome was calculated using DnaSP version 5 software

(Librado, 2009) with sliding window analysis. The window length

was set to 800 base pairs, and the step size was set to 50 base pairs.
Results

Chloroplast genome assembly and
annotation of I. pes-caprae

Using the PacBio Sequel II sequencing platform, 23252902

whole-genome long reads of I. pes-caprae were produced for

genome assembly (unpublished project), and the mean read

length is around 14 kb. Converted raw reads to CCS reads of the

whole genome, the reads number from 23252902 to 1467275

(Supplementary Table 2). The chloroplast genome size of 161667

bp of I. pes-caprae was derived from the Canu program

assembly. The I. pes-caprae complete chloroplast genome had

a typical circular structure and with typical quadripartite

organization consisting of the four conserved constitute

regions, a pair of 30670 bp inverted repeats (IRs 30670 bp), an

88210 bp long single-copy regions (LSC), and a 12117 bp short

single copy region (SSC) (Figure 1; Supplementary Table 3).

A number of 136 functional genes were identified in the

chloroplast genome of I. pes-caprae, including 86 protein-coding
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genes, 42 tRNA genes, and 8 rRNA genes (16S, 23S, 5S, and 4.5S)

(Figure 1; Table 1). According to their functions, the 136 I. pes-

caprae chloroplast genes were assigned into three categories: Most

protein-coding genes are related to photosynthesis. There are 45

genes in this category, including genes encoding subunits of ATP

synthase, subunits of photosystem II, subunits of cytochrome b/f

complex, subunits of NADH-dehydrogenase, assembly/stability of

photosystem I, subunits of photosystem I, subunits of

photosystem II, cytochrome c synthesis (ccsA), photosystem

biogenesis factor 1 (pbf1), and subunit of rubisco (rbcL). The

second category consists of 86 genes associated with chloroplast

transcription and translation, including protein-coding genes

encoding the large subunits of the ribosome, the small subunits

of ribosomal proteins, DNA-dependent RNA polymerase, and

translational initiation factor, and two types of non-coding genes,

i.e., rRNA genes, tRNA genes. And the rest of the four genes were

classified as other genes because of their unique or unknown

function, including matK with function in RNA processing and 3

conserved open reading frames (ycf1 and ycf2×2) encoding

proteins of unknown function (Table 1; Supplementary File 3).
The sequence repeats in I. pes-caprae
chloroplast genome

The sequence repeats widely exist in eukaryotic genomes,

and the simple sequence repeat (SSR) is the most abundant and
Frontiers in Plant Science 04
typical repeat type. SSRs in chloroplast genomes exhibit high

copy numbers, which play an essential role in genome

rearrangement and recombination and are important

molecular markers in plant phylogenetic and evolutionary

studies (Kuang et al., 2011; Yang et al., 2011; Jiao et al., 2012;

Xue et al., 2012). From the perspective of evolution, the

differences in repetitive sequences among species resulted from

natural selection (Huang et al., 2021). 35 SSRs were identified in

the chloroplast genome of I. pes-caprae (Supplementary

Table 4): 32 are A/T single nucleotide repeats, and one is the

TA dinucleotide repeat. Notably, there was no di, tri-, tetra-,

penta-, or hexanucleotide repeat detected in the chloroplast

genome of I. pes-caprae. The longer sequence repeats within

the chloroplast genome were identified using Reputer 2.0

software. As a result, 50 repeats consisting of 26 forward and

24 palindromic repeats were obtained, while no complement or

reverse repeats were detected (Supplementary Table 5). The

largest repeat unit with a size of 30670 bp is the inverted

repeats of chloroplast, which is essential for the chloroplast

structure organization. And the lengths of the rest of the

repeat units ranged from 119 and 242 bp. The repeat

information of the chloroplast genome of I. pes-caprae is

valuable for developing genetic markers for phylogenetic and

population studies (Nie et al., 2012).
Codon usage patterns in Ipomoea
chloroplast genomes

