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Background: Programmed death ligand 1 (PD-L1) and tumor mutation burden

(TMB) have been developed as biomarkers for the treatment of immune checkpoint

inhibitors (ICIs). However, some patients who are TMB-high or PD-L1-high

remained resistant to ICIs therapy. Therefore, a more clinically applicable and

effective model for predicting the efficacy of ICIs is urgently needed.

Methods: In this study, genomic data for 466 patients with melanoma treated

with ICIs from seven independent cohorts were collected and used as training

and validation cohorts (training cohort n = 300, validation cohort1 n = 61,

validation cohort2 n = 105). Tenmachine learning classifiers, including Random

Forest classifier, Stochastic Gradient Descent (SGD) classifier and Linear

Support Vector Classifier (SVC), were subsequently evaluated.

Results: The Linear SVC with a 186-gene mutation-based set was screened to

construct the durable clinical benefit (DCB) model. Patients predicted to have

DCB (pDCB) were associated with a better response to the treatment of ICIs in

the validation cohort1 (AUC=0.838) and cohort2 (AUC=0.993). Compared with

TMB and other reported genetic mutation-based signatures, the DCB model

showed greater predictive power. Furthermore, we explored the genomic

features in determining the benefits of ICIs treatment and found that patients

with pDCB were associated with higher tumor immunogenicity.

Conclusion: The DCB model constructed in this study can effectively predict

the efficacy of ICIs treatment in patients with melanoma, which will be helpful

for clinical decision-making.

KEYWORDS

melanoma, immune checkpoint inhibitors, genetic mutation, durable clinical benefit
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1077477/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1077477/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1077477/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1077477/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1077477/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1077477&domain=pdf&date_stamp=2023-01-17
mailto:252492160@qq.com
mailto:xu_libin@126.com
mailto:seta1988@126.com
https://doi.org/10.3389/fonc.2022.1077477
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1077477
https://www.frontiersin.org/journals/oncology


Pan et al. 10.3389/fonc.2022.1077477
1 Introduction

Melanoma is a highly malignant neoplasm derived from

melanocytes, which mostly occurs in the skin and accounts for

approximately 3% of all tumors (1). The traditional treatments

for patients with melanoma include surgical resection,

chemotherapy, radiotherapy, and targeted therapy (2, 3).

However, the efficacy of treatment remains limited in patients,

particularly those in advanced stages. In recent years, immune

checkpoint inhibitors (ICIs) targeting the programmed death-

ligand 1 (PD-L1), cytotoxic T-lymphocyte antigen 4 (CTLA-4),

and programmed cell death receptor 1 (PD-1) have

revolutionized the treatment landscape for melanoma (4–7).

These ICIs therapies can relieve immune suppression and

activate T cells and other lymphocytes, allowing the immune

system to attack and kill melanoma (8). However, the clinical

benefit of ICIs treatment remains limited to a subset of patients,

and some patients even experience severe side effects, leading to

treatment discontinuation (9–12). Therefore, the development

of predictive biomarkers to distinguish the responders from the

non-responders is urgently needed.

PD-L1 expression and tumor mutational burden (TMB)

have been confirmed by multiple clinical trials to predict the

efficacy of ICIs in melanoma (13–18). However, PD-L1

expression or TMB alone was not effective enough to precisely

identify responders. Some patients with PD-L1-high or TMB-

high remained resistant to the treatment of ICIs (19, 20);

Furthermore, there is no standardized cut-off value for the

PD-L1 expression or TMB (21–23). These limited the clinical

application of PD-L1 expression and TMB, highlighting the

importance of developing a more effective predictive biomarker.

Previous studies have constructed the genetic mutation-

based signatures to predict the response to the treatment of

ICIs (24–26). However, the genetic mutation-based signatures

constructed by Jiang et al. and Lu et al. did not strictly screen the

samples, resulting in the inclusion of the post treatment samples

(24, 25). On the other hand, the genetic mutation-based

signature constructed by Long et al. was based on the panel

sequencing, and its predictive ability for melanoma can be

further improved (26).
Abbreviations: AUC, Area under the curve; ccRCC, Clear cell renal cell

carcinoma; CR, Complete response; CTLA-4, Cytotoxic T-lymphocyte

antigen 4; DCB, Durable clinical benefit; ICIs, Immune checkpoint

inhibitors; K-M, Kaplan-Meier; mOS, Median OS; mPFS, MedianPFS;

NDB, No durable clinical benefit; OS, Overall survival; PD, Progressive

disease; PD-1, Programmed cell death receptor 1; PD-L1, Programmed cell

death-receptor 1 ligand; pDCB, predicted to have DCB; PFS, Progression-free

survival; pNDB, Predicted to have NDB; PR, Partial response; ROC, Receiver

operating characteristic; SD, Stable disease; SGD, Stochastic Gradient

Descent; ssGSEA, Single sample gene set enrichment analysis; SVC,

Support Vector Machine; TMB, Tumor mutation burden; WES, Whole

exome sequencing.
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Based on the whole exome sequencing (WES) and clinical

data of patients with melanoma collected from the pre-treatment

with ICIs, we aimed to construct a durable clinical benefit (DCB)

model to predict the response to ICIs in patients with melanoma.

