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Abstract. We compute the topological susceptibility of high temperature QCD

with 2+1 physical mass quarks using the multicanonical approach and the spec-

tral projector estimate of the topological charge. This approach presents reduced

lattice artifacts with respect to the standard gluonic one, and makes it possible

to perform a reliable continuum extrapolation.

1 Introduction

In recent years the study of the topological properties of QCD at high temperatures has been

the subject of several Lattice QCD investigations [1–6]. This is motivated by the general in-

terest in the non-perturbative physics of high-temperature QCD, but also by its phenomeno-

logical implications for axion physics and cosmology.

For asymptotically high temperatures the topological susceptibility χ(T ) = 〈Q2〉/V (we

denote by Q the topological charge and by V the space-time volume) can be computed by

∗e-mail: a.athenodorou@cyi.ac.cy
∗∗e-mail: claudio.bonanno@fi.infn.it
∗∗∗e-mail: claudio.bonati@unipi.it
∗∗∗∗e-mail: giuseppe.clemente@desy.de

†e-mail: francesco.dangelo@phd.unipi.it
‡e-mail: massimo.delia@unipi.it
§e-mail: lorenzo.maio@phd.unipi.it
¶e-mail: guido.martinelli@roma1.infn.it
‖e-mail: francesco.sanfilippo@infn.it
∗∗e-mail: atodar01@ucy.ac.cy

, 06001 (2022) https://doi.org/10.1051/epjconf/202227406001
t h

 Quark Confinement and the Hadron Spectrum

EPJ Web of Conferences 274
XV

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



semiclassical methods and perturbation theory: in the Dilute Instanton Gas Approximation

(DIGA) from a one loop computation in the instanton background it is possible to obtain the

result [7, 8]:

χ(T ) ∝ T−c , c =
11

3
Nc +

1

3
Nf − 4 , (1)

where Nc,Nf are the number of colors and light flavors respectively. This result can however

be trusted only for T � ΛQCD ≈ Tc, and it was thus suggested in [9] to use first principles

Lattice QCD results for χ(T ) to estimate the upper bound of the axion coupling constant fa
[10–12].

The computation of χ(T ) in the high temperature regime by means of Lattice QCD simu-

lations is however a very challenging task. This is due to the simultaneous presence of three

complementary numerical obstructions that have to be faced.

The first problem is related to the fact that the topological susceptibility approaches zero

quite rapidly by increasing the temperature (Eq. (1) predicts χ(T ) ∝ T−8), thus in the high

tempertature regime the probability of visiting configurations with Q � 0 is strongly sup-

pressed on finite volume simulations. Very large statistics are needed to observe a sufficient

number of fluctuations of Q to reliably estimate χ.

The second problem is related to the presence of very large lattice artifacts. In continuum

QCD the index theorem connects the topological charge of a configuration with the number

of zero modes of the massless Dirac operator /D, and the presence of zero modes suppresses

in the chiral limit the probability of finite volume configurations with non zero topological

charge. On the lattice chiral symmetry is explicitly broken when using Wilson or staggered

fermion discretizations. As a consequence no exact zero modes are present, but only Would-

Be Zero Modes (WBZMs), which make the suppression of Q � 0 configurations less efficient

with respect to the continuum. The numerical determination of χ is thus affected by huge

lattice artifacts, and its continuum extrapolation requires particular attention.

The third problem is the so called topological freezing problem: the effectiveness of the

commonly used local update algorithms in varying the topological charge of the configura-

tions is subject to a severe form of critical slowing down as the lattice spacing is decreased.

Indeed the increase of the autocorrelation time for topological observables is consistent with

an exponential in the inverse lattice spacing [13, 14]. This makes extremely difficult to use,

for temperatures of a few hundred MeVs, lattice spacings of about 0.01 fm or smaller.

The use of specific strategies to overcome these issues is mandatory to estimate χ(T ) at

high temperatures, and different approaches have been proposed in the literature to this end.

For instance, in Ref. [3] (see also [2]) the Authors compute χ(T ) by restricting simulations to

the Q = 0 and |Q| = 1 sectors, and to reduce lattice artifacts related to the use of staggered

fermions they a posteriori reweight configurations by using the lowest eigenvalues of /D,

assumed to be WBZMs.

