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Investigating the effects of 
gender and scaffolding in 
developing preschool children’s 
computational thinking during 
problem-solving with Bee-Bots
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The research community has embraced computational thinking as an essential 

skill to develop in school and academic settings. Many researchers argue that 

computational thinking should be developed in the context of programming 

and robotic activities in all educational levels of education, starting from early 

childhood education. However, the factors related to developing computational 

thinking in preschool education are still under study. Furthermore, not too 

many empirical investigations provide evidence about the development of 

computational thinking in young children. The present study examined the 

effects of scaffolding and gender in developing young children’s sequencing 

and decomposition skills - two of the five skills that constitute computational 

thinking. The results indicated statistically significant effects about the type 

of scaffolding on children’s computational thinking in favor of the children 

assigned to the experimental groups. Lastly, boys outperformed girls on all 

occasions, indicating that gender effects exist. The authors conclude that 

researchers need to design teaching interventions in such a way so they have 

mathemagenic outcomes for all learners irrespective of gender. Finally, the 

authors conclude with implications and future research directions.
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1. Introduction

Computational thinking is a core concept emerging from the principles and practices 
of the discipline of computer science and is an essential skill for the workforce of the 21st 
century (Wing, 2011; Sengupta et al., 2013; Fluck et al., 2016). It consists of several thinking 
skills applicable in different disciplines, focusing on problem-solving (Guzdial, 2008). 
Research shows that engaging children early in computational thinking activities can 
develop a more profound understanding of STEAM topics and computing concepts 
(Sengupta et al., 2013; Wilensky et al., 2014). STEAM (Science, Technology, Engineering, 
Arts, and Mathematics) is an educational approach that uses science, technology, 
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engineering, the arts, and mathematics to guide student inquiry, 
dialogue, and critical thinking during solving problems. 
Unfortunately, today there is a severe shortage of human resources 
in the STEAM areas, and the number of students choosing 
STEAM courses is experiencing a declining trend (Adams Becker 
et al., 2016; Bocconi et al., 2016; Genkova and Schreiber, 2021).

Researchers have argued the importance of promoting the 
development of computational thinking in all levels of education, 
including early childhood education (Wing, 2006; Barr and 
Stephenson, 2011; Grover and Pea, 2013; Smith and Burrow, 
2016). However, although empirical studies studied the 
development of computational thinking in elementary and high 
school settings, research in the development of computational 
thinking in preschool education is still in its infancy (Bers et al., 
2014; Angeli and Valanides, 2020).

Examining the current literature reveals that educators use 
robotics activities to teach computational thinking in early 
childhood education (Bers et  al., 2014; Angeli and Valanides, 
2020). Furthermore, the studies undertaken during the last decade 
show that the active manipulation of various robotics tools can 
enhance children’s learning experience (Ching et al., 2018). In 
addition, the use of robotics can advance the development of 
cognitive skills (Papert, 1980; Bers et  al., 2014), social skills 
(Clements, 1999; Sullivan and Bers, 2013), engineering and design 
skills (Druin et al., 2000; Bers, 2008), and in general children’s 
mental growth (Horn et  al., 2012). Therefore, programming 
within the context of robotic activities can support the 
development of children’s computational thinking skills (Papert, 
1980; Resnick et  al., 2005; Grover and Pea, 2013; Lye and 
Koh, 2014).

In this study, the authors designed and developed scaffolds for 
teaching young children how to program a low floor (i.e., easy to 
learn how to use) robotic device to perform particular tasks. The 
study also investigated the effects of gender on learners’ 
computational thinking. Consistent findings in the literature 
support the claim that gender differences influence students’ 
learning in STEAM activities (Pomerantz et al., 2002; Duckworth 
and Seligman, 2006; Sousa and Tomlinson, 2011). In particular, 
research findings in neuroscience show that the female and male 
brains have morphological variances resulting in more cortical 
areas devoted to verbal functioning for females and visual–spatial 
information processing for males (Baron-Cohen, 2004; Halpern 
et al., 2007). Consequently, girls are better at lingual and sensory 
memory tasks, and boys at visual memory tasks (Bonomo, 2010). 
Therefore, research findings show that girls perform better in 
complex reading and writing tasks, whereas boys in mental 
rotation tasks (Linn and Petersen, 1985; Voyer et al., 1995; Maeda 
and Yoon, 2013). However, these gender differences have not been 
examined within the context of learning with robotic devices and 
thus this research study will be  the first one to trial gender 
differences using Bee-Bots.

