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Abstract. Electromagnetic radiation from the quark-gluon plasma (QGP) is
an important observable to be considered in heavy ion collision experiments.
I will provide an update on recent advancements from perturbation theory
and quenched lattice simulations. The resummed next-to-leading order (NLO)
emission rate has recently been decomposed into transverse and longitudinal
components, and extended to non-zero baryon chemical potential. The associ-
ated spectral function has also been tested against the Euclidean correlator, for
continuum-extrapolated lattice data (at µB = 0).

1 Introduction
Quarks undergoing acceleration in the deconfined state of QCD matter can generate electro-
magnetic radiation, with those photons that are off-shell subsequently decaying into lepton-
antilepton pairs. Therefore, both the real photon spectrum and dilepton invariant mass dis-
tribution can provide access to properties of the hot quark-gluon plasma (QGP) that exists in
heavy ion collision experiments [1–3]. In this report, I will show that the spectral function
can be constrained by lattice data and discuss how the presence of a baryon chemical poten-
tial, µB, impacts the production of photons and dileptons. While the latter has been examined
for real photons [4], we present new results away from the light cone. This involves properly
understanding how µB enters the strict NLO computation, the so-called LPM effect (at low
invariant masses), and how to smoothly interpolate between the two regimes as originally
advocated in ref. [5].

To start, we fix the notation and denote the temperature by T , the quark chemical potential
by µ and the energy and momentum with respect to the plasma rest frame of the lepton pair by
ω and k respectively. In chemical equilibrium, µ = 1

3µB and thermal averages are calculated
from ⟨...⟩ = Tr

[
ϱ̂ (...)

]
with the density matrix ϱ̂ = Z−1e−(Ĥ−µQ̂)/T [6]. Emission rates can then

be derived from an associated spectral function. In this case, the relevant spectral function
is given by the imaginary part of the current-current correlation function, evaluated at the
energy k0 = ω + i0+, namely

ρµν(ω, k) = Im
[
Πµν(K)

]
, (1)

where K = (k0, k) and the correlation function being given by1

Πµν(K) ≡ −
∫ 1/T

0
dτ
∫

x
ek0τ+i k·x

〈
Jµ
(
t, x
)

Jν
(
0, 0
) 〉
, Jµ ≡ ψ̄γµψ . (2)

∗e-mail: gsj6@uw.edu
1An overall minus sign appears in (2) for sake of convenience.
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The thermal average is taken on a volume with periodic temporal extent τ ∈ (0,T−1) and k0
is a bosonic Matsubara frequency k0 = i 2πzT with z ∈ Z.

With these definitions, the differential photon rate involves the spectral function ρV ≡ ρ
µ
µ

for both i) real and ii) virtual photons. In case i), ω = |k| ≡ k and case ii) provides the
dilepton rate with the invariant mass M ≡

√
K2 that should be above the threshold to form

the pair: K2 = ω2 − k2 > 4m2
ℓ . One might also consider iii) deep inelastic scattering on a

QGP target, which would involve ρV for timelike virtualities [7]. Although case iii) may not
be experimentally accessible, there is another good reason to pursue K2 < 0 : Knowing the
spectral function at fixed k for all ω, enables one to calculate the imaginary time correlation
function and thus connect with non-perturbative lattice measurements (at µ = 0).

The gross features of ρV can be understood from the leading-order (LO) process qq̄→ γ⋆,
i.e. αs = 0. For non-zero µ, the result was determined in ref. [8] for K2 > 0 . In general, for
any ω , the free spectral function is given by the strict 1-loop result2

ρV|
strict
1−loop =

NcK2

4π

{ ∑
ν=±µ

T
k

ln
[1 + eν−

1
2 (ω+k)/T

1 + eν−
1
2 |ω−k|/T

]
+ Θ
(
K2) } , (3)

where Θ denotes the Heaviside step function and Nc is the number of colours. This is de-
picted in fig. 1, assuming non-zero T . The vanishing of ρV for ω = k is readily understood
from kinematics and the µ-dependence stems from the relative enhancement and depletion of
quarks and antiquarks respectively (for µ > 0).