In evolution, species are affected by natural selection

pressure and genetic drift, resulting in differences in the use

frequency of most genetic codons. Thus, the different genomes

might have specific codon preferences (Hershberg and Petrov,

2008). In the complete chloroplast genome of I. pes-caprae,

There are 53889 codons within the protein-coding genes. The I.

pes-caprae chloroplast genome encoded all 20 amino acids, and

61 types of amino-acid codons were observed (Supplementary

Table 6). The UU-started codons are found to be more frequent

than the others (Supplementary Table 7). Among the 20 amino

acids, Leucine was the most abundant (number of codons

encoding Leucine = 5708, 10.59%), Serine was the second

abundant (number of codons encoding Serine = 4961, 9.21%),

while the rarest one is Tryptophan (713 codons, approximately

2.12%). Thirty-three codons were observed to be used more

frequently than the expected usage at equilibrium (RSCU

(Relative Synonymous Codon Usage) > 1), and 27 codons

showed the codon usage bias (RSCU < 1). However, the

frequency of use for the AUG (Methionine, start codon), UGG

(Tryptophan), ACC (Threonine), and GGU (Glycine) showed

no bias (RSCU = 1). In aspects of amino acids, most of them

have codon preferences, except for Methionine and Tryptophan

(Figure 2). And most of the 20 amino acids with at least two

codons, and the acids Arginine, Leucine, and Serine have six
FIGURE 1

Circular gene map of I. pes-caprae chloroplast genome. Genes
shown inside the circle are transcribed clockwise, and those
outside are transcribed counterclockwise. Genes belonging to
different functional groups are color-coded. The darker gray
color in the inner circle corresponds to the GC content, and the
lighter gray color corresponds to the AT content. LSC, SSC, and
IR are large single-copy regions, small single-copy regions, and
inverted repeat regions, respectively.
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codons. To investigate whether the codon usage preferences are

conserved among the species in the Ipomoea genus, the protein-

coding genes of the other 11 Ipomoea species, including I.

batatas (53822 amino acids), I. hederifolia (53791), I.

involucrata (53506), I. minutiflora (53729), I. murucoides

(53327), I. nil (53965), I. obscura (53749), I. purpurea (54015),

I. tricolor (53589), I. trifida (53711), and I. triloba (53916) were

investigated. As shown in Supplementary File 1, the codon usage

preferences of all the 11 investigated species showed a similar
Frontiers in Plant Science 05
tendency as that of I. pes-caprae (Supplementary File 1),

indicating the conservation of codon bias in the genus of

Ipomoea, which might be because that the ancestors of those

species underwent the shared evolutionary history.

The ENc plots are usually used to indicate the factors that

affect the codon bias. To understand the relative importance of

natural mutation and evolutionary selection in producing codon

usage patterns, ENc (Effective Number of Codons) values of four

Ipomoea species (I. pes-caprae, I. involucrata, I. murucoide, and
TABLE 1 The annotated genes in the chloroplast genome of I. pes-caprae.

Category for
genes

Group of gene Name of gene

Photosynthesis Subunits of ATP
synthase

atpA, atpB, atpE ,atpF, atpH, atpI

Subunits of
photosystem II

psbE, psbF

Subunits of
cytochrome b/f
complex

petA,petB,petG,petD,petL,petN

Subunits of NADH-
dehydrogenase

ndhA (×2),ndhB (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH (×2), ndhI, ndhJ, ndhK

Assembly/stability
of photosystem I

ycf3, ycf4

Subunits of
photosystem I

psaA, psaB, psaC, psaI, psaJ

Subunits of
photosystem II

psbA, psbB, psbC, psbD, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ

cytochrome c
synthesis

ccsA

photosystem
biogenesis factor 1

pbf1

Subunit of rubisco rbcL

Transcription and
translation

Large subunits of
ribosome

rpl14, rpl16, rpl2, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36

Small subunits of
ribosomal proteins

rps11, rps12 (×2), rps14, rps15 (×2), rps16, rps18, rps19, rps2, rps3, rps4, rps7 (×2), rps8

