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The first perspective: The host genetics

The outcome of fungal disease is determined by complex interactions between fungal

pathogens, human hosts and their environment including the host microbiome (1–4).

Morbidity and mortality in fungal disease remain very high despite recent advances in the

diagnostic and treatment of these conditions (5–7). There are only three classes of antifungal

drugs available to treat these disease and, antifungal resistance linked to the use of

agricultural use of triazole fungicides is on the rise (8). The development of new

antifungal drugs to treat human fungal disease is challenging as both, host and pathogen

are eukaryotes and, there are different potential druggable targets exposed at different points

of fungal morphogenesis.

So far, the identification of high-risk patients for fungal disease has relied on the use of

clinical scores that combine the use of clinical and host factors to predict the risk of

subsequent disease (9–11). However, the prevalence of opportunistic fungal diseases within

at-risk population, ranges from 0.1 – 20% (12). In the last decades, individual genetic

variation has been recognised as a major contribution of functional immune responses

against fungal pathogens. Several monogenic defects and polymorphisms in genes regulating

antifungal immunity or pathogen sensing have been associated with susceptibility to

aspergillosis, cryptococcosis and candidiasis (13) (Figure 1).

Sensing of human fungal pathogens by the host immune system requires the interplay

between pathogen-associated molecular patterns (PAMPs), mostly located in the cell wall of

fungal pathogens, and pattern recognition receptors (PRRs) (14–17). The interaction

between PRRs and PAMPs, leads to the regulation of uptake of fungal pathogens by

immune cells. In addition to membrane receptors, soluble PRRs such as pentraxins or

mannose binding lectins (MBLs) are also critical for pathogen sensing and efficient

phagocytosis (18, 19).

To date, polymorphisms in PTX3 have been reported in different clinical settings as a risk

factor for invasive pulmonary aspergillosis in haematopoietic stem cell transplant recipients

(20), solid organ transplants (21) and chronic obstructive pulmonary disease (22). Using ex
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vitro an in vivo models of disease it has been reported that PTX3

deficiency increases susceptibility to A. fumigatus infection due to

impaired neutrophil function (20, 23).

Polymorphisms in PRRs and other immune pathways have

been reported in different patient cohorts (24–28). Nevertheless,

none of these polymorphisms (except in the case of primary

immunodeficiencies) allow to predict risk of fungal disease with

high specificity suggesting the genetic basis of these diseases may

be polygenic.

Despite genetic replication studies are in general scarce, the link

between genetic polymorphisms in PTX3 (rs1840680) and rs7309123

(CLEC7a) and aspergillosis risk have been successfully replicated (29).

White et al. (30) recently explored whether screening for genetic

variants in genes previously linked with susceptibility to invasive

aspergillosis alongside clinical factors and mycological evidence could

be used to improve aspergillosis risk stratification in patients

undergoing allogeneic stem cell transplantation. In their model,

they reported that mutations in Dectin-1, DC-SIGN, allogeneic

stem cell transplantation, current respiratory viral infection and

Aspergillus-specific positive PCR were all high-risk factors for the

development of invasive disease.

An increasing number of case studies and family studies have

reported fungal disease in children with primary immunodeficiencies.

For example, invasive aspergillosis has been linked with inborn errors

in patients with chronic granulomatous disease, severe congenital

neutropenia or leukocyte adhesion deficiency type I (31, 32).

Moreover, other less common congenital immunodeficiencies (e.g.,

CARD9 immunity, IL-12/interferon (IFN)-g axis or IL-17 immunity)

have been described to increase susceptibility risk to invasive

candidiasis, dermatophytosis, chronic mucocutaneous candidiasis or

endemic mycoses (Figure 1) (33–36).

Genome-wide association studies (GWAS) have allowed us to

identify a number of novel genetic loci affecting susceptibility to

fungal infections (37, 38). A GWAS study of patients with common

infections revealed a significant association between DSG1 variants

and susceptibility to vulvovaginal candidiasis. DSG1 encodes for a
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desmoglein, a critical protein involved in maintaining the integrity of

the epithelial compartment (37, 39).

GWAS in patients with candidemia revealed a strong association

between the genetic variant rs8028958 in the PLA2GB4 gene and

susceptibility to disease (40). PLA2GB4 encodes a cytosolic

phospholipase A2 involved in lipid metabolism, affecting cytokine

production in the presence of Candida in the bloodstream (40).