Regarding scaffolding, it is well documented in the literature 
that the use of scaffolding is essential to improve learning, 
primarily when the learning process encompasses technological 

tools (Azevedo and Hadwin, 2005; Angeli and Valanides, 2020). 
Moreover, scaffold provision, as it will further discussed in 
section 2.5. Scaffolding, is of great importance, especially for the 
learning of young students since in its absence, young learners 
may fail to complete a task (Henderson et al., 2002; Chen et al., 
2003; Rodgers, 2005; Mashburn et al., 2009; Van de Pol et al., 
2010; Belland, 2014). Accordingly, the authors investigated the 
interaction effect between gender and the type of scaffolding. In 
addition, they sought to examine whether different types of 
scaffolding differentially affected the development of boys’ and 
girls’ computational thinking.

2. Theoretical Background

2.1. Computational thinking

In the early days, computer scientists conceptualized the 
computer as a tool for science and a new way of thinking (Von 
Neumann, 1988; Denning, 2017). Recently, researchers showed a 
vital interest in computational thinking after Wing published her 
seminal article on the importance of computational thinking in 
2006. Specifically, in her article, Wing (2006) clearly explained the 
interconnection of computational thinking with many disciplines. 
Recently, research efforts emphasized the importance of 
introducing computational thinking in all scientific fields 
(Weintrop et al., 2016), literature (Burke and Kafai, 2012), arts, 
and music (Edwards, 2011). Additionally, among many other 
researchers, Grover and Pea (2013), Smith and Burrow (2016), 
and Yadav et  al. (2016) strongly argued for the systematic 
integration of the teaching of computational thinking in 
school curricula.

Computational thinking is a problem-solving process that 
educators can use in all content areas across grade levels (Barr and 
Stephenson, 2011; Román-González et al., 2018). In particular, 
computational thinking, as a problem-solving process, refers to 
how to (a) formulate problems with the use of a computer, (b) 
organize data using abstractions, (c) automate solutions using 
algorithms, and (d) generalize a solution to other issues.

Currently, there is no universal definition of the construct of 
computational thinking (Angeli et al., 2016; Kalelioglu et al., 2016). 
Weinberg (2013) reported that 25% of published articles on 
computational thinking cite their different definitions. Since a 
review of all computational thinking definitions in the literature is 
out of the scope of this study, the authors adopted the well-accepted 
definition offered by Grover and Pea (2013). According to Grover 
and Pea (2013), abstraction is the skill of removing characteristics 
or attributes from an object or entity to reduce them to a set of 
fundamental elements. Abstraction and generalization have similar 
meanings as abstracts are generalized through parameterization. 
Decomposition involves breaking down complex problems into 
simpler ones. Algorithmic thinking involves devising a step-by-
step solution to a problem and differs from coding (i.e., the 
technical skills required to write code in a programming language).
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Additionally, algorithmic notions of sequencing and control 
flow are also considered essential elements of computational 
thinking. Finally, debugging is about recognizing when actions do 
not correspond to instructions, and fixing errors in a sequence of 
instructions. In this study, the authors examined two of the five 
aspects of computational thinking: algorithmic thinking focusing 
on sequencing; and the skill of decomposition.

2.2. Robotics

Robotics engage children in a playful exploration of tasks aligned 
with developmentally appropriate practices for early childhood 
education (Bers, 2008). Additionally, play improves children’s ability 
for creativity and mental flexibility. In robotics, the manipulation of 
physical objects enables children to exercise their symbolic thinking 
and combine their ideas to generate motor responses (Fenson and 
Schell, 1985; Russ, 2004; Singer and Singer, 2005; Critten et al., 2022).

Piaget (1963) was the first to conceptualize that the 
manipulation of physical objects plays a significant role in the 
learning of all children. Specifically, according to Piaget (1963) 
and Bredekamp and Copple (1997), children realize the world that 
surrounds them by dynamically exploiting the objects that 
constitute it. In this regard, hands-on experiences enable children 
between five and 6 years of age to form a connection between a 
concrete representation (e.g., authentic materials) and a symbolic 
representation (e.g., abstract material, such as ideas; Clements and 
McMillen, 1996).