In this proceeding we discuss some of the results recently obtained in [15], where some

progress has been made towards a lattice determination of χ(T ) in QCD at the physical point

(with Nf = 2 + 1) without any extra ad hoc hypothesis. To make this possible we use two

different strategies to cope with the first and the second of the problems discussed above.

An important point to be stressed is that these strategies help resolving or alleviating the

computational problems but they are known not to introduce any biases in the final results.

To deal with the problem of the dominance of the Q = 0 sector at high temperature we use

an adaptation of the multicanonical algorithm [16], analogously to what was done in [5, 17–

19]. In short, the idea is to add to the lattice action a bias topological potential to enhance

the probability of visiting the suppressed topological sectors. Expectation values with respect

to the original distribution are then computed by using standard reweighting to remove the
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effect of the bias potential. We explicitly note that this reweighting has no overlap problem

and can thus be carried out without introducing any systematical errors.

To reduce the size of the lattice artifacts, for the topological susceptibility we adopt a

definition based on the Spectral Projectors (SP) method [20–24], adapted in Ref. [25] to the

case of staggered fermions. In this discretization Q is defined as the sum of the chiralities of

all the eigenmodes of the Dirac operator lying below a certain threshold M. This definition is

theoretically well-defined, as it can be shown to converge to the correct continuum limit, and

the choice of M can be used to reduce the lattice artefacts with respect to the standard gluonic

definition of the topological charge. This approach increases our control of the systematic

uncertainties related to the continuum extrapolation of χ, thus alleviating the necessity for

extremely fine lattice spacings to reduce lattice artifacts.

2 Numerical setup

In our simulations we adopted a discretization of Nf = 2 + 1 QCD using rooted stouted

staggered fermions for the quark sector and the tree-level Symanzik improved gauge action

for the gluon sector. The staggered Dirac operator is defined by using the gauge links U(2)
μ ,

obtained by applying to the gauge configuration 2 levels of isotropic stout smearing [26] with

ρstout = 0.15. The bare coupling β and masses m̂s and m̂u = m̂d ≡ m̂l have been tuned in order

to move on the Line of Constant Physics (LCP) corresponding to the physical values of the

pion mass mπ 
 135 MeV and of the ratio m̂s/m̂l = ms/ml 
 28.15 [27–29].

For the topological charge we adopt two different definitions. The first one is a standard

gluonic definition, obtained by using the simplest clover discretization with definite parity of

the topological charge density [30, 31] on cooled configurations, in order not to explicitly deal

with lattice renormalizations [32]. In particular we use the definition introduced in [33] (see

[15] for more details) and 100 cooling steps, since this number was checked to be sufficient

to reach a plateau for all explored lattice spacings.

To introduce the SP definition of the topological susceptibility we first of all need the

projector PM on the vector space spanned by the eigenstates of iDstag[U(2)] (the same operator

entering the lattice action) with eigenvalues |λ| ≤ M:

PM ≡
∑
|λ|≤M

uλu
†
λ , iDstag[U(2)]uλ = λuλ . (2)

The SP definition of the bare topological charge is then

Q(stag)

SP,bare
=

1

nt
Tr {Γ5PM} = 1

nt

∑
|λ|≤M

u†λΓ5uλ , Γ5 = γ
(stag)

5
, (3)

where the factor nt = 2d/2 = 22 is needed to take into account the taste degeneracy of the stag-

gered spectrum. As discussed in Ref. [25], this definition is affected only by a multiplicative

renormalization, and the SP expression of the renormalized topological susceptibility can be

written as

χ
(stag)

SP
=

1

n2
t

〈Tr{PM}〉
〈Tr{Γ5PMΓ5PM}〉

〈Tr{Γ5PM}2〉
V

. (4)

Spectral traces have been estimated by directly computing the first 200 smallest eigenvalues

and eigenvectors of iDstag[U(2)]. From the eigenvalues and the eigenvectors of iDstag[U(2)]

spectral traces are then practically computed by using

Tr{Γ5PM} =
∑
|λ|≤M

u†λΓ5uλ , Tr{Γ5PMΓ5PM} =
∑
|λ|≤M

∑
|λ′ |≤M

|u†λΓ5uλ′ |2 . (5)
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Figure 1. Scatter plot of the (absolute value of the) chirality rλ vs |λ|/ms for the first 200 eigenvalues

of configurations generated at T 
 430 MeV. (Left) for a 
 0.0381 fm, (Right) for a 
 0.0286 fm. The

two vertical dashed lines at |λ|/ms = 0.03 and 5 delimit the M-range used to check for systematics.

