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Abstract. Glueballs are bound states in the spectrum of quantum chromo-

dynamics which consist only of gluons. They belong to the group of exotic

hadrons which are widely studied experimentally and theoretically. We summa-

rize how to calculate glueballs in a functional framework and discuss results for

pure Yang-Mills theory. Our setup is totally self-contained with the scale being

the only external input. We enumerate a range of tests that provide evidence of

the stability of the results. This illustrates the potential of functional equations

as a continuum first-principles method complementary to lattice calculations.

1 Introduction

The existence of glueballs was conjectured already a long time ago [1]. Nevertheless they re-

mained elusive states, see, e.g., [2–6], in part because of the fact that they can mix with quark

states. In particular for the lightest glueball, which has scalar quantum numbers JPC = 0++,

the existence of several states in the relevant mass range complicates any analysis. Several

scenarios and candidates were discussed in the past, most of which expect the lightest glue-

ball to be in the range between 1500 and 2000 MeV. Two recent analyses of radiative J/ψ
decay data from BESIII find evidence for a scalar glueball state between 1700 and 1900 MeV

[7, 8]. Central exclusive production is another promising process to look for glueballs. Cor-

responding data from CMS does not have high enough statistics in the relevant mass range

[9], though. Another example is pp̄ annihilation, which is the relevant process for the future

PANDA experiment [10].

Theoretical investigations of glueballs complement the experimental searches but they are

challenging as well. Employed approaches include Hamiltonian many body methods [11, 12],

chiral Lagrangians [13, 14], lattice methods [15–20] and functional methods [21, 22]. The

last two methods have provided results from first-principles in the case when quarks are

neglected. In that case, only pure gluonic states exist what alleviates the analysis. There is

some progress in the inclusion of quarks on the lattice, but no final conclusions as to how

large this unquenching effect is could be drawn yet, see, e.g., [17, 18, 20].

In this contribution we describe the status of glueball calculations with functional meth-

ods. Using bound state equations, the glueball spectrum is calculated for spin J = 0, 1, 2, 3, 4
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Figure 1. Two-body bound state equations of QCD. The blue continuous/red wiggly/green dashed lines
are quark/gluon/ghost propagators. Γ are Bethe-Salpeter amplitudes and K the scattering kernels. For

pure Yang-Mills theory, diagrams with quarks do not exist.

for pure Yang-Mills theory. As input, the correlation functions of the elementary gluon

and ghost fields in Landau gauge are required. In contrast to mesons, baryons and even

tetraquarks, see, e.g., [23–25], literature on functional glueball calculations is scarce and was

restricted to scalar and pseudoscalar glueballs [26–29] until recently [21, 22]. The difference

between pure quark bound states and states including gluons is that for the former simpler

approximations for the input are often sufficient [23–25]. Calculations for glueballs, on the

other hand, depend very sensitively on the input. For example, using simple models for the

vertices, it is possible to obtain a decent result for the scalar glueball mass, but using the

same model does not describe the pseudoscalar glueball well. The progress made in the last

decade in the calculation of correlation functions, see [30] and references therein, has led to

quantitatively reliable results for various correlation functions [31, 32]. The availability of

such high quality input was decisive to obtain the results presented below.

We shortly describe the setup of the calculations in the next section. In Sec. 3 we present

the results and in Sec. 4 we discuss the stability of the results with regard to the employed

approximations. We conclude in Sec. 5.

2 Bound state equations

We calculate glueballs from two-body bound state equations (BSEs). The full system for

QCD is shown in Fig. 1. For pure Yang-Mills theory, the diagrams containing quark propa-

gators are neglected.

To solve the BSEs, the propagators and scattering kernels K are required as input. The

latter are derived from the 3PI effective action truncated at three loops [33, 34]. This leads to

the expressions discussed in Sec. 4.2 and shown in Fig. 5. The quantities needed to calculate

them are the gluon and ghost propagators and the three-gluon and ghost-gluon vertices. They

are calculated from their equations of motion derived from the same action. The input is

discussed in more detail in Sec. 4.1 where also comparisons with lattice results are shown in

Figs. 3 and 4 .
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Figure 2. Results for glueball ground states and excited states for the indicated quantum numbers from

lattice simulations [15, 19] and functional equations. In the upper plot, we display the glueball masses

on an absolute scale set by r0 = 1/418(5)MeV). In the lower plot, we display the spectrum relative to

the ground state. Masses with † are conjectured to be the second excited states. Masses with ∗ come with

some uncertainty in their identification in the lattice case or in the trustworthiness of the extrapolated

value in the BSE case.