Accordingly, in this context, technological tools, like floor 
robots, can offer children a hands-on way of acquiring new 
knowledge (Papert, 1993; Reid-Griffin and Carter, 2004; Chaldi 
and Mantzanidou, 2021). Furthermore, Resnick (1995) states that 
the best computational tools are the ones that provide the learner 
with the affordance not only to comprehend the learning content 
but to transform it and apply it to new concepts and ideas.

Thus, learning with robots can be an attractive activity for 
young learners in early childhood education settings (Nouri et al., 
2020; Chaldi and Mantzanidou, 2021). Children at 4 years old can 
develop computational thinking skills when they play with robots 
to solve a problem (Papadakis et al., 2017). Specifically, researchers 
reported in the literature that learning with robotic devices allows 
learners to engage in experimentation, research, programming, 
and problem-solving about things they encounter in their daily 
lives (Pugnali et  al., 2017). Kim et al. (2015) indicate that the 
contact and use of educational robots in education are significant 
and influential in teaching STEAM as robotic devices offer 
opportunities for young children to experiment with knowledge-
building activities (Falloon, 2016; Vidakis et al., 2019; Papadakis, 
2020). Especially, Falloon (2016) stated that young learners learn 
to code through decomposition, problem analysis, and evaluation  
activities.

Accordingly, in the study, the authors used the floor robot 
Bee-Bot to engage preschool children in various activities to solve 
several tasks.

2.3. Bee-Bots

Prior research has shown that four-year-old children can 
successfully build and program a robot (Bers et al., 2002; Cejka 
et al., 2006; Wyeth, 2008; Sullivan and Bers, 2013). In addition, 
researchers have used Bee-Bots in research studies with impressive 
learning outcomes in developing children’s problem-solving skills 
(Bers et al., 2014; Elkin et al., 2016). The Bee-Bot is a small floor 
programmable robot in the form of a bee (Elkin et al., 2016). In 
addition, it is a screen-free coding toy robot that allows children 
to interact with it without the constraint of screen-time 
(Livingstone, 2016).

A Bee-Bot uses a LOGO-like programming language with 
simple programmable steps. It is a robotic device that is 
developmentally appropriate for preschool children (Beraza et al., 
2010; Highfield, 2014). A Bee-Bot has four directional buttons 
placed on its back (see Figure 1), and children can program it to 
move forward or backward, turn left or right by 90 degrees, clear 
its memory, pause, and execute a sequence of commands 
(Highfield, 2014).

A Bee-Bot does not need additional hardware to work. Also, 
the large variety of floor mats used with Bee-Bots accommodates 
educators with many possibilities for designing lessons on 
different topics and learning objectives. However, a Bee-Bot lacks 
the support of the algorithm’s visualization imposing an 
extraneous cognitive load on learners’ mental resources (Angeli 
and Valanides, 2020). Therefore, teachers need to scaffold young 
children’s learning during their interactions with Bee-Bots by 
using appropriate tools that can act as external reference systems 
for reducing children’s cognitive load during problem-solving 
(Sarama and Clements, 2009; Angeli and Valanides, 2020). 
Accordingly, to remedy Bee-Bots’ shortcomings, the authors of 
this study designed and implemented scaffolding tools for 
supporting young children’s problem-solving with Bee-Bots.

2.4. Programming

Papert (1980) strongly supported the view that the concepts of 
robotics and programming are intertwined. Learners, through 
interplaying with robotics, develop an understanding of elementary 

FIGURE 1

A Bee-Bot floor programmable robot.
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programming concepts, such as sequence and cause-and-effect 
relationships (Fessakis et al., 2013; Kazakoff et al., 2013), as well as 
an understanding of more advanced concepts, such as abstraction, 
debugging, and iteration (Horn and Jacob, 2006; Wing, 2008; 
Brennan and Resnick, 2012; Horn et al., 2012). Papert (1980), in 
his seminal book “Mindstorms: Children, computers and powerful 
ideas,” documented the manifestation of the programming 
language as a learning tool for the development of problem-solving 
and reflective thinking. Through programming, children learn to 
solve problems systematically and express ideas using various tools 
(Sullivan and Bers, 2013). In particular, programming as a teaching 
approach can foster cognitive tasks directly linked to the 
development of computational thinking (Resnick et  al., 2005; 
Grover and Pea, 2013; Lye and Koh, 2014; Macrides et al., 2022).