0

µ = 0

µ = 3T
vacuum

k

ρfreeV

Tω

ω

increasing µ

Figure 1. Sketch of the free spectral function (αs = 0), with the µ = 0 result (solid) and the impact of
µ > 0 also shown (dashed). The limit T, µ→ 0 of eq. (3) is the vacuum result (dotted).

2 Weak coupling QCD corrections

Corrections to (3) may be computed in perturbation theory, however the structure of the
expansion in αs depends on the (parametric) value of K2. Away from the light cone, |K2| ∼

>

(πT )2 , the 2-loop corrections may be calculated directly and the NLO terms are O(αs) [10].
However, for small K2 as the free result (3) gets kinematically suppressed (and, in particular
vanishes for K2 = 0) implying that the QCD ‘corrections’ actually represent the first non-
trivial approximation to the real photon rate. For K2

∼
< (gT )2 certain diagrams need to be

2Setting µ = 0 gives eq. (2.4) from ref. [9].
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resummed to obtain a meaningful result, which is motivated on physics grounds to describe
thermal screening [11–13] in addition to the Landau-Pomeranchuk-Migdal (LPM) effect [14–
17]. These contributions alter the asymptotic dependence on the strong coupling αs to a
leading-logarithm ρV ∼ αs ln(1/αs)T 2 as αs → 0 .

In ref. [5], a simple procedure to interpolate between these two regimes was proposed.
Care is required to avoid double counting when resummation is combined with the strict NLO
expansion. A full resummed spectral functions can be defined as

ρV|
resummed
NLO ≡ ρV|

strict
1−loop + ρV|

strict
2−loop +

(
ρV|

full
LPM − ρV|

expanded
LPM

)
, (4)

where the subtracted term in parenthesis represent the 1- and 2-loop parts that are included
in the full LPM result (with certain approximations). For (4) to make sense, a delicate can-
cellation must take place around ω ≃ k so that the result is finite and continuous there [9].
The details of the LPM ‘full’ and ‘expanded’ will be provided in sec. 5, where we focus on
non-zero baryon density.

In ref. [18], we studied (with full generality) the types of interactions that would con-
tribute to strict NLO rates and developed a numerical routine for any combination of parti-
cles, masses, chemical potentials and a wide class of matrix elements. For the dilepton rate,
it is preferable to use a more tailored approach which requires a 2-dimensional phase space
integration [19]. The underlying spectral function can be reduced to a set of elementary ‘mas-
ter integrals’ at NLO (some of which were studied for ω > k in [10]), which are uniformly
defined by

ρ(m,n)
abcde(K) ≡ Im

∑∫
P,Q

pm
0 qn

0

[P2]a [Q2]b [R2]c [L2]d [V2]e

∣∣∣∣∣∣R=K−P−Q , L=K−P , V=K−Q
. (5)

Functions of this kind provide a basis onto which the general 2-loop topology (after carrying
out the Dirac algebra, etc.) can be mapped for self energies with external momentum K.
In the sum-integrals (5),3 P and Q are fermionic momenta with p0 = i(2x + 1)πT + µ and
q0 = i(2y + 1)πT − µ (where x, y ∈ Z). (Recall that K is bosonic, thus R = K − P − Q is also
bosonic while L = K − P and V = K − Q are fermionic.)

