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Abstract. Software has been developed in the C++ programming 

language using the MPI parallel programming technology, designed for 

mathematical modeling of the transport of substances in coastal systems. 

When calculating the dynamics of the spread of a pollutant, the 

decomposition of the computational domain was carried out to organize the 

computational process on a multiprocessor computer system K-60 in 

KIAM RAS. To solve the system of grid equations obtained as a result of 

the approximation of the problem, iterative methods were used, with a 

triangular preconditioner. 

1 Introduction 

Today, in the modern world, the issues of ecology and the preservation of the quality of 

coastal (especially fresh) and commercial waters are becoming more and more relevant. 

Environmental problems are associated not only with climate change, loss of biological 

diversity, but also with an increase in environmental damage from natural disasters and 

man-made disasters that affect water bodies and them inhabit-ants. To preserve water 

complexes, maintain their integrity and life-supporting func-tions, it is important not only 

to take organizational, engineering and technical solu-tions, but also to have highly 

effective methods for modeling various potential and actual mechanisms of primary and 

secondary pollution of coastal systems, which make it possible to quickly and efficiently 

based on interrelated high-precision mod-els hydrophysics and hydrobiology to predict the 

processes of the spread of pollution and the occurrence of hazardous phenomena in coastal 

systems [1, 2]. 

To increase the performance of mathematical models based on solving diffusion-

convection problems, it is necessary to include factors that have a significant impact on 

hydrobiological processes: parameterizable microturbulent diffusion and advec-tive 

transport in various directions [3]. The calculation of data on a multiprocessor computer 

system can significantly reduce the computation time. 
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2 Decomposition of the computational domain in one spatial 
direction 

Let us describe a method for constructing a parallel algorithm for solving the problem of 

pollutant transport in the two-dimensional case. The computational domain is covered with 

a uniform rectangular grid [4]:  

 ( ) ( ) , : , ; 0, 1, 0, 1; ,i j x i y j x y x x x y y yx ih x y jh y i N j N h N l h N l = =  −  − = = , (1) 

where ,i j are the indices of the computational domain, ,x yh h are the steps in spatial 

directions, ,x yN N are the number of steps in the spatial directions, ,x yl l are the 

characteristic dimensions of the computational domain. 

At the nodes of the computational grid, the values of the water flow velocity field are 

calculated ( , )u x y : 
,i ju at 1, 2, 1, 2x yi N j N −  − , while along the perimeter ( 

0, 1, 0, 1x yi N j N −  − ) there are fictitious nodes. Let us decompose the computational 

domain along the spatial direction by Oy straight lines parallel to the axis Ox , and denote 

the 
rw subdomain with the number r , 0 1r Ró ó − , where R is the number of subdomains 

into which the original domain is divided. The calculated nodes of the region 
rw are the 

elements 
,

r

i ju at 
21, 2, 1, 2r

xi N j N −  − . The partition of the original region is made in 

such a way that adjacent regions 
rw and 

1rw +
intersect at two nodes along the direction 

perpendicular to the partition lines and equalities take place 
2 2

1 1

,0 ,1, 2 , 1
,r r

r r r r

i ii N i N
u u u u+ +

− −
= = (Fig. 

1, arrows show fictitious nodes.). 

To represent the field value ( , )u x y in vector form, a pair of indices ,i j can be 

associated with a value m that describes the ordinal number of the elements of the vector u

: , 0 1xm i jN m n= + ó ó − , where n is the length of the vector     ( )0 1 1, ,...,
T

nu u u u −= . 

This representation is convenient to use when describing and studying algorithms for 

solving grid equations by iterative methods. 

 

Fig. 1. Decomposition of the computational domain 

For fragments 
rw , obtained as a result of decomposition of the computational domain 

in one spatial direction, it is necessary to know two parameters: the initial index 
1

rj N= in 

the initial computational domain and the width of the fragment 
2

rN . The index number 
1

rN , 
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from which the corresponding fragment of the computational domain begins, can be 

calculated using the formula: 

 ( )1 2r

yN r N Rú ú=  −û û , (2) 

where xú úû û – the «floor» function is defined as the largest integer less than or equal to x, 

xù ùú ú – the «ceiling» function is defined as the smallest integer greater than or equal to x . 