The prediction capabilities of TMB and other reported genetic

mutation signatures were also evaluated and compared with our

DCB model.
2 Materials and methods

2.1 Study cohorts

Clinical and WES data of 644 patients with melanoma

treated with ICIs were obtained from seven cohorts (15, 27–

32). A cohort of patients with melanoma who only received the

treatment of ICIs were obtained based on whether they had

received prior ICIs therapy and combination therapy, such as

ICIs combined with chemotherapy or targeted therapy. After

determining the time point at which the biopsy was obtained

and selecting patients for imaging evaluation, a final cohort of

466 patients with melanoma were eventually established (Table

S1). The training cohort (n = 300) consisted of Hugo, Riaz,

Nathanson, Liu and Miao cohorts; validation cohort1 (n = 61)

and 2 (n =105) were the Snyder cohort and Allen cohort,

respectively. The DCB was defined as complete response (CR),

partial response (PR), or stable disease (SD) with progression-

free survival (PFS) more than 24 weeks. No durable clinical

benefit (NDB) was defined as progressive disease (PD) or SD

with a PFS less than 24 weeks.

In addition, clinical and genomic data for 202 patients with

lung cancer and 261 patients with clear cell renal cell carcinoma

(ccRCC) treated with ICIs, as well as 287 patients with

melanoma without receiving ICIs therapy (TCGA-

skcm_2015), were obtained from published literature (33–36)

and cbioportal (https://www.cbioportal.org/datasets),

respectively, to further evaluate the DCB model.

The format of all mutation data in this study was mutation

annotation format. Non-synonymous mutations were retained,

and the data were transformed from the mutation annotation

format to the sample gene matrix. For genes with at least one

mutation, the mutation status was classified as mutation.
2.2 Construction and validation of the
DCB model

Ten classifiers, namely BernoulliNB, ComplementNB,

Linear SVC, Adaptive Boosting (AdaBoost), stochastic gradient

descent (SGD), Gradient Boosting, Extra Trees, Random Forest,

Decision Tree and Extra Tree were used to construct the DCB

model to predict the response of patients with melanoma treated

with ICIs in the training cohort (Python ‘scipy’ and ‘sklearn’
frontiersin.org
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packages). First, the recursive feature elimination method was

used to rank features by importance. The iteration starts with the

most important features. One feature was added at each

iteration, and the f1 scores of fitting and generalization, as well

as the sum of the scores, were calculated. The iteration was

stopped when the maximum value of the sum of the scores did

not change for the next 100 iterations. These operations were

performed for each classifier to obtain the maximum sum of the

scores. Subsequently, the maximum sum of the scores of all

classifiers were compared to select the best classifier and

corresponding features. Kaplan-Meier (K-M) curves and log-

rank tests were performed to analyze the significance of overall

survival (OS) and PFS between patients predicted to have DCB

(pDCB) and those predicted to have NDB (pNDB).

In the validation cohorts, the score was calculated for each

patient using the same model as in the training cohort. Patients

with melanoma in the validation cohorts were divided into

pDCB and pNDB groups according to the same cut-off as the

training cohort. The discriminatory ability of the DCB model in

the validation cohorts was measured using the receiver operating

characteristic (ROC) curve and the calculated value of area

under the curve (AUC). K-M survival analysis was performed

to analyze the significance of OS and PFS between the

different groups.
2.3 Survival analysis

The impact of the DCB model, TMB and reported gene

mutation signatures on survival outcomes in patients with

melanoma treated with ICIs was explored. In addition, K-M

survival analysis was performed for patients with lung cancer

and ccRCC treated with ICIs as well as patients with melanoma

without receiving ICIs therapy. The log-rank test was used to

compare the survival curves. A p value < 0.05 was

considered significant.
2.4 Genomic analysis associated
with pDCB

TMB was determined as the number of non-synonymous

mutations divided by the exome size (37). Gene mutations in

pathways were analyzed with the previously reported gene lists

(38–41). Patients with mutations in at least one gene in the DNA

damage-repair pathway were defined as “altered DNA damage-

repair pathway”. Mutation enrichment scores of antigen

presentation, IFN-g and ten classical oncogenic pathways were

calculated for each sample using the single sample gene set

enrichment analysis (ssGSEA) method (42).
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2.5 Statistical analysis