3 Non-perturbative constraints

Although real-time rates are difficult to compute from numerical Monte Carlo simulations,
the τ dependence of the integrand in eq. (2) can be obtained from Euclidean lattices. The
imaginary-time correlation function Gµν(τ, k) is related to the spectral function from (1) via
the integral transform4

Gµν(τ, k) =
∫ ∞

0

dω
2π

{ (
ρµν(ω, k) − ρµν(−ω, k)

)cosh
[
ω( 1

2T − τ)
]

sinh[ 1
2T ω]

+
(
ρµν(ω, k) + ρµν(−ω, k)

) sinh
[
ω( 1

2T − τ)
]

sinh[ 1
2T ω]

}
. (6)

3To be crystal clear, the sum-integrals are (in 4 − 2ϵ spacetime dimensions)∑∫
P
=

∫
p

T
∑
p0

,

∫
p
=

( eγµ̄2

4π

)ϵ ∫ dd p
(2π)d .

4In practice, all the spectral functions studied here are antisymmetric in ω→ −ω and therefore only the first term
on the right hand side of eq. (6) contributes.
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Figure 2. Results for ρH (left) and the corresponding Euclidean correlation function, calculated from
eq. (6), (right) at T = 1.1Tc for nf = 0 . Similar plots for ρV (and GV) may be found in ref. [9].

It is a formidable task to invert (6) and thus obtain the spectral function directly from a finite
set of sampling points [20, 21].

Rather than using (6) to obtain ρV (from GV), another spectral function turns out to be
convenient:

ρH ≡ ρV + 3
K2

k2 ρ00 , (7)

which is highly suppressed in the ultraviolet and exactly vanishes in vacuum. This makes
the corresponding Euclidean correlator more sensitive to the infrared physics of interest [22].
We point out that ρV and ρH agree on the light cone, but differ considerably for ω , k . The
spectral function (7) satisfies a sum rule,

∫ ∞
0 dωωρH(ω, k) = 0 , which supplies additional

restrictions on any inversion candidates. Computing both ρV and ρH amounts to determining
separately the transverse and longitudinal components, thus specifying the entire tensor ρµν.

One may also use (6) to compute Gµν from models of the spectral function. In fig. 2 the
perturbative results for ρH and GH are shown, compared with continuum extrapolated lattice
data for quenched QCD from ref. [23]. The various curves show different choices of the scale
in the running coupling, Q, as well as including the NLO part of the LPM computation [24].
(Further details may be found in refs. [9, 25].)

4 Beyond leading-order: strict NLO

The strict NLO result for ρV can be expressed as a linear combination of the master integrals,
defined by eq. (5). Evaluating the diagrams, we obtain the result

ρV|
(g2)
NLO = (8)

8(1 − ϵ)g2CF Nc

{
(1 − ϵ)K2

(
ρ(0,0)

11020 + ρ
(0,0)
11002 − ρ

(0,0)
10120 − ρ

(0,0)
01102

)
+ ρ(0,0)

11010 + ρ
(0,0)
11001

+ 2ϵ ρ(0,0)
11100 + 2

K2

k2 ρ
(1,1)
11011 −

1
2 K2
( ω2

k2 + 3 + 2ϵ
)
ρ(0,0)

11011

− (1 − ϵ)
(
ρ(0,0)

1111(−1) + ρ
(0,0)
111(−1)1

)
+ 2K2

(
ρ(0,0)

11110 + ρ
(0,0)
11101

)
− K4ρ(0,0)

11111

}
,
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where CF = (N2
c − 1)/(2Nc) . Above, the limit ϵ → 0 is implied because some of the master

integrals have 1/ϵ-contributions stemming from their vacuum parts. Note that the spectral
function is symmetric in the simultaneous exchanges: a ↔ b , d ↔ e and m ↔ n for
the master integrals. Consequently, the result will be unchanged by µ → −µ . In the case
where µ = 0 , the additional symmetry ρ(m,n)

abcde → ρ(n,m)
baced leads to the same decomposition as in

ref. [9, 19].
An important cross-check of the result (8) (besides the obvious, gauge invariance etc.) can

be found within the hard thermal loop (HTL) approximation, for which the master integrals
can be computed in closed form. The HTL limit is given by the small-K behaviour of Πµν
and the 1-loop result is well known [6]. Recently, the 2-loop HTL photon self energy was
computed for a hot and dense QED plasma in ref. [26]. We restate the outcome here, in a way
that is compatible with eq. (2),