DNA dependent
RNA polymerase

rpoA, rpoB, rpoC1 (×2), rpoC2

Translational
initiation factor

infA

rRNA genes rrn16 (×2), rrn23 (×2), rrn4.5, rrn4.5, rrn5 (×2)

tRNA genes trnfM-CAU, trnI-CAU, trnI-CAU, trnA-UGC (×2), trnC-ACA, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-
GCC, trnH-GUG, trnI-GAU (×2), trnK-UUU (×2), trnL-CAA (×2), trnL-UAA, trnL-UAG, trnM-CAU (×4), trnN-GUU
(×3), trnP-UGG (×2), trnQ-UUG, trnR-ACG (×2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU (×2), trnT-
UGU, trnV-AAC, trnV-GAC (×2), trnV-UAC, trnW-CCA, trnY-GUA

Other genes maturase K matK

Conserved open
reading frames

ycf1,ycf2 (×2)

Genes with multiple copies were marked with (×2, ×3), indicating the genes had two or three copies.
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I. tricolor) were estimated and plotted against the GC3s values

(Figure 3). From the ENc plots, it is clear that the protein-coding

genes of the four species showed similar codon bias patterns.

Most of the genes were distributed on both sides of the standard

curve, and more than half of the genes were below the curve,

suggesting that the selection pressures predominantly influence

codon bias in the chloroplast genome of the Ipomoea species.
Frontiers in Plant Science 06
Photosynthesis-related genes are distributed most discretely,

suggesting that some other factors might influence the codon

bias, or maybe these genes are more conserved than self-

replication and other group genes.
Expansion and contraction of
the IR regions

Expansion and contraction of IR regions are common events

that frequently happen in the evolutionary history of land plants

(Raubeson et al., 2007; Kode et al., 2010; Yao, 2015). LSC/IR and

IR/SSC junctions are sometimes regarded as an index of

chloroplast genome evolution. The map illustrating the LSC/

IRb (JLB), IRb/SSC (JSB), SSC/IRa (JSA), and IRa/LSC (JLA)

boundaries/junctions of the 12 Ipomoea chloroplast genomes

was constructed according to heir chloroplast genome sequences

and annotation information (Figure 4). It is shown that the

chloroplast genome organizations are highly conserved across

the 12 Ipomoea species with only minor variations. The

chloroplast genomes of 12 species have similar sizes ranging

from 160072 bp (I. murucoides) to 161897 bp (I. nil). However,

the sizes of LSC, SSC, and IR are varied significantly. For

example, The lengths of IRs ranged from 8265 bp (I. tricolor)

to 31061 bp (I. triloba), and the size of IR of I. pes-caprae was

30670 bp. The LSC/IR and SSC/IR boundaries in all 12 Ipomoea
A B

DC

FIGURE 3

Enc plotted against GC3s of three Ipomoea species. The solid lines represented the expected curve of positions of genes when the codon
usage was only determined by the GC3s composition. Enc and GC3s plots for four Ipomoea species, including I pes-caprae (A), I involucrate
(B), I murucoides (C), and I tricolor (D).
FIGURE 2

The Condon preference of the chloroplast genome of I. pes-
caprae. Codon content of 20 amine acid and stop codons in all
protein-coding genes of the chloroplast genome of I. pes-caprae.
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species were distributed with different genes, and only a few

chloroplast genomes with consensus genes. The RS lines (the

boundary lines between IRb/IRb and SSC) were mainly located

between ycf1 and trnN.

On the contrary, the RL lines (the boundary lines between

IRa/IRb and LSC) were more variable than RS lines. Compared

to species of other genera, the LSC regions of I. involucrata, I.

murucoides, I. obscura, and I. tricolor have the expansion of ycf2

to the IR LSC region, decreasing IR length. On the other hand,

the SSC Regions of I. pes-caprae, I. nil, I. purpurea, and I. triloba

were concentrated compared to those of other species, with the

loss of ycf1 in the SSC regions. As previous studies suggested, the

expansion and contraction detected in the IR regions might be a

primary mechanism in the length variation of three regions
Frontiers in Plant Science 07
(LSC, SSC, and IR) of the chloroplast genomes in Ipomoea

species (Sun et al., 2019).
Phylogenetic analysis of chloroplast
genomes of Convolvulaceae plants