Combining the use of GWAS, bulk RNA-seq and scRNA-seq from

human PBMCs upon Candida stimulation, a recent study suggested a

critical role of LY86 in susceptibility to candidemia. LY86 encodes for

Lymphocyte Antigen 86, mainly expressed in monocytes. LY86 silencing

impairs monocyte migration, increasing susceptibility to candidemia (38).

The role of genetic variation in genes encoding for host cytokine

responses has been extensively studied including data in the Human

Functional Genomics Project (41). In this study, 17 new genome-wide

significant loci that influence cytokine production were identified

(41). In vitro studies of human PBMCs challenged with fungi

demonstrated a high inter-individual variation in cytokine release

(IL-6, TNF-a, IL-1b) (39). Thus, suggesting many genome-wide

quantitative trait locus (QTLs) might contribute to susceptibility to

infectious. Interestingly, this study shows that the QTLs are not

affecting adaptive cytokines as IL-17 (41).

How far are we from implementing host genetic screening in the

diagnostic pipelines for fungal disease? Studies aiming to characterise the

genetic basis of fungal disease have been based on association studies with

either disease and common polymorphisms in genes known to be

important for efficient antifungal responses such as those involved in

antigen presentation, pathogen sensing, or regulation of immune

pathways. Even though these associations are not surprisingly

significant, they are present in the general population. In addition,

rigorous clinical definitions for some diseases such as allergic and

chronic forms of aspergillosis or more recently viral-associated fungal

disease have not been available until recently thus, hampering the

usefulness of genetic risk to predict susceptibility to fungal disease. To

overcome this issue, whole genome exome or genome sequencing studies

might be useful (42–44). However, a joint effort from the scientific

community should be made to optimise and simplify bioinformatic

pipelines. Finally, implementation of host genetic screening in the

diagnostic pipelines for fungal disease would require validation in large

and well-characterised cohort of patients with different genetic

backgrounds and the development of point of care testing approaches

that would allow the transference of these technologies to those regions

where the prevalence of fungal disease is particularly high.
The second perspective: The
pathogen genetics

Most of what we know about the pathogenicity mechanisms used

by fungal species to cause disease has arisen from in vivo or in vitro

infection models in which a particular fungal species, clinical strain or

deletion mutant is assessed for virulence. However, results are very

much dependent on the animal strain used, the model of disease (e.g.,

immunosuppression vs no immunosuppression), the dose or route of

infection, or the cell population assessed thus, results are not always

translated into human disease. In addition, to understand the

opportunistic nature of most fungal human pathogens, it is
FIGURE 1

SNPs and PIDs known in the ‘genetic triangle’ leading to
opportunistic human fungal infections. Scheme of the main target
genes involved in SNPs and PIDs leading to the main described
human fungal diseases. Single nucleotide polymorphisms (SNPs),
primary immunodeficiencies (PIDs).
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important to consider that genetic drivers of virulence have probably

been developed so fungal pathogens can survive in their natural

environments (45). In fact, in a recent publication using population

genomics, it was observed that human infections caused by drug

resistant A. fumigatus have their origin in the environment (46).

With the increasing number of sequenced fungal genomes it has

been observed that pathogenicity emerged in different lineages in the

fungal kingdom (43). However, there is a huge variation in fungal

drivers of human disease among pathogens but also strains from the

same pathogen. For example, virulence of A. fumigatus strains is

significantly different depending on the infection model of disease

used (47). Nevertheless, it seems that there is a link between the

capacity of a fungal pathogen to adapt to extreme environments and

their capacity to cause disease.

The human mould pathogen A. fumigatus can cause invasive,

chronic or allergic diseases in immunosuppressed patients or those

with a chronic respiratory condition (48). In fact, Snelders et al. (49),

using whole genome sequencing of fungal isolates from patients with

cystic fibrosis and chronic pulmonary aspergillosis demonstrated

than parasexual recombination is critical for A. fumigatus

adaptation and might also be a driver for the development of azole

resistance beyond the occurrence of point mutations in the CYP51

(Erg11) (Figure 1) (50). Similarly, Ballard et al. (51) reported that

long-term Aspergillus infection in patients with chronic

granulomatous disease is driven by host microevolution (51).

Moreover, recent analyses of fungal pangenomes has shown that A.

fumigatus environmental isolates do not differ in their gene content

(52). However, it has been shown an increased number of accessory

genes in clinical isolates compared to environmental that might help

to better understand human disease (53).