According to the Macrides et al. (2022), programming can 
be introduced to young learners as a stand-alone subject matter or 
integrated into the regular kindergarten curriculum with other 
subject areas such as music, movement and dance, art, science, 
mathematics, and literacy. In addition, recent advances in visual 
language-based systems using digital, tangible, or hybrid media 
have enabled the introduction of programming and computational 
thinking concepts and ideas in early-childhood education settings 
(Elkin et al., 2016; Bers and González-González, 2019). At the same 
time, research evidence shows that programming synergistically 
deepens the learning of STEAM subjects and that its teaching 
should start as early as possible in school at all educational levels 
and ages (Sengupta et al., 2013; Wilensky et al., 2014). Relevant 
review studies also supported that computer programming 
through robotics can be  a promising educational tool for 
integrating technology and engineering in early childhood STEAM 
education (Jung and Won, 2018; Çetin and Demircan, 2020).

2.5. Scaffolding

Wood et  al. (1976) defined scaffolding as the support 
provided to learners by their educators in the correct quantity 
and time, enabling them to participate in a problem’s solution 
substantially. The construct of scaffolding is directly associated 
with the socio-cultural theory of Vygotsky (1978) and, more 
specifically, with his idea of the zone of proximal development. 
The zone of proximal development is “the distance between the 
actual development level as determined by independent problem 
solving and the level of potential development as determined 
through problem-solving under adult guidance or in collaboration 
with more capable peers” (Vygotsky, 1978, p.  86). Research 
studies report that scaffolding in the form of instructional 
support can use tools, strategies, computer tutors, and animated 
pedagogical agents to assist learners in comprehending and 
conceptualizing meanings emerging during teaching beyond 
their current mental and cognitive capabilities (Puntambekar 
and Hubscher, 2005).

Providing scaffolding is essential in educational settings 
because it can positively affect the teaching and learning process 

(Hogan and Pressley, 1997; Cole, 2006; Pawan, 2008), especially for 
young students (Belland, 2014). Originally, instructional scaffolding 
referred to the support or guidance provided by a human expert to 
a novice learner to complete a task that would otherwise be too 
challenging to achieve beyond the learner’s unaided efforts 
(Belland, 2014; Kim et al., 2018). However, due to the advancements 
of technology, scaffolding is no longer limited in interactions 
between a human expert and a learner; instead, such interactions 
now include the use of technological tools, resources, and 
environments (Cai et al., 2022). When learners’ limited cognitive 
resources are sufficiently supported and augmented by scaffolding, 
they can concentrate on and master the task at hand by completing 
only those elements within the range of their competence (Tawfik 
et al., 2018). Importantly, learners become genuinely involved with 
the mission to be achieved only when provided with appropriate 
help or a supporting structure to initiate and sustain interest 
(Belland et al., 2019). Subsequently, while the learners’ competence 
gradually increases, assistance is withdrawn, and learners continue 
to function independently. However, removing the aid does not 
diminish learning or functioning; learners operate at the elevated 
plane reached via scaffolding (Liu et al., 2020).

2.6. Gender

Consistent findings in the literature support the claim that 
gender differences influence student learning and school 
achievement (Pomerantz et al., 2002; Duckworth and Seligman, 
2006; Sousa and Tomlinson, 2011). For example, studies in 
neuroscience (Bonomo, 2010; Sousa and Tomlinson, 2011) 
reported that the hippocampus, the brain structure where memory 
and language function, develops more rapidly and is more 
prominent in size in girls than boys. This fact causes differentiation 
in sequencing, vocabulary, and reading and writing skills between 
the sexes. In addition, the cerebral cortex, responsible for spatial 
perception, is more significant in boys than girls, supporting that 
boys learn better with visual-motor activities. Because of these 
differences, girls tend to be more social and prefer group-centered 
activities than boys, who like personalized and sensory-motor 
activities (Gurian and Ballew, 2003).

Research on gender disparity in acquiring computational 
thinking skills in robotics activities is relatively sparse in 
educational settings. While research has been conducted on 
gender differences with elementary and high school students (e.g., 
Atmatzidou and Demetriadis, 2016; Román-González et al., 2017), 
limited research has been carried out in early childhood settings 
(Sullivan and Bers, 2013; Atmatzidou and Demetriadis, 2016).

3. Research purpose

The present study sought to investigate whether gender and 
scaffolding affected preschool students’ computational thinking 
performance in the context of problem-solving activities with 
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Bee-Bots and whether the scaffolding used differentially affected 
boys’ and girls’ computational thinking.