The BSEs are solved as eigenvalue equations with the total momentum P of the bound

state as parameter. A solution is found when an eigenvalue is one by varying P2. The cor-

responding mass is given by M =
√−P2. This entails that the internal quantities need to be

known for complex arguments. However, calculations in the complex plane have not pro-

gressed as far as for Euclidean momenta, see, e.g., [35, 36]. Thus we resort to calculations

for P2 > 0 and analytically continue the eigenvalue curve via Schlessinger’s continued frac-

tion method [37, 38], for details see Ref. [21]. We tested this method with a meson example

where the full calculation for P2 < 0 can be done [21].

3 Results

The masses of the ground state and up to two excited states were calculated for spin J =

0, 1, 2, 3, 4 and positive charge parity. For J = 1, no results were found which means that

, 03016 (2022) https://doi.org/10.1051/epjconf/202227403016
t h

 Quark Confinement and the Hadron Spectrum

EPJ Web of Conferences 274
XV

3



Table 1. Ground and excited state masses M of glueballs for various quantum numbers. Compared are

lattice results from [15, 19] with the functional results of [21, 22]. For [15], the errors are the

combined errors from statistics and the use of an anisotropic lattices. For [19], the error is statistical

only. In our results, the error comes from the extrapolation method and should be considered a lower

bound on errors. All results use the same value for r0 = 1/(418(5)MeV). The related error is not

included in the table. Masses with † are conjectured to be the second excited states. Masses with ∗

come with some uncertainty in their identification in the lattice case or in the trustworthiness of the

extrapolated value in the BSE case.

[15] [19] This work

State M [MeV] M/M0++ M [MeV] M/M0++ M [MeV] M/M0++

0++ 1760(50) 1(0.04) 1651(23) 1(0.02) 1850(130) 1(0.1)

0
∗++ 2720(180)∗ 1.54(0.11)∗ 2840(40) 1.72(0.034) 2570(210) 1.39(0.15)

0
∗∗++ – –

3650(60)† 2.21(0.05)†
3720(160) 2.01(0.16)

3580(150)† 2.17(0.1)†

0−+ 2640(40) 1.50(0.05) 2600(40) 1.574(0.032) 2580(180) 1.39(0.14)

0
∗−+ 3710(60) 2.10(0.07) 3540(80) 2.14(0.06) 3870(120) 2.09(0.16)

0
∗∗−+ – –

4450(140)† 2.7(0.09)†
4340(200) 2.34(0.19)

4540(120)† 2.75(0.08)†

2++ 2447(25) 1.39(0.04) 2376(32) 1.439(0.028) 2610(180) 1.41(0.14)

2
∗++ – – 3300(50) 2(0.04) 3640(240) 1.96(0.19)

2−+ 3160(31) 1.79(0.05) 3070(60) 1.86(0.04) 2740(140) 1.48(0.13)

2
∗−+ 3970(40)∗ 2.25(0.07)∗ 3970(70) 2.4(0.05) 4300(190) 2.32(0.19)

3++ 3760(40) 2.13(0.07) 3740(70)∗ 2.27(0.05)∗ 3370(50)∗ 1.82(0.13)∗

3
∗++ – – – – 3510(170)∗ 1.89(0.16)∗

3
∗∗++ – – – 3970(220)∗ 2.14(0.19)∗

3−+ – – – – 4050(290)∗ 2.19(0.22)∗

4++ – – 3690(80)∗ 2.24(0.06)∗ 4140(30)∗ 2.23(0.15)∗

4−+ – – – – 5050(700)∗ 2.9(0.4)∗

such states, if they exist, are very heavy. Note that the Landau theorem [39, 40] does not

apply to our framework because the gluons are not on-shell. All found states are listed in

Tab. 1 and shown in Fig. 2 in comparison to lattice results. To have a common scale for

physical units, we set the Sommer scale r0 to the same value for all sources. Alternatively,

we show the spectrum in units of the lightest state.

The results for scalar, pseudoscalar and tensor glueballs agree very well with lattice re-

sults. For the 2−+, our ground state is lower than lattice results and for 3++ we find three states
rather close to each other. This could be an artifact of the extrapolation of the eigenvalue

curves which might merge to only one state at the physical mass. In general, the extrapola-

tion becomes less reliable for high masses which can be seen by the increase in the error bars.