All statistical analyses were performed using Python software

version (3.10.1). For continuous and categorical variables, t-tests

and Fisher’s exact tests were used, respectively. Statistical

significance was set at p< 0.05.
3 Results

3.1 Construction of the DCB model to
predict the response to the treatment of
ICIs in melanoma

To investigate the association between the mutated genes

and DCB for patients with melanoma receiving the therapy of

ICIs, 644 samples from seven cohorts sequenced with WES were

collected. After rigorous sample screening, 466 pre-treatment

samples that received only the treatment of ICIs were obtained.

Next, the 466 samples were divided into training cohort

(n = 300), validation cohort1 (n = 61) and validation cohort2

(n = 105) (Figure 1). In the training cohort, ten classifiers

(BernoulliNB, ComplementNB, Linear SVC, AdaBoost,

SGD, Gradient Boosting, Extra Trees, Random Forest,

Decision Tree and Extra Tree) were evaluated (Figure 2A).
FIGURE 1

Sampling procedure for patients with melanoma treated with ICIs.
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The best-performing hyperparameters were identified by the

sum of the scores calculated from the 10-fold cross-validation.

As shown in Figures 2B, S1A–I, the sum of the scores for Linear

SVC with 186-gene mutation-based feature was the highest. The

coefficient of each feature was obtained, and the score was

calculated according to the formula in Table S2. Based on the

above results, the Linear SVC with its corresponding features

was selected as the DCB model. According to the scores

calculated by the DCB model, patients with scores > 0 were

classified as pDCB, and patients with scores ≤ 0 were classified as

pNDB (Table S3). The results showed that the survival period of

patients in the pDCB group was significantly longer than that of

patients in the pNDB group (Figures 2C, D).
3.2 Validation of the DCB models in two
independent cohorts

To further assess the ability of the DCB model to predict the

efficacy in patients with melanoma treated with ICIs, its
Frontiers in Oncology 04
performance in two independent validation cohorts was

analyzed. As shown in Figure 3A, the f1 scores of the DCB

model in the Snyder and Allen cohorts were 0.787 and 0.933,

respectively. In addition, the AUC values of the DCB model in

the Snyder and Allen cohorts were 0.838 and 0.993, respectively

(Figures 3B, C and Table S3). These results indicated that the

DCB models can effectively predict patient outcomes. The

predictive effect of the DCB model on prognosis in the two

independent validation cohorts was determined. The results

showed that patients with pDCB had longer median OS

(mOS) and median PFS (mPFS) than those with pNDB

(Figures 3D–F). Furthermore, 282 patients with melanoma

who did not receive ICIs treatment were included to evaluate

the predictive effect of the DCB model. As shown in Figure S2A

and Table S4, there was no significant difference between the

survival curves of pDCB and pNDB, indicating that the model

was ICIs-specific. To expand the application of this model, its

predictive ability in patients with lung cancer and ccRCC treated

with ICIs was analyzed. We found no significant difference

between the pDCB and pNDB groups (Figures S2B, C and
B C D

A

FIGURE 2

Construction of the DCB model for the treatment of ICIs in melanoma. (A) Workflow of the study. (B) The line chart of the f1 scores of fitting
and generalization as well as the sum of the scores for Linear SVC in the training cohort. (C, D) Kaplan–Meier curves of OS (C) and PFS (D)
comparing pDCB with pNDB from the DCB model in training cohort.
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Table S5). This may be due to the heterogeneity among tumors.

As shown in Figure S2D, the mutation frequency of the top 10

gene in the model varies greatly in melanoma, lung cancer

and ccRCC.
3.3 The predictive ability of the DCB
model was superior to TMB and other
reported genetic mutation signatures

Previous studies have revealed that TMB and three reported

genetic mutation signatures (Signature1 from the study of Lu

et al., Signature2 from the study of Jiang et al., and Signature3

from the study of Long et al.) can serve as biomarkers to

effectively distinguish the responders among patients with

melanoma receiving the treatment of ICIs (14, 16, 24–26).