4. Materials and methods

4.1. Participants

One hundred and seventy young children aged between five 
to 6 years old participated in the study. Children were randomly 
selected from 10 different preschools in a European country. 
Parents signed consent forms for children’s participation in the 
study. There were 78 girls and 92 boys. Participants were randomly 
assigned into three research groups, two experimental groups, and 
a control group, as shown in Table 1. In the first experimental 
group, children used the model-based scaffolding technique; in 
the second experimental group, they used the code-based 
technique. The authors explain both types of scaffolding in 
sections 4.3. Research intervention for phase 2: Model-based 
scaffold and 4.4. Research intervention for phase 2: Code-based 
scaffold. In the last group, the control group, children worked 
through play with no scaffolding. All research phases were 
conducted at the site of each school individually with each child 
because scaffolding tools are exceptionally efficient in 
individualized learning environments (Tabak, 2004; Puntambekar 
and Kolodner, 2005). The same researcher completed all of the 
tasks with the children.

4.2. Research intervention for phase 1

During the first phase of the intervention, children in all three 
groups became familiarized with the essential functions of 
Bee-Bots, followed by learning complex programming commands. 
The structure of each lesson was designed based on the theory 
proposed by Hubwieser and Aiglstorfer (2009), which approaches 
the teaching of programming into two parts: the learning of basic 
process units and the teaching of combined process units. In this 
study, the basic process units corresponded to the primary 
sequences of the Bee-Bot’s commands, taught in 11 subtasks, as 
shown in Table  2. This approach has many benefits as novice 
programmers (a) are successfully introduced to basic 
programming commands (Misirli and Komis, 2014), and (b) learn 
to program successfully even during their initial attempts 
(Reges, 2006).

The combined process units consisted of complex and more 
extensive sequences of commands. For learning these sequences 
of commands, the authors adopted the principles reported by 
Armoni and Gal-Ezer (2014). In line with their work, the problem-
solving tasks consisted of subtasks with increasing levels of 
complexity. More specifically, the total number of the commands 
FORWARD/BACKWARD and the total number of the TURN_
RIGHT/TURN_LEFT commands increased gradually and were 
used in various combinations, as shown in Table 3.

4.3. Research intervention for phase 2: 
Model-based scaffold

As shown in Figure 2, this scaffolding tool included a model 
(a representation on a smaller scale than the real one) of the 
actual floor mat, the robotic device Bee-Bot, and laminated cards 

TABLE 1 Number of students, gender, and type of scaffolding tool per 
research group.

Group N Participants

Control Group 58 Male Female

36 22

Scaffold type Α

(model-based scaffolding tool)

52 Male Female

31 21

Scaffold type Β

(code-based scaffolding tool)

60 Male Female

25 35

Total 170 92 78

TABLE 2 Basic sequences of commands.

Number 
of 
subtask

Total 
number of 
commands

Number of 
commands

forward/
backward

Number of 
commands
turn right/

turn left

1 2 2 0

2 3 2 1

3 4 3 1

4 5 3 2

5 6 4 2

. . . .

. . . .

. . . .

n n + 1 k k-1

TABLE 3 Complex sequences of commands.

Number 
of seq.

Example of 
sequence

Increment 
of the total 
number of 

the 
commands

forward/
backward

Increment 
of the total 
number of 

the 
commands

turn left/
turn right

1 FW-FW-GO - -

2 FW-TR-FW-GO 0 1

3 FW-TL-FW-FW-

GO

1 0

4 TR-FW-FW-TR-

FW-GO

0 1

5 FW-FW-TR-FW-

TL-FW-GO

1 0
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FIGURE 3

Code-based scaffolding tool.

FIGURE 4

The three mats used in the research.

depicting each programming command. The child had to first 
think about the algorithm and construct it using the laminated 
cards on the floor and the model mat. After that, the children 
tested their algorithm on the actual mat using the Bee-Bot.

4.4. Research intervention for phase 2: 
Code-based scaffold

As shown in Figure  3, the code-based scaffolding tool 
incorporated a cardboard and a set of laminated cards to model 
each Bee-Bot command. First, children were asked to look at the 
actual mat and then, without simulating the moves of the Bee-Bot, 
use the laminated cards to form a visual sequence of commands 
for the Bee-Bot to execute. Next, the children displayed the visual 
algorithm on a large cardboard, and finally, they tested it using the 
actual mat and the Bee-Bot.