In order to understand the evolutionary relationships of I.

pes-caprae with the Ipomoea genus, the chloroplast genomes of

28 Convolvulaccae species and three outgroup species (A.

thaliana, A. trichopoda, and O. sativa) were used for

phylogenetic analysis. The complete chloroplast genomes were

downloaded from NCBI (National Center for Biotechnology

Information database) and used for constructing the
FIGURE 4

Comparison of the borders of the IR, SSC, and LSC regions among 12 chloroplast genomes of Ipomoea species. JLB, JSB, JSA, and JLA
represent the junctions of LSC/IRb, IRb/SSC, SSC/IRa, and IRa/LSC, respectively.
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phylogenetic trees. We first constructed the phylogenetic trees

based on the complete chloroplast genome sequences (Figure

S1). The Convolvulaccae species were classified into the Ipomoea

clade and the Cuscuta clade. The phylogenetic tree generated

based on completed chloroplast sequences showed consistent

relationships with taxonomical classification, suggesting

confidence in the phylogenetic analysis based on the

chloroplast genome. However, one of the outgroups species, A.

trichopoda, the base angiosperm, was not in the basal position in

the phylogenetic tree. One reason might be because of the

sequence variation of the non-coding sequences. To this end,

the sequences of orthologous single-copy genes were used to

construct a maximum likelihood tree. As shown in Figure 5, the

Basal Angiosperms, Monnocotes, and Diocts outgroups species

showed a clear taxonomical relationship, and the 12 ipomoea

species and 14 Cuscuta species were clustered into two clades.

Our results showed that the chloroplast genomes could be used

for constructing the phylogenetic tree reflecting the evolutionary

relationships of land plants, and the orthologous single-copy

genes sequence-based phylogenetic relationships based would be

much more confident than the complete chloroplast genome

sequences-based phylogenetic relationships.
Comparative analysis between Ipomoea
and Cuscuta species

Cuscuta spp plants are annual parasitic herbs, and most of

them are leafless, lack chlorophyll, and have a wide range of hosts

(Albert et al., 2008). By comparing the protein-coding genes

between Cuscuta and Ipomoea species, it’s evident that many
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genes were lost in Cuscuta species (Supplementary Table 8). In

Cuscuta species, onlyC. exaltatamaintains a few ndh (Subunits of

NADH-dehydrogenase) genes. The other 13 Cuscuta species

missed all of the ndh genes related to the photosynthesis

pathway (Figure 6; Supplementary File 2). The result of the

comparative analysis showed that C. boldinghii, C. erosa, and C.

strobilacea have the least number of genes, which are 31, 33, and

33, respectively, and C. exaltata has the most number of genes,

which is 67. Except for C. exaltata, other Cuscuta species don’t

have complete photosynthesis-related genes, such as the genes

coding subunits of cytochrome b/f complex, subunits of

photosystem I, and subunits of photosystem II. Therefore, it is

concluded that the loss of genes involved in photosynthesis in

Cuscuta chloroplast genomes happened gradually, and Cuscuta

species lost the photosynthesis ability to various extents, which is

consistent with their nutritional performance.
Chloroplast genome comparative
analysis between I. pes-caprae and other
Ipomoea species

We also analyzed their chloroplast genomes differences to

explore further the genetic relationship among the I. involucrata,

I. murucoides, and I. tricolor. The mVISTA program was used

for global alignment to exhibit the variation of the chloroplast

genomes in different regions using the genome sequence and

annotation of I. pes-caprae chloroplast as the reference

(Figure 7). The gene organization was highly conserved across

the four chloroplast genomes, with few variation regions,

consistent with previous studies (Nguyen et al., 2021). The
FIGURE 5

The phylogenetic relationships of the 26 Convolvulaceae species. Orthologous Single-copy genes phylogenetic tree of 26 Convolvulaceae
family species and three outgroups constructed using maximum likelihood (ML) algorithm.
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results also exhibited that the divergences in LSC and SSC

regions were higher than in IR regions. Besides, the sequences

in the coding regions tended to be more conserved, whereas

most of the variations detected were found in conserved non-

coding sequences (NCS). The sequences of exons had almost
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100% similarity throughout the four taxa. Among the coding

genes, the highly disparate sequences are the regions harbouring

rpl2, ycf2, ndhK, ndhD, and ycf1 genes.