The width of the subregion 
rw along the axis Oy is calculated by the formula: 

 ( ) ( )2 11 2 2r r

yN r N R Nú ú= +  − − +û û . (3) 

The calculation of data on a multiprocessor computer system can significantly reduce 

the computation time. However, the time efficiency of a computing system may not always 

be expected. In this case, it is correct to carry out a theoretical analysis of the calculation of 

the computation time based on regression analysis [5-8]. 

Figure 2 shows a graph of the dependence of the transfer time on the amount of data for 

a different number of exchanges between the nodes of the computer system. The graph 

shows that the transfer time dependency function has a jump when the amount of data 

transferred is approximately 512 floating point numbers. Let's denote this value max 512N =
. 

 

Fig. 2. Dependence of data transfer time on volume when working with a different number of 

computing nodes 

The following parameters are usually used to theoretically evaluate the operation of 

computing systems: 

─ 
at , the execution time of one arithmetic operation; 

─ 
lt , time of organization of data transmission (latency); 

xt , the transmission time of one dat. 

3 Calculation of latency time based on the least squares method 

Let there be some variable i, which represents the i-th observation of the dependent variable 

iy , and let's denote the explanatory factors by the vector 
ix . Then the multiple regression 

model can be represented as follows: 

 
0 1 1 2 2 ...i i i p ip iy x x x    = + + + + + , (4) 

where  is a free term; i – the member containing the error; 1,2,...,i p= . 
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A finite vector of dimension n is a matrix of values of explanatory factors, dimension

n  on the ( )1p + . The model in matrix form will look like 

 Y X = + . (5) 

The estimate of this model for some sample will be the equation in which 

( ) ( )0 1 1 2... , ...
T T

p n       = = . To estimate the vector of unknown parameters  , 

you can use the least squares method. 

The condition for minimizing the residual sum of squares can be represented as: 

 ( ) ( ) ( )
2

2

1 1

min
i

n n
TT

x i i

i i

S y y Y X Y X   
= =

= − = = = − − →  . (6) 

Performing transformations in (6) we obtain 

 
T T T T T TS Y Y X Y Y X X X   = − − + . (7) 

The product TY X is, as a result, a certain matrix with dimension 

( ) ( )l n n p l l p l +  +ù ù ù ùû û û û . This implies 

 2 minT T T TS Y Y X Y XX  = − − → , (8) 

where TX X is the matrix of sums of first powers, squares, and pairwise products of n 

observations of explanatory factors; TX Y  is the vector of products, dimension n , of 

observations of explanatory factors and dependent variables. 

The solution of the matrix equation will be the vector ( ) 1T TX X X Y
−

= , where 

( ) 1X X
−ò is the matrix inverse to the matrix of system coefficients; X Yò is the vector of its -

free members. 

Knowing the vector  , any multiple regression equation can be represented as 

i ix

Ty X = . To calculate the operating time of the computing system iy , it acts as the final 

time, and the explanatory factors indicated by the vector ix are: the size of the 

computational grid, the number of computing nodes used. Thus, it seems possible to 

calculate the average running time of the entire system. Based on the presented regression 

analysis, a linear dependence of the operating time of a software module that implements a 

parallel algorithm was obtained on the amount of transmitted data and the number of 

involved computing nodes of a multiprocessor system (Fig. 3) for cases where the amount 

of transmitted data is less than (Fig. 3a) and more than 512 elements (Fig. 3b). 

Latency and data transfer times are calculated using the least squares method. The 

formula for latency is: 

 ( )
( )

( )

6 7

max

6

max

5,21 10 1,53 10 2 , ,

6,733 10 2 , .

x

l

x

R если N N
t R

R если N N

− −

−

ü  +  − óÿ= ý
 − þÿþ

 (9) 

Transmission time per data 93,3 10xt
−=   [с]. 
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Fig. 3. Dependence of data transfer time on volume a) data volume up to 512 elements; b) data 

volume more than 512 elements 

4 Iterative methods for solving grid equations 

Consider the system of linear algebraic equations:  

 Ax f= , (10) 

where 
, 1( ) .n

ij i jA a == is a matrix that has an inverse matrix, ( )1 2, ,...,
T

nx x x x= and 

( )1 2, ,...,
T

nf f f f= are the column vectors of the unknown and right parts, respectively. 

To study the convergence of iterative methods, that is, to establish the validity of the 

equality lim 0,n

n
x x

→
− = where nx is the exact solution, it is advisable to write these 

methods in matrix rather than coordinate form. 