Next, we compared the predictive effect of the DCB model,

TMB and the reported genetic mutation signatures, and found

that the f1 score and AUC value of the DCB model was higher

than that of the TMB and three reported genetic mutation

signatures in the six cohorts (Hugo, Riaz, Nathanson, Liu,

Miao and Allen cohorts); only in the Snyder cohort, the f1

score and AUC value of the reported genetic mutation signature

1 was slightly higher than that of the DCB model (Figures S3,

4A). For TMB and the reported genetic mutation signature 1,

there were one (Nathanson cohort) and two cohorts (Nathanson

and Snyder cohorts) with AUC values above 0.8, respectively.

For the reported genetic mutation signature 2 and 3, none of the

cohorts had AUC values exceeding 0.8. The maximum AUC

values for the reported genetic mutation signatures 2 and 3 were
Frontiers in Oncology 05
0.775 (Nathanson cohort) and 0.795 (Riaz cohort), respectively.

Furthermore, their predictive effects on prognosis were

evaluated. For the DCB model, there were significant

differences between pDCB and pNDB across all seven cohorts.

However, for TMB and the reported genetic mutation signature

1, 2 and 3, the survival curves between pDCB and pNDB were

significantly different in two cohorts (Riaz and Liu cohorts), four

cohorts (Riaz, Nathanson, Miao and Snyder cohorts), four

cohorts (Nathanson, Liu, Snyder and Allen cohorts) and one

cohort (Snyder cohorts), respectively (Figure 4B). These results

demonstrated that the DCB model showed greater predictive

power than TMB and other reported genetic mutation signatures

in patients with melanoma treated with ICIs.
3.4 Distinctive genomic patterns
associated with the DCB model.

To explore the underlying factors by which the DCB model

can effectively predict the outcome of immunotherapy, the tumor

immunogenicity between the pDCB and pNDB groups was

analyzed. As shown in Figures 5A, B, TMB and most DNA

damage pathway mutation percentages were significantly higher

in the pDCB group than in the pNDB group, which has been

reported to be associated with the clinical benefit of ICIs. Genes

that were significantly associated with pDCB or pNDB were TTN

(Pearson-r = 0.3007) and XIRP2 (Pearson-r = 0.3290). To further

characterize the mutation process between the pDCB and pNDB

groups, the enrichment scores for antigen presentation, IFN-g and
ten classical oncogenic pathways were calculated. The scores for
B C

D E F

A

FIGURE 3

Validation of the DCB model in other independent cohorts. (A) f1 score of the DCB model in the Snyder and Allen cohorts. (B, C) ROC curves
for the DCB model in the Snyder (B) and Allen (C) cohorts. (D) Kaplan–Meier curves of OS comparing pDCB with pNDB from the DCB model in
Snyder cohort. (E, F) Kaplan–Meier curves of OS (D) and PFS (E) comparing pDCB with pNDB from the DCB model in Allen cohort.
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the Hippo, MYC and Notch pathways were significantly higher in

the pDCB group, whereas the antigen presentation and TP53

pathways were enriched in the pNDB group (Figure 5C).

Mutations in the Hippo and Notch pathways have been

reported to improve the clinical benefits of patients treated with

ICIs, while mutations in the antigen presentation pathway leaded

to tolerance to ICIs treatment (43–45).
4 Discussion

The treatment landscape of multiple cancers including

melanoma has been revolutionized by ICIs, such as anti-PD-
Frontiers in Oncology 06
L1, anti-PD-1 and anti-CTLA4. However, selecting responders

to the treatment of ICIs is the leading challenge in this field. In

our study, classifiers were systematically screened to predict

the response to the treatment of ICIs in melanoma, and a

robust DCB model was developed based on the Linear SVC

with 186-gene mutation-based feature. The AUC value of the

ROC curves and the significant difference in the survival

curves from the pDCB and pNDB groups showed that our

DCB model had high performance in both the training and

validation cohorts. Compared with the identified biomarker

TMB and other reported genetic mutation signatures, our

DCB model had the highest precision and accuracy in

predicting response to the treatment of ICIs. Furthermore,
B

A

FIGURE 4

The predictive ability of the DCB model was superior to TMB and other reported genetic mutation signatures. (A) ROC curves of the DCB
model, TMB and reported genetic mutation signature 1, 2 and 3 in the seven melanoma cohorts. (B) Kaplan–Meier curves of OS comparing
pDCB with pNDB from the DCB model, TMB and reported genetic mutation signature 1, 2 and 3 in the seven melanoma cohorts.
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higher immunogenicity was associated with the melanoma

patients with pDCB.