To visualize the overall sequence divergence of the 12

Ipomoea species, the pi values of the chloroplast genome

sequence were calculated with a slide window length of 600 bp

and a step size of 100 bp. The sliding window pi plots showed

that the average pi value of the LSC (Pi = 0.008101) and SSC (Pi

= 0.054394) regions was much higher than that in the IR (Pi =

0.001942) regions, which showed that LSC and SSC regions

contained the most of the variation (Figure 8). The plots also

showed that the SSC region is hypervariable. Further

investigation revealed that most of the SSC region of I. pes-

caprae was much shorter than other Ipomoea species, indicating

an invasion of IRs to this region. These regions with higher pi

values are more variables that might experience rapid nucleotide

substitution and could be used to develop molecular markers for

identification and phylogenetic analysis (Lyu et al., 2020).
Discussion

The chloroplasts are the semi-autonomous organelles in

green plants, algae, and cyanobacteria. The main function of
FIGURE 7

The sequence diversity of the chloroplast genomes of three Ipomoea species. The sequence identity plot shows the diversity along the
chloroplast genome of I. involucrate, I. murucoides, and I. tricolor with I. pes-caprae as a reference using mVISTA. Gray arrows and thick black
lines above the alignment indicate genes with their orientation and the position of the IRs, respectively. The colors indicate the exon, UTR, and
conserved non-coding sequences (CNS) and mRNA regions. A cutoff of 70% identity was used for the plots, and the Y-scale represents the
identity percentage ranging from 50 to 100%.
FIGURE 6

The number of three types of genes in the chloroplast genome of
Cuscuta species. Red represents genes with other functions, green
represents photosynthesis-related genes, and blue indicates genes
involved in the self-replication of the chloroplast genome.
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chloroplast is to carry out photosynthesis converting the light

energy to chemical energy, which is critical for the autotrophic

characteristics of those species (Howe et al., 2003; Daniell et al.,

2021). Convolvulaceae is a family of about 60 genera and more

than 1,650 species of mostly herbaceous vines, trees, shrubs,

herbs, and the sweet potato and a few other food tubers (van

Ooststroom and Hoogland, 1953; Stefanović et al., 2003). In this

family, Ipomoea is the largest genus, with over 600 large diversity

species with common names such as morning glory, water

convolvulus or kangkung, sweet potato, bindweed, and

moonflower (Gunn, 1972). The Ipomoea species includes food

species. For example, I. batatas and I. aquatica are important

food sources for humans and animals (Meira et al., 2012;

Mohanraj and Sivasankar, 2014). Some other Ipomoea species,

for example, I. Carnea, I. quamoclit, I. jalapa, and I. simulans,

are renowned for their properties in folk medicine and herbalism

(Sharma and Bachheti, 2013; Paul and Sinha, 2016); Cuscuta is

another typical genus in the Convolvulaceae family, well-known

for their parasitism characteristics, It is composed of over 201

species of yellow, orange, or red (rarely green) parasitic plants,

comely found throughout the temperate and tropical regions of

the world, with the greatest species diversity in subtropical and

tropical regions (Machado and Zetsche, 1990). Since the Cuscuta

plants could not conduct photosynthesis and had to uptake

nutrition from the host plants, they became an ideal model

system for studying the communication between plants recently

(Hettenhausen et al., 2017; Shahid et al., 2018; Vogel et al., 2018;