4.5. Problem-solving tasks

The researchers used three different problem-solving tasks in 
the three research phases. Each task/phase was accompanied by a 
relevant mat, as shown in Figure 4. Children had 20 min to solve a 
problem-solving task with the Bee-Bot. The first problem-solving 
task (in the first phase) involved children in 13 subtasks to discover 
the functions of the Bee-Bot. The second task (in the second phase, 
which was the phase where the two types of scaffolds were used), 
which included five subtasks, taught children how to formulate 
sequences of commands at increasing levels of complexity. Finally, 
after the researchers removed the scaffolds (in the second phase), 
they used a third task (in the third phase) comprised of five 
subtasks to assess children’s computational thinking.

4.6. Research procedures

Research procedures consisted of three research phases 
conducted individually for each participant. There were 3 days 
elapsed time between each research phase. The duration of each 
phase was 20 min.

In Phase 1, children learned the basic commands of the 
Bee-Bot and, more specifically, as shown in Table  4, how to 
program the Bee-Bot using short sequences of commands.

During Phase 2, children worked with tasks that required 
sequences of four to seven commands. Some examples are given 
in Table 5. In Phase 2, the researchers scaffolded children’s learning 
using the scaffolding tools in the two experimental groups. The 
control group worked through free play and exploration with no 
scaffolding. During the last phase, Phase 3, the researchers 
removed the scaffolding tools and used the third problem-solving 
task to assess children’s performance.

4.7. Data analysis

The researchers videotaped children’s interactions with 
Bee-Bots during all research phases of the study. Specifically, the 
researchers recorded children’s command choices to complete 

FIGURE 2

Model-based scaffolding tool.
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each problem-solving task in various attempts. The research data 
were analyzed using the process coding method by Saldaña, 2015, 
which is suitable when the observed interactions include problem-
solving. At first, both researchers coded four videos from each 
group to ensure standard grading procedures. Then researchers 
coded the videos independently. Interrater reliability was 
calculated and found to be 0.87 (denoted as the percentage of 
agreement between the first and the second researcher), which is 
considered satisfactory for problem-solving tasks. Regarding the 
effect of gender and scaffolding tools on children’s computational 
thinking performance, the researchers performed two 2 × 3 
analyses of variance, one for phase 2 and another for phase 3. In 
addition, the authors performed a 2 × 3 repeated measures analysis 
of variance to determine between-subjects effects for boys and 
girls across the experimental and control conditions.

5. Results

5.1. Computational thinking assessment 
rubric

A vast majority of studies under the umbrella of computational 
thinking have used rubrics for their assessment (e.g., Sherman and 
Martin, 2015; Basu et al., 2018; Basu, 2019). In line with Basu et al. 
(2018) methodology, the researchers herein collected data from 

all one hundred and seventy students’ solutions for each problem-
solving task and then identified whether students solved the tasks 
correctly on their first attempt or in further attempts. The 
researchers developed a rubric to assess students’ computational 
thinking performance based on this holistic analysis. As shown in 
Table 6, the authors of this study evaluated student performance 
in (a) the number of attempts in terms of command sequences 
students formed to program the Bee-Bot and (b) whether students 
used decomposition to solve a task.

5.2. Computational thinking holistic 
performance

The descriptive statistics shown in Table 7 indicate higher 
scores for the male participants than their female counterparts in 
each group. The descriptive statistics also show large standard 
deviations indicating that there is a lot of variance in the observed 
scores around the mean. A large spread indicates that there are 
probably large differences between individual scores that might 
be related to important initial problem-solving differences among 
the preschool students who participated in the study.

A 2 × 3 analysis of variance determined a statistically 
significant difference between boys and girls on the different 
forms of scaffolds administered in Phase 2. The results revealed 
that the type of scaffold [F (2, 164) = 64.60, p < 0.01] was 
statistically significant for the scores of computational thinking. 
Post-hoc comparisons showed that both model-based scaffolding 
and code-based scaffolding outperformed the control group, with 
no statistically significant differences between them. The findings 
did not show any other statistically significant main effect or an 
interaction effect between gender and type of scaffold.