Fungal species of the same genera can also cause disease to different

populations as for Cryptococcus neoformans and Cryptococcus gattii.
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However, within each of these species there is a significant genomic and

phenotypic heterogeneity (53, ) that can be linked with disease

outcomes. Similarly, there is a significant genomic and phenotypic

variability withinC. albicans and some loss of function mutations might

help to better understand genetic drivers of disease (54).

Recently, we have discovered a newmodel where the metabolic route

of tryptophan degradation, as well as the total amount available of

tryptophan, differently affect fungal virulence. Fungi express the

tryptophan degrading enzyme Indoleamine 2,3-dioxygenases that

degrade l-tryptophan to kynurenines. Aspergillus fumigatus possesses

three ido genes that are expressed under hypoxia or tryptophan

abundance. Loss of ido genes increases fungal pathogenicity due to the

activation of the tryptophan-degrading enzyme AroH (55).
The third wheel: The host
microbiome genetics

Until recently, the contribution of the environment to the

development of fungal diseases has been mainly linked to ecological

factors such geographic distribution, climate or the existence of a

possible zoonotic reservoir (45, 56). However, there is an increasing

number of studies suggesting that the host microbiome, is crucial in

driving resistance against fungal disease (57). In particular, host

xenobiotic receptors (XRs) activated by metabolism may affect

susceptibility to fungal infection (58, 59). Indeed, several factors

such as tissue microenvironment, diet, nutrient availability or

antibiotic exposure are known to affect the microbiome evolution

and microbial SNPs (60, 61). Probiotics may also acquire SNPs when

several stressors act in particular microbiome niches (Figure 1) (62).

Fungal-bacteria interactions in clinically relevant contexts such as

oral, gut and respiratory dysbiosis have been increasingly studied and,
FIGURE 2

Omics toolkit for investigating the ‘genetic triangle’ in the human host during fungal infection. Multi-omics approaches, which enable intermediate
phenotypes into the host, the fungus and the host microbiome to be measured by different -omics technologies. Genome-wide association studies
(GWAS), quantitative trait locus (QTLs), single nucleotide polymorphism (SNP).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1078014
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gago et al. 10.3389/fimmu.2022.1078014
both synergistic and antagonistic interactions have been reported.

Several studies have shown that Candida albicans germination and

virulence can be directly or indirectly regulated by bacteria such as

Lactobacillus spp. For example, lactobacilli release quorum sensing

molecules or antifungal molecules (e.g., hydrogen peroxide or organic

acids) to prevent fungal growth (63). Similarly, we recently found that

Lactobacillus reuteri reduces C. albicans gut colonization via

metabolic activation of specific bacterial gene cluster and the release

of indole-derivatives (59). A similar phenotype has been shown in

vulvovaginal candidiasis (64). In oral mucositis, Candida spp adheres

to Streptococcus biofilms by increasing the expression of Als1 or Als5

genes (65). In addition, C. albicans and S. mutants interact in biofilm

formation in which C. albicans-induced expression of S. mutans

glucosyltransferase B, facilitating pathogen-pathogen binding (66,

67). L . crispatus SNUV220 and L . fermentum SNUV175

supernatant downregulates the expression of the hypha-related

genes ALS3, ECE1, SAP5 and HWP1 in C. albicans (68). In an

independent study, it was shown that L. plantarum SD5870, L.

helveticus CBS N116411 and S. salivarius DSM 14685 also inhibit

Candida yeast-hypha transition (69).

The combinatorial impact of host genetic variation and pathogen

genetics in the outcome of fungal disease has been overlooked. Only

recently, these two approaches have been integrated by using the dual

RNA sequencing in infectious diseases (70). This approach, that has

previously been used for plant-host interaction studies, consists in

performing parallel transcriptomic analysis of pathogens and their

eukaryotic host cells (71). Thus, multi-organism RNA-seq, may be

applied to the human population bearing opportunistic fungal

infections, eventually co-infected with other pathogens. Moreover,

human genetic variants may be analysed alongside fungal genetic

variability by using integrated GWAS approaches as reported for

meningitis (72) and, it could be potentially expanded to define

microbiome genetic variants. This systems biology approach will

enable us to define the role of genetic variation in the host,

microbiome and the pathogen with a view to improving our

understanding of the complexity of the human ecosystem during

infection (Figure 2).
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