The cut-offmass M is a free parameter whose specific value is irrelevant in the continuum

limit. It is however important to keep M constant in physical units as the continuum limit is

approached. Since the cut-off M renormalizes as a quark mass [25], to keep M constant in

physical units it is sufficient to keep M̂/m̂ f constant as we move m̂ f along the LCP, where

M̂ stands for M in lattice units. Adopting this procedure we thus expect the usual continuum

scaling

χ
(stag)

SP
(a,M/mf ) = χSP + cSP(M/mf )a2 + o(a2) , (6)

where cSP(M/mf ) parameterizes the finite lattice spacing corrections.

The last ingredient we need is the multicanonical algorithm: in this algorithm a topologi-

cal bias potential Vtopo(Qmc) is added to the gauge action, in order to enhance the probability

of visiting those topological sectors that would be otherwise strongly suppressed. The quan-

tity Qmc is a gluonic discretization of the topological charge, and the multicanonical algorithm

is stochastically exact for any choice of Qmc. However, to make the algorithm efficient, Qmc

must have a reasonable overlap with the topological charge used in the measures. Moreover,

to avoid the need for very small integration steps in the Hybrid Monte Carlo, Qmc can not

be “too peaked” on integer values. Also the precise form of the function Vtopo is largely ir-

relevant, its only role being that of increasing the probability of the Q � 0 sectors, without

completely depleting the Q = 0 sector to avoid overlap problems in the reweighting procedure

(see [15] for the specific form adopted). For a generic observable O, expectation values with

respect to the original path-integral distribution 〈O〉 are finally recovered by reweighting:

〈O〉 = 〈OeVtopo(Qmc)〉mc

〈eVtopo(Qmc)〉mc

, (7)

where 〈·〉mc denotes the average computed with the topological bias in the action.

3 Results

To apply the SP definition of the topological susceptibility we have first of all to fix the value

of the parameter M. While from a theoretical point of view any value of M can be used, from

the practical point of view a wise selection of M can help reducing the lattice artifacts.
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Figure 2. Comparison of the continuum extrapolations of χ1/4 at T 
 430 MeV obtained with the

gluonic and the SP discretizations. Data from Refs. [3, 4] are also reported for comparison. Data

from [3] has been modified to remove the isospin-breaking term, while data from [4] has been mass-

extrapolated to physical point using χ1/4 ∼ mπ.

To understand which can be a reasonable interval for M we looked at the scatter plot

of the (absolute value of the) mode chirality rλ as a function of |λ| for the different lattices

studied. An example of these scatter plots is shown in Fig. 1 for the case of T 
 430MeV

and two different values of the lattice spacing, from which the emergence of two clusters is

evident when reducing the lattice spacing. The cluster of points with high chirality is likely

mainly composed of WBZMs (alhough a precise identification of WBZMs is far from trivial,

see [15] for a discussion of this point), which in the continuum limit are the only modes

which contribute to the SP definition of Q. For this reason we selected M values in the region

of |λ|/ms which separates the two cluster, varying M in the region delimited by the dashed

vertical lines in Fig. 1 to check for systematics of the continuum extrapolation.

The continuum extrapolation of the results obtained at T 
 430MeV is shown in Fig. 2,

where we compare results obtained by the SP method with the result obtained on the same

ensamble of configurations using the gluonic definition of the topological charge. It is clear

that the SP method has much smaller lattice artifacts than the gluonic approach, moreover

by investigating the dependence of the result on M we also have a better control on the

systematics of the continuum limit, something which is not possible when using the gluonic

definition. In Fig. 2 we also report, for comparison, data from [3] (modified to remove the a

posteriori DIGA-like isospin-breaking effect introduced in [3]) and from [4] (extrapolated in

mass by the DIGA-like scaling χ1/4 ∼ mπ, since an unphysical pion mass was used in [4]).

The same procedure was followed for five temperatures between 230 and 570MeV, and

in Fig. 3 we show our final results for the topological susceptibility χ(T ) as a function of

the temperature, in which error bars take into account both statistical and systematic uncer-

tainties. Results obtained by using the SP method have a significantly smaller error then

those obtained by using the gluonic definition of the topological charge, moreover, as already

stressed, the error is not only smaller but also more reliable when using the SP definition.