Represent the matrix A as the sum of three matrices: A A D A− += + + . Obviously, the 

Jacobi method, using the introduced notation, in vector form takes the form: 

( )1 1 1n nx D A A x D f+ − + − −= − + + , where 1D− is the matrix inverse to the matrix

1: ,D D D Е−  =  Е ‒ identity matrix, D ‒ diagonal matrix. 
Represent the Jacobi method as follows: 

 ( )1 .n n nD x x Ax f+ − + =  (11) 

The representation of the Seidel method in vector form is: 

 ( )( )1 .n n nD A x x Ax f− ++ − + =  (12) 

These vector equalities are special cases of the canonical form of one-step (two-layer) 

iterative schemes of the form: 
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1

1

,
n n

n

n

x x
B Ax f



+

+

−
+ =  (13) 

where B is a square nonsingular matrix of the nth order, it is called the preconditioner, 1n +

is a number, which is called the iterative parameter. 

The preconditioner B of the alternately triangular method can be written as 

1 *

1 2( ) ( ), 0, 0, ,B D R D D R D D y H  −= + + = þ þ   

where 1 2,R R are the lower and upper triangular operators (matrices) *

0 1 2 1 2, ,A R R R R= + =

where D is some operator (for example, the diagonal part of the operator A). 

5 Estimation of acceleration of parallel algorithms for solving 
grid equations by iterative methods based on MPI 

Fig. 4 shows a comparison of the acceleration of the parallel algorithm depending on the 

amount of transmitted data on a grid of 10,000 x 10,000 computational nodes using the 

Seidel method. Measurements of the calculation time were made for transmissions with a 

volume of 5, 10, 50, 100, 500, and 1000 elements. The greatest acceleration was observed 

with a transmission volume of 100 elements. With an increase in the volume of receiving 

and transmitting data, the speed of calculations began to decrease. This result is due to the 

fact that with large volumes of transfers, labor costs for exchanges between computing 

nodes increase, which ultimately does not justify itself. 

 

Fig. 4. Comparison of acceleration depending on the amount of data transferred. 

The time spent on the parallel implementation of one iteration of the Seidel method is 

 
( ) ( )( )( ) ( )

( ) ( ) ( )

2

2

0

9 2 1 2 2

1 1 2 2 .

R
r

a x l

s

l x x

t m t N m R N t s

Q R t R t N

−

=

= − + − − + +

+ − +  − + −


. (14) 

where m is the amount of transmitted data, Q is the number of blocks, s is the step 

number, ( )lt s is the time of organization of data transfer (latency). 

Take the derivative ( )t m with respect m to 
2 2x xN N

Q
m m

− −ù ù= ú úú ú
, 

2 2

rN N . 
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 ( ) ( )( ) ( )2 2

2
9 1 2 1 0x

a l

N
t m t R N t R

m

−ò = − − −  − = . (15) 

Therefore, the optimal transmission volume is 

 
( ) ( )

( )( )2

2 1

9 1 2

x l

a

N t R
m

t R N

−  −
=

− −
. (16) 

Similarly, the optimal transmission burst size for the modified alternating-triangular 

method [9] is calculated. 

Fig. 5 shows a comparison of the theoretical and practical values of accelera-tion in the 

case of the optimal amount of gears. 

 

Fig. 5. Comparison of theoretical and practical acceleration values in the case of optimal transmission 

volume 

Fig. 6 shows a comparison of the acceleration for the Seidel methods with the optimal 

amount of transmitted data and Jacobi depending on the number of computing nodes. The 

calculations were made on a grid of 1000 by 1000 cells. The launches were carried out 

sequentially, starting from the launch on one computing node and ending with the 

connection of all available nodes. 

 

Fig. 6. Variability of acceleration of Seidel and Jacobi methods as a function of the number of 

computational nodes 
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It can be seen from the figure that the acceleration of the algorithm that implements the 

Seidel method is not significantly inferior to the acceleration of the algorithm for the Jacobi 

method. 

6 Conclusion 

In the course of this work, a software package was developed that makes it possible to 

perform calculations for the problem of the transfer of matter in a shallow reservoir on 

various computational grids. Theoretical estimates are made to find the latency time. The 

parallel algorithms implemented in the software package are oriented on a multiprocessor 

computer system K-60 in KIAM RAS. They can significantly reduce the time of the 

software package with a large amount of input data. A number of experiments were carried 

out with different amounts of transfers for a varying number of computing nodes. Optimal 

volumes of transmitted data have been obtained. The presented complex can be used to 

study the processes of pollutant transfer in natural and technological systems. 
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