The 4++ state is an exception, as its extrapolation is remarkably stable. The states 3−+ and

4−+ were not observed on the lattice. We would like to add that the results for the latter has

changed compared to [22] because more points for the extrapolation became available from

the computationally very expensive calculation. Overall, the agreement with lattice is rather

good.
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Figure 3. Gluon and ghost dressing functions Z(p2) andG(p2), respectively, (left) and gluon propagator
D(p2) (right) [32] in comparison to lattice data [42].

4 Stability

Beyond the good agreement with lattice results, alternative tests are of course advantageous.

Here we discuss two possibilities. The first concerns the employed input, the second the

bound state equations themselves.

4.1 Input

The input in form of the gluon and ghost propagators and the ghost-gluon and three-gluon

vertices was calculated from the 3PI effective action truncated at three-loop order [32]. Solv-

ing for all these quantities at the same time does not leave any quantities to be modeled or

tuned. Consequently, the resulting system of equations is self-contained. This is actually

rather restrictive, because it removes any freedom of tuning to improve the results. For ex-

ample, it is possible to achieve good agreement of the propagators with lattice results when

an effective three-gluon vertex model is used [41]. However, since such a model is optimized

for the gluon propagator, other equations like BSEs can be affected negatively. Thus, such a

model is not adequate for use in a BSE.

The propagator and vertex results shown in Fig. 3 and Fig. 4, respectively, compare

favourably with lattice results [32]. But what is even more remarkable is that several other

tests have been performed that indicate the quantitative reliability of the results. The most

relevant is the fact that results from different functional equations agree. This is illustrated

in Fig. 4 where the 3PI results of the three-gluon vertex are compared with results from the

functional renormalization group and from its Dyson-Schwinger equation (DSE). Also shown

is the negligible effect of restricting the three-gluon vertex to a single kinematic variable [32].

This feature was already contained in early results of the vertex [45] but became only visible

after switching to the proper variable [46] and was demonstrated also on the lattice [47].

Other evidence of the reliability of the results is provided by the comparison of the couplings

from the different vertices down to a few GeV [32] which could not be achieved with previous

truncations, e.g., [45, 48].

The effects of various quantities not taken into account by the employed truncation were

also tested. An enlarged tensor basis for the three-gluon vertex was studied in [46]. The

corresponding dressing functions are small compared to the leading one. The effect of the

four-gluon vertex was studied in three dimensions, where also only a small impact was found
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Figure 4. Left: Three-gluon vertex dressing function from the equation of motion of the 3PI effective

action with full and restricted kinematics (SP) and from the two-loop truncated DSE. Right: Three-

gluon vertex dressing function at the symmetric point in comparison to FRG [31]. Lattice data from

[43, 44].

Figure 5. Interaction kernels from the three-loop 3PI effective action. All propagators are dressed;

black disks represent dressed vertices. The red rectangles denote the main truncation.

[49]. And finally, the two remaining four-point functions, the two-ghost-two-gluon and four-

ghost vertices, were calculated in [50]. Their inclusion in the calculation of other correlation

functions again had only tiny or even vanishing effects [50]. Thus, it seems that for the

current level of precision all the important pieces are included and the obtained propagators

and vertices provide a reliable input for the calculation of bound states.

4.2 Truncation

As the equations for the correlation functions, the kernels are derived from the 3PI effective

action truncated at three loops [33, 34]. This leads to the kernels shown in Fig. 5. As

one can see, the kernels contain one-loop terms which lead to two-loop terms when inserted

into the BSE. Such diagrams are cumbersome to deal with and require substantially more

computational power. Initially, only the diagrams in the red rectangles were included in the

calculation of the kernels [21]. However, to be fully self-consistent with the input, the two-

loop diagrams were later added. For the scalar glueball, a tiny effect (below 1% for the

ground state mass, 2% for the first excited state) was found [51] when the two-loop diagrams

of the gluon-gluon kernel were included. The two-loop diagrams of the other kernels are

expected to have even less impact, because already the one-loop kernels are subleading. For

the pseudoscalar glueball the shift in the mass was barely visible [52]. In this case, all two-
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loop diagrams were included as the pseudoscalar glueball does not contain diagrams with

ghosts.

5 Conclusions

The potential of functional equations in hadron physics ranges from answering fundamental

questions about the nature of hadrons, see as an example Ref. [25] for the σmeson, to provid-

ing quantitative results from first principles. The crucial ingredient in the latter calculations

is a high-quality input from a self-consistent and self-contained truncation of the equations

of motion. In this contribution we illustrated this with the example of the glueball spectrum

for pure Yang-Mills theory.
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