Data clearly follow, with the possible exception of T 
 230MeV, a simple power law behav-
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Figure 3. Behavior of χ1/4 as a function of T/Tc in log-log scale. Gluonic points are slightly shifted

to improve readability. Starred points represent results taken from Ref. [3] (with isospin-breaking fac-

tor removed), while the shaded area represents the gluonic determinations reported in Ref. [4], mass-

rescaled according to χ1/4 ∼ mπ.

ior, and a fit performed for T > 230MeV by using the ansatz

χ1/4 = A
(

T
Tc

)−b

(8)

provides for b (by using the SP determinations) the optimal value value bSP = 2.63(81), which

is consistent with the DIGA prediction bDIGA = 2.

In Fig. 3 we also report for comparison data from [3, 4], with the same modification noted

above to make the results refer to the same physical setting. While the global behavior of the

data is the same, and in particular all data scale with a power-law consistent with DIGA, some

discrepancies are clearly evident: all our data appear to be systematically above the previous

determinations.

4 Conclusions

In this proceeding we presented our results concerning the behavior of the topological sus-

ceptibility χ(T ) in the high temperature regime of QCD with Nf = 2+1 quarks at the physical

point [15].

To perform this computation we relied on the discretization of the topological charge

through Spectral Projectors on the eigenmodes of the staggered Dirac operator. With this

choice we find lattice artifacts that are much smaller then those obtained by using the stan-

dard gluonic definition of χ. The problem of the dominance of the Q = 0 sector is instead

addressed by using the multicanonical method, already adopted for this purpose in [5].

The SP definition of the topological susceptibility introduces a new free parameter, which

is the cut-off of the sum on the chiralites of the eigenmodes of the lattice staggered Dirac op-

erator. Any value of M (kept constant in physical units as a → 0) would in principle provide

the correct continuum limit of χ. To fix a specific value of M we first of all preliminary inves-

tigated the chirality of the staggered Dirac eigenmodes, identifying two clusters of modes,

which can be roughly associated to WBZMs and to modes with nonvanishing eigenvalue
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in the continuum limit. While an unambiguous identification of a would-be-zero-mode is a

nontrivial task, the purpose of this preliminary investigation was only the identification of

a region of “reasonable” values for M. The systematic related to the choice of M is then

investigated and included in our final uncertainty for χ. As a matter of fact, this systematic is

typically the dominant contribution to the final error on χ for the temperatures investigated in

this work.

We explored five different values of T in the high temperature regime, ranging from

∼ 200 MeV to ∼ 600 MeV, investigating the behavior of χ as a function of the temperature

T . Comparing our numerical results with semiclassical expectations, we find that a decaying

power law well describes our data in the whole explored range; in particular the effective

exponent of this power law is well in agreement with the DIGA prediction for T � 300 MeV,

i.e., for T/Tc � 2.

Our results for χ1/4 obtained by using the SP method show a ∼ 2 − 3 standard deviation

tension in the 300 MeV � T � 400 MeV range with respect to the previous determinations

reported in [3, 4], with our estimates of χ1/4(T ) systematically pointing to larger values.

The same behavior, when observed in the gluonic determinations of χ, could be ascribed to

a problem of the continuum extrapolation, which due to large lattice artefacts is unable to

capture the true asymptotic O(a2) scaling and introduces a bias in the extrapolation. The

lattice spacing dependence of the SP determinations is however much milder than that of the

gluonic estimates, and such an interpretation of the disagreement does not seems likely in

this case.

The final picture emerging from the comparison carried out in Fig. 3 is that we still do not

have a quantitatively complete understanding of the behavior of χ(T ) in the high temperature

regime of QCD, and further studies are required to clarify the sources of the observed tensions

between the different determinations.

It thus seems crucial to refine our present estimates of the topological susceptibility, in

order to make the comparison with the results of Refs. [3, 4] more stringent. For this purpose

simulations with larger statistics and smaller lattice spacings are required. Despite being

essential to improve the present results and to explore larger temperatures, simulations at

smaller lattice spacings are practically unfeasible with standard simulations algorithms, due

to the exponential nature of the topological critical slowing down. A promising approach that

can help to overcome this problem is the one introduced in [34], and already applied to two

dimensional CPN−1 models [34, 35] and four dimensional Yang-Mills theories [36, 37].
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