ΠHTL
V = −

(
1
3 T 2 +

µ2

π2

)
+

e2

8π2

(
T 2 +

µ2

π2

)(
1 +

ω

k
L
)
+

e2

4π2

µ2

π2

(
1 −

ω2

k2

)(
1 −

ω

2k
L
)2
,

(9)

where L = ln ω+k+i0+
ω−k+i0+ . This result can be transcribed to the present case by replacing

e2 → g2CF Nc in eq. (9), so that the resulting spectral function should coincide with the strict
NLO version of ρV (8) assuming ω and k are small. The agreement between the two ap-
proaches has been verified both analytically and numerically. Worth mentioning explicitly, is
the HTL limit for the ρ(1,1)

11011 master integral.5 One may readily check that

∑∫
P,Q

p0q0

P2Q2(K − P)2(K − Q)2 ≈ −
µ2

4(2π)4

(
1 −

ω

2k
L
)2
. (10)

This term appears when the strict 2-loop self energy, ΠV|
(g2)
NLO, is evaluated and is entirely

responsible for the last term in (9), which contains a new structure involving a squared loga-
rithm (only present at finite density).

5 Beyond leading-order: LPM regime

The master integrals ρ(0,0)
1111(−1) and ρ(0,0)

111(−1)1 from eq. (8) each contain a log-divergence as
K2 → 0± [25]. This is a signal that resummation is required, and the LPM framework
serves that purpose. Two important scales enter in the problem: The Debye mass mD and the
asymptotic quark mass m∞, both of which are modified by the chemical potential, viz.

m2
D ≡ g2

[(
1
2 nf + Nc

)T 2

3
+ nf

µ2

2π2

]
, m2

∞ ≡ g2 CF

4

(
T 2 +

µ2

π2

)
, (11)

where nf is the number of light quark flavours. Following ref. [15] in impact parameter space,
the result can be expressed as6

ρV|
full
LPM = −

Nc

π

∫ ∞
−∞

dp
[
1 − nF(p − µ) − nF(ω − p + µ)

]
(12)

× lim
b→0
P
{K2

ω2 Im[g(b)] +
1
2

[ 1
p2 +

1
(ω − p)2

]
Im[∇⊥ · f (b)]

}
,

5If µ = 0 , one can prove that ρ(1,1)
11011 =

1
4ω

2ρ(0,0)
11011 which vanishes in the HTL approximation when ω is soft.

6A formulation with better asymptotics (for large M) was proposed in ref. [27], although we do not use that here.
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where nF is the Fermi-Dirac distribution, P stands for the Cauchy principal value and g and f
are Green’s functions satisfying(

Ĥ + i0+
)
g(b) = δ(2)(b) ,

(
Ĥ + i0+

)
f (b) = −∇⊥δ

(2)(b) . (13)

The operator Ĥ acts in the transverse plane,

Ĥ =
ω(M2

eff − ∇
2
⊥)

2p(ω − p)
+ ig2C

F
T
∫

d2q
(2π)2

(
1 − eiq·b)( 1

q2 −
1

q2 + m2
D

)
, (14)

where M2
eff ≡ m2

∞ −
p(ω−p)
ω2 M2 .

In order to combine the LPM and NLO results, we also need to naively expand the LPM
results up to O(g2) and remove double counting à la eq. (4). At zeroth order in g, the expres-
sion becomes

ρV
∣∣∣(g0)
LPM =

NcM2

4π

{ ∑
ν=±µ

T
ω

ln
[1 + e(ν−ω)/T

1 + eν/T

]
+ Θ
(
K2) } , (15)

which matches (3) for ω ≃ k . The corrections of O(g2) are proportional to m2
∞ . As in the

µ = 0 case [9], the spectral function ρV contains a log-divergence plus a finite part:

ρV
∣∣∣(g2)
LPM =

Ncm2
∞

4π

{[
1 − nF(ω − µ) − nF(ω + µ)

](
ln
∣∣∣∣∣m2
∞

M2

∣∣∣∣∣ − 1
)
+ F (ω)

}
(16)

where

F (ω) ≡

[
Θ(K2)

∫ ω

0
dp − Θ(−K2)

( ∫ 0

−∞

+

∫ ∞
ω

)
dp
]{

2
1 − nF(p − µ) − nF(ω − p + µ)

ω

−
nF(−µ) + nF(ω + µ) − nF(p − µ) − nF(ω − p + µ)

p

−
nF(ω − µ) + nF(µ) − nF(p − µ) − nF(ω − p + µ)

ω − p

}
. (17)

The log-divergence in (16) exactly matches that from ρV|
(g2)
NLO , and the full resummed expres-

sion is finite and continuous across the light cone. This is illustrated in fig. 3 at µ = 2T for
fixed coupling αs = 0.3 . (We have also verified this cancellation analytically.) Although not
visible from fig. 3, the presence of µ enhances the LPM rate due to a larger m∞ which sets the
overall scale. This enhancement counteracts the suppressing effect of µ in the 1-loop spectral
function (3).

6 Outlook

The emission rate of thermal photons and dileptons can be derived from the same underlying
spectral function ρV, which encodes all orders in αs. After a long history of computing the
perturbative corrections in various limits, there is now sufficient information to interpolate
between these regimes as suggested by ref. [5]. The utility of having a model of the spectral
function for all ω is that it allows for comparison with lattice data at non-zero momentum.
One may also use the pertubative result to create ‘mock data’ for testing methods of recon-
structing ρV from (6), e.g. the Backus-Gilbert method.

A natural next step is to implement the thermal rates calculated from (4) in hydrodynamic
simulations of relativistic heavy ion collisions [28]. (Early studies in this direction can be

, 05014 (2022) https://doi.org/10.1051/epjconf/202227405014
t h Quark Confinement and the Hadron Spectrum

EPJ Web of Conferences 274
XV

6



−0.5

0.0

0.5

1.0

1.5
ρ

V
/(
ω
T
)

0 2 4 6 8 10

ω/T

LO from eq.(3)
LPMfull−LPMexpanded

strict NLO
resummed eq.(4)

µ = 2TFixed αs = 0.3

k = 2π T

Figure 3. The vector channel spectral
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the log-divergence for ω ≈ k from (16)
is evident. Crucially, the prescription of
eq. (4) gives a result (solid) that is both
finite and continuous at the light cone.
(For comparison, the free result is also
shown.)

found in ref. [29].) For example, the fully differential dilepton rate, with αem = e2/(4π) and
for nf = 3 reads

dΓℓℓ̄ (ω, k)
dω d3 k

= 2
α2

emnB(ω)
9π3M2 B

( m2
ℓ

M2

)
ρV
(
ω, k
)
, (18)

where nB is the Bose distribution function and the phase space factor is B(x) ≡ (1+ 2x)Θ(1−
4x)
√

1 − 4x . The M-distribution that follows is shown in fig. 4 for several temperatures (at
zero net baryon density) which are expected to be probed in central collisions at the LHC and
RHIC facilities. Since dΓℓℓ̄ represents the rate per unit volume, the result shown still needs to
be convoluted with the spacetime evolution of the fireball. This task is left for future work
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]
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Figure 4. Invariant mass distribution of
the differential rate to product an e+e−

pair, dΓee ≡ dN/d4X , computed from
eq. (18) after converting to hyperbolic
coordinates and integrating over the
azimuthal angle and k⊥ at midrapidity.
We show the resummed NLO result
from (4) (solid) and the LO result from
(3) (dotted), at the temperatures
T = {180, 300, 500}MeV. The running
of αs has been implemented as
described in ref. [9].
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