Sun et al., 2018; Zhuang et al., 2018; Li et al., 2020). In this study,

the chloroplast genome of I. pes-caprae was assembled and

annotated, and comparative analyses of the chloroplast

genome of Convolvulaceae were conducted.
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The chloroplast genome phylogenetic trees were usually

used to describe the taxonomical and evolutionary

relationships among the plant species. The chloroplast genome

phylogeny revealed that 2 Cuscuta species (C. exaltata and C.

reflexa) were closely related to the Ipomoea species (Figure S1),

which conflicted with their taxonomic positions. While

constructing phylogenetic analysis, we found that the length of

their chloroplast genome severely influenced the positions of

specific species on the phylogenetic tree. The chloroplasts with a

similar genome size tend to have a closer phylogenetic

relationship. Since the chloroplast genomes of land plants are

conserved in gene order and organization, while the order of four

regions might be different for using different assembly and

annotation strategies, we reconstructed a phylogenetic tree

with a specific order (LSC-IRb-SSC-IRa). The new

phylogenetic tree was slightly different from the previous one.

However, two Cuscuta species, C. exaltata, and C. reflexa, were

still clustered close to Ipomoea species. The coding sequences are

much more conserved than the non-coding regions during

evolution. Therefore, the conservative single-copy genes of the

chloroplast genome were extracted and used to construct the

phylogenetic tree. As shown in Figure 5, C. exaltata and C.

reflexa were clustered together with other Cuscuta species, and

the phylogenetic relationships of the investigated species highly

correspond to their taxonomic relationships. These analyses

show that phylogenetic trees constructed based on the

conservative single-copy gene sequences are more credible

than the complete genome.

The diversity along the chloroplast genome was investigated

through pi plotting. The results showed that SSC regions of the

Ipomoea chloroplast were significantly diverse compared to the
FIGURE 8

Chloroplast genome comparative analysis between I. pes-caprae and other 11 Ipomoea species. Sliding window plots of nucleotide diversity (p)
across the complete cp genomes of I pes-caprae and other 11 Ipomoea species (window length: 600 bp, step size: 100 bp). Y-axes: nucleotide
diversity (p) of each window; X-axes: the position of the midpoint of a window.
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other areas. Since there are two orientations of the SSC in plant

chloroplast genomes (Cheng et al., 2020), which will interfere

with calculating the pi value, we extensively checked the SSC

orientation of the 12 Ipomoea chloroplast genomes. The

alignments map showed that the SSC orientation of I. pes-

caprae chloroplast was opposite from these of other Ipomoea

species (Supplementary Figure S2). Therefore, we reversed the

SSC region of I. pes-caprae and recalculated the pi value of the 12

Ipomoea chloroplast genomes. The pi plots still showed a

significant peak in the SSC regions. This analysis indicates that

high diversity in the SSC region is indeed excited in the Ipomoea

species. The mVISTA analysis showed the sequence variation

among three Ipomoea species, I. involucrata, I. murucoides, and

I. tricolor (Figure 7). There were many small blocks with low

identity in the SSC regions, especially in genes ycf1 and rpl32. We

can conclude that the SSC regions are highly diverse, attributed

to the diversity of the genes in these regions, such as ycf1

and rpl32.

The comparative analysis of the chloroplast genomes of

Ipomoea and Cuscuta species showed that Cuscuta species

belong to parasitic plants, and their chloroplast genomes were

shorter than their close relative Ipomoea species. Therefore the

missing genes of Cuscuta species could provide clues to

deciphering the evolutionary history of the parasite plants. In

the Cuscuta species, the CDS number is ranged from 31 to 67,

with an average of 54.85. However, the CDS number of Ipomoea

species is varied from 85 to 87, with an average of 85.4. There

were 16 CDSs (pbf1, ndhB, ndhH, ndhE, infA, ndhJ, ndhG, ndhC,

ndhA, ndhF, ycf15, rpl23, rps16, ndhK, ndhI, and ndhD) existing

in Ipomoea species but not existing in Cuscuta species. These

CDSs coding genes are mainly involved in photosynthesis. That

might explain the loss of the photosynthesis function of Cuscuta

species during evolution (Funk et al., 2007).
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