During the third research phase, when the researchers 
withdrew the scaffolds, boys outperformed girls in all groups. 
According to the descriptive statistics shown in Table 8, boys in 
the model-based scaffolding group outperformed boys and girls 
in all other groups. As in Table  7, the descriptive statistics in 
Table  8 also show large standard deviations indicating a wide 
variance in the observed scores around the mean. A wide variance 
indicates, as before, that there are probably large differences in the 
individual scores among the preschool students who participated 
in the study.

The researchers conducted a 2 × 3 analysis of variance to 
investigate the differences between boys and girls and the different 
forms of scaffolding strategies. The findings showed that gender 
had a significant main effect [F (1, 164) = 9.06, p < 0.01] in the 
computational thinking score, revealing the superiority of boys in 
this study. The results did not indicate any other statistically 
significant main effect or an interaction effect between gender and 
type of scaffold.

The authors also performed a 2 × 3 repeated measures analysis 
of variance to examine the effects of the two scaffolding techniques 
on boys’ and girls’ computational thinking across Phase 2 and 
Phase 3 of the research. The results showed statistically significant 

TABLE 4 Short sequences of commands.

Subtasks Commands

1 FORWARD-GO

2 BACKWARD-GO

3 TURN RIGHT-GO

4 TURN LEFT-GO

5 FORWARD-FORWARD-GO

6 BACKWARD-BACKWARD-GO

7 FORWARD-BACKWARD-GO

8 FORWARD-TURN RIGHT-GO

9 FORWARD-TURN LEFT-GO

10 TURN RIGHT-FORWARD-GO

11 TURN LEFT-FORWARD-GO

TABLE 5 Structure of complex sequences of commands.

Number 
of seq.

Sequence

Phase 2 Phase 3

1 FW-FW-GO FW-FW-GO

2 FW-TR-FW-GO FW-TL-FW-GO

3 FW-TL-FW-FW-GO FW-TR-FW-FW-GO

4 TR-FW-FW-TR-FW-GO TL-FW-FW-TL-FW-GO

5 FW- FW-TR- FW-TL-FW-GO FW-FW-TL-FW-TR-FW-GO
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TABLE 8 Descriptive statistics of children’s computational thinking in 
Phase 3 for each scaffold and gender.

Mean SD Ν

Model-based scaffold

Female 82,71 28,57 21

Male 106,13 40,62 31

Total 188,84 69,19 52

Code-based scaffold

Female 87,00 39,80 35

Male 99,96 35,72 25

Total 186,96 75,52 60

Working with no scaffolds (control group)

Female 86,50 36,07 22

Male 93,92 37,77 36

Total 180,42 73,84 58

between-subject effects for type of scaffold, F (2, 164) = 11.03, 
p < 0.01, in favor of the model-based scaffolding in Phase 2, and 
gender, F (1, 164) = 10.63, p < 0.01, in favor of boys who performed 
at their best in Phase 3.

6. Discussion

In this study, the authors investigated whether gender 
differences and type of scaffold differentially affected young 
children’s computational thinking performance during problem-
solving with a series of tasks using the robot Bee-Bot. The study’s 
findings clearly showed that boys outperformed girls on 
computational thinking performance in all study phases. The 
results agree with the findings of previous studies conducted in 
preprimary and primary education settings (e.g., Palmér, 2017; 
Román-González et al., 2017; Otterborn et al., 2020).

The gender differences in the development of computational 
thinking, as observed in the context of the study herein, might 
be related to the spatial ability of the participants since the majority 
of the study’s problem-solving tasks required the formation of 
sequences of commands that comprised the spatial referents “left” 
and “right.” Girls’ ability may explain the performance on tasks that 
involved the mental rotation of figures (Linn and Petersen, 1985; 
Voyer et al., 1995; Maeda and Yoon, 2013). The cerebral cortex 
influences mental rotation and is more significant in boys than girls 
(Bonomo, 2010). Indeed, some research has shown that males with 
better visual–spatial working memory are likely to perform better 
in visual-motor tasks than girls (Maeda and Yoon, 2013), as the 
results of this study also showed.