Multiple studies have identified biomarkers to predict the

response in patients with melanoma treated with ICIs (14, 30, 35,

46). However, their sensitivities and accuracies were limited. For

example, TMB-high patients with loss of heterozygosity at the

human leukocyte antigen or mutations in antigen presentation,

and interferon-receptor signaling pathways were still resistant to

the treatment of ICIs (45, 47–49). In this study, a DCB model

based on 186-gene mutation-based feature was constructed, and

performed better than the identified biomarker TMB.

Furthermore, the genetic mutation feature used to construct

the DCB model can be designed as a customized targeted panel,

and sequencing can be performed to distinguish responders,

which is more convenient and less expensive.

Three genetic-mutation feature based signatures have been

reported to predict the clinical benefit for patients with
Frontiers in Oncology 07
melanoma treated with ICIs (24–26). However, these

signatures were constructed without rigorous screening of the

samples, resulting in the inclusion of post-treatment samples. In

this study, the samples were strictly screened (Figure 1). Only

pre-treatment samples from patients who had not previously

received the treatment of ICIs were retained, so that the DCB

model had predictive significance. As shown in Figure 4A and

4B, the predictive power of our DCB model is more effective and

robust than other reported genetic-mutation feature based

signatures for patients with melanoma. Previous studies have

revealed that clinical characteristics may affect the outcome of

ICIs (50, 51). In our model, we found that adding gender, age

and clinical stage to the model did not significantly improve its

prediction power (Figure S4).

Furthermore, the genomic features of melanoma patients

with pDCB were investigated. Mutation in DNA damage repair

pathways and TMB were associated with the pDCB patients.
B

C

A

FIGURE 5

Distinctive genomic patterns associated with the DCB model. (A) Comparison of TMB between patients with pDCB and pNDB. (B) Barplots of
DNA damage repair pathways mutation percentage between pDCB and pNDB. (C) Comparison of the enrichment scores from antigen
presentation, IFN-g and ten oncogenic pathways between pDCB and pNDB.
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Mutations in DNA damage repair pathways reduce the genomic

stability. Mutated genes cannot be repaired in a timely and

effective manner, leading to the accumulation of mutations (38).

High TMB increases the presentation of immune neoantigens

and enhances tumor immunogenicity, thereby inducing effective

anti-tumor immune responses. These results may explain why

melanoma patients with pDCB were more likely to benefit from

the treatment of ICIs.

It is noteworthy that there were several limitations in our

study. First, although we have elucidated the genomic features of

the DCBmodel, we still need to explore the mechanism by which

mutations in each gene affect the treatment of ICIs in patients

with melanoma. Second, since both the training and validation

cohorts in our study were from retrospective studies, the

obtained genetic mutation features may be subject to cohort

selection bias. Therefore, prospective studies are required to

validate this DCB model.

In conclusion, our study systematically screened the suitable

classifier based on genetic mutation features to construct the

DCB model that can effectively distinguish patients with

melanoma who might benefit from the treatment of ICIs. The

predictive power of our DCB model is more effective and robust

than that of the reported genomic biomarker TMB and genetic

mutation feature-based signatures. The genomic features

between pDCB and pNDB groups were also explored. Overall,

the constructed DCB model warrants validation by future

prospective studies and may help guide clinical decision-making.
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SUPPLEMENTARY FIGURE 1

The predictive effect of 9 classifiers in the training cohort. (A) - (I)The line
charts of the f1 scores of fitting and generalization as well as the sum of

the scores for BernoulliNB (A), ComplementNB (B), AdaBoost Classifier
(C), SGD Classifier (D), Gradient Boosting Classifier (E), Extra Trees

Classifier (F), Random Forest Classifier (G), Decision Tree Classifier (H)
and Extra Tree Classifier (I) in the training cohort.

SUPPLEMENTARY FIGURE 2

Survival analysis of the DCBmodel in patients with melanomawithout ICIs

treatment and patients with lung cancer and ccRCC treated with ICIs. (A)
Kaplan–Meier curves of OS comparing pDCB with pNDB in the patients

with melanoma without ICIs treatment. (B) Kaplan–Meier curves of PFS

comparing pDCB with pNDB in the patients with lung cancer treated with
ICIs. (C) Kaplan–Meier curves of OS comparing pDCB with pNDB in the

patients with ccRCC treated with ICIs. (D) The mutation frequency of top
10 gene from the DCB model in melanoma, lung cancer and ccRCC.

SUPPLEMENTARY FIGURE 3

The f1 scores of the DCB model, TMB and reported genetic mutation

signature 1, 2 and 3 in the seven melanoma cohorts.

SUPPLEMENTARY FIGURE 4

The f1 scores of 186 features, 186 features plus sex and age as well as 186

features plus sex and stage in the Snyder and Allen cohorts.
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