Another possible interpretation of the strong effect of gender 
on computational thinking, as evident in the findings of this study, 
might be related to the types of scaffolding tools used to develop 
computational thinking. The model- and code-based scaffolding 
tools contributed to girls’ lower performance on the problem-
solving tasks than their male counterparts because they mainly 
emphasized visual and motor processes and not so much verbal 
and sensory memory processes that girls prefer (Bonomo, 2010). 
A different type of scaffold, including storytelling activities, might 
have shown different results (Kelleher et al., 2007). According to 
Kelleher et al. (2007), girls that had storytelling support showed 
more evidence of engagement with programming and expressed 
greater interest in the future use of coding than girls who did not 
have this support. Also, Angeli and Valanides (2020) showed in 
their study that young males learned best using manipulative-
based activities during learning with a robotic device. In contrast, 
young females preferred and performed better with collaborative 
writing activities. In a study by Gomes et al. (2018) the results 
indicated a satisfactory understanding of sequences of instructions 
and conditionals but also showed challenges concerning graphical 
symbols, text, and interaction elements identified as complex for 
the children to understand, making the support of an adult 
fundamental. The findings showed that suitable solutions for 
conveying basic programming concepts to young children have 
not yet been found, demanding further investigation, possibly 
towards structured hybrid approaches combining digital games 
and unplugged activities.

The results from the second phase of this study showed that 
children in the experimental groups outperformed those in the 
control group who learned with no scaffolding tools. These results 

TABLE 6 Computational thinking assessment rubric.

Code Description
Points 

received

1 No decomposition, success from the first attempt 4

2 Success with decomposition into two segments 

from the first attempt

3

3 Success with decomposition into three segments 

from the first attempt

2

4 No decomposition, success from the second 

attempt

1

TABLE 7 Descriptive statistics of children’s computational thinking in 
Phase 2 for each scaffold and gender.

Mean SD Ν
Model-based scaffold

Female 107,95 3,06 21

Male 112,13 21,29 31

Total 220,08 24,35 52

Code-based scaffold

Female 102,49 20,87 35

Male 105,12 14,24 25

Total 207,61 35,11 60

Working with no scaffolds (control group)

Female 64,59 29,36 22

Male 77,36 23,53 36

Total 141,95 52,89 58
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are consistent with contemporary work by Angeli and Valanides 
(2020) that showed the necessity of using scaffolding techniques, 
such as external memory systems, to facilitate students’ learning 
with robotic tools. Also, the results of the study are in line with the 
results of studies that outlined the necessity of scaffolding, 
especially for younger students during their learning with 
technological tools to reduce the cognitive load imposed by the 
device on children’s mental resources (Van Merriënboer et al., 
2003; Angeli and Valanides, 2004; Azevedo and Hadwin, 2005; 
Myhill and Warren, 2005).

The observed low scores of the children belonging to the 
control group on computational thinking performance are 
because students encountered difficulties while trying to visualize 
the algorithm to solve the problem. In particular, children had 
problems visualizing the command sequences as they could not 
correctly discriminate between left and right movements (Sarama 
and Clements, 2009). However, as Shusterman and Spelke (2005) 
showed, children with appropriate scaffolding could understand 
and use the concept of left and right correctly, as the results of this 
study also show.

Lastly, the findings of this study are helpful for preschool 
teachers who would like to teach with robotics but lack confidence 
and competence (Bers et al., 2013). In addition, the study provides 
ideas about scaffolds and how educators can design robotics 
activities to promote children’s computational thinking and assess 
computational thinking performance.

7. Limitations and future directions

The study’s findings provide an empirical account of the 
effects of gender and scaffolds in developing young children’s 
computational thinking. In this last section of the paper, the 
authors address some study limitations. Firstly, the duration of the 
intervention was short, and as reported in the literature, longer 
interventions are needed to investigate the transfer of knowledge 
in different contexts (e.g., Bers, 2008; Bers et al., 2014). Second, 
future research investigations need to consider when to fade the 
provision of scaffolds, as scaffolds need to be gradually faded out, 
which may vary from student to student (Van de Pol et al., 2010). 
Herein, the researchers removed the scaffolds simultaneously for 
all students. However, learning to solve with robotics requires 
sustained and immersive effort (Bers et al., 2014). Thus, future 
interventions should be longer, personalized, and differentiated 
according to the individual needs of the learners.

Last but not least, more research for investigating the factors 
contributing to females’ full engagement in robotics activities 

will add value to the existing knowledge base. Gaining a better 
understanding and addressing the underlying causes of gender 
differences in young children’s computational thinking is of 
great importance. In addition, it will provide the research 
community with tools and principles for designing effective and 
efficient learning with robotics for both boys and girls. Future 
work toward these directions will advance research on 
computational thinking and its successful integration in 
classroom settings.
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