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Abstract. We report on a recent computation of the transitions of exotic bot-

tomonium to standard bottomonium and light quark hadrons. We work under

the assumption that the Υ(10753) and Υ(11020) can be described as the low-

est laying and first excitation 1−− hybrid bottomonium states, respectively. The

computation has two distinct parts: the heavy quark transition matrix elements,

which are obtained in a nonrelativistic EFT incorporating the heavy quark, mul-

tipole and adiabatic expansions; and the hadronization of the gluonic opera-

tors into the light-meson final states. The single mesons production is obtained

through the axial anomaly and a standard π0 − η − η′ mixing scheme. Two pion

and kaon production is obtained by solving the coupled Omnès problem. We

also present result for semi-inclusive transitions.

1 Introduction

The nature of many of the exotic quarkonium states discovered so far it is still not settled.

One of the difficulties in clarifying their nature is that many of the theoretical studies done

so far have been focused in the spectrum of these states. However, experimentally only a

few JPC quantum numbers are easily accessible. This has lead, for instance, to a plethora

of discoveries of 1−− exotic states, for which different models and approaches give similar

predictions. Moreover, the composition of the heavy-quark spin symmetry multiplets, which

could be used to distinguish different model pictures, cannot be tested due to this limitation

in the accessible quantum numbers. On the other hand information on exotic quarkonium

decay channels is considerably more abundant, since, at least, we know the decay channel

in which the state has been discovered. Many of these decay channels are transitions into

standard quarkonium and some light quark hadrons.

An effective field theory (EFT) description of exotic quarkonium has been developed in

past few years. This EFT is build upon two expansions. The first one is the heavy-quark

mass expansion. Therefore, a natural starting point is NRQCD at leading order, that is in

the static limit. The energy spectrum of a heavy quark-antiquark pair in the static limit is

formed by the static energies (also referred to as adiabatic surfaces). These are the energies

of the eigenstates of the leading order NRQCD Hamiltonian for a quark-antiquark system.

These eigenstates are characterized by a set of quantum numbers [3]: the total spin, parity

and charge conjugation of the light degrees of freedom, i.e. the glue and light-quark content

of the exotic quarkonium state; the light-quark flavor; and quantum numbers labeling the

representation of D∞h (see for instance Ref. [4]). The latter being the cylindrical symmetry
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Figure 1. Quenched lattice NRQCD results for the heavy quark-antiquark static energy spectrum from

Ref. [1]. Figure from Ref. [2].

group describing the spatial symmetries of the static heavy quark-antiquark system. The static

energies must be computed using nonperturbative techniques. The most well known case is

for heavy quark-antiquark pairs with isospin I = 0 light degrees of freedom where several

computations of the static energy spectrum in the quenched approximation are available in

Refs. [1, 5–7]. The results of Ref. [1] are displayed in Fig. 1. The states supported by such

static energies correspond to the quarkonium hybrid picture.

The second expansion incorporated in our EFT framework is the adiabatic expansion

between the heavy-quark dynamics and that of the light degrees of freedom. When one

goes beyond the static limit in the heavy quark mass expansion, one can find heavy quark-

antiquark bound states supported by the static energies in a picture analogous to that of the

Born-Oppenheimer approximation for diatomic molecules [8]. In fact the EFT at leading

order reproduces the naive use of Born-Oppenheimer approximation for exotic quarkonium

systems [9, 10]. Due to this, the EFT is often refereed as Born-Oppenheimer EFT (BOEFT).

For hybrid quarkonium systems BOEFT has been developed up to 1/m2
Q heavy quark spin

dependent terms in [4, 8, 11–13]. A general formulation for any light quark content has

been obtained more recently [3] which can also be used for heavy quark-quark systems such

as doubly heavy baryons [14, 15]. Combining the hybrid quarkonium spectrum with the

standard quarkonium states close and above open flavor thresholds one can account for the

observed exotic quarkonium states [11]. A dominant molecular component for some of these

states can be explained through their coupling to heavy meson-antimeson pairs [16]. Exotic

states corresponding to four heavy quark resonances are not expected to be described by the

BOEFT framework, nevertheless other EFT approaches are available for such case [17].

The spectrum of bottomonium hybrids at leading order in BOEFT supported by the lowest

laying static energy multiplet (Πu − Σ−u ) [4] and the next to lowest laying multiplet (Σ+′g −
Πg) [18] is shown in Fig. 2. Additionally in the figure we show the three known neutral

exotic bottomonium states as black lines. It is interesting that the Υ(10753) and Υ(11020)

fit quite nicely into the predictions for ground and first excited 1−− bottomonium hybrid

states. In particular the experimental masses are compatible with the theoretical predictions

considering the uncertainty. This result motivated us to study the transitions of Υ(10753) and

Υ(11020) under the assumption that these states are bottomonium hybrids, work which we

presented in Ref. [19]. To study the transitions of hybrid to standard bottomonium states we
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Figure 2. Bottomonium hybrid spectrum from Refs. [4, 18]. Each line represent a state. The color of

each line indicates the static energies that contribute to each state. The black lines correspond to the

three neutral exotic bottomonium states discovered so far.

use weakly coupled pNRQCD (pNRQCD) [20, 21] in a similar approach to the one used in

Ref. [18] to study transitions in standard quarkonium. This is equivalent to the use of the

multipole expansion in the writing of the transition operators. Since the multipole expansion

is only valid for r � 1/ΛQCD this implies that we are working in the short heavy quark-

antiquark distance regime. Due to this we do not extend our study to the charmonium sector.

2 Hybrid and standard quarkonium states

The standard quarkonium states in the static limit read as

|R, r;Σ+g 〉 = S† (R, r) |0〉 , (1)

with S the heavy quark-antiquark singlet field [21]. The corresponding full static potential

matches the Σ+g static energy

V (0)

Σ+g
(r) = lim

t→∞
i
t
ln〈R, r;Σ+g ; t/2|R, r;Σ+g ;−t/2〉 = V (0)

s + bΣ+g r2 + · · · = E(0)

Σ+g
(r) . (2)

A basis for a general quarkonium state can be build from the static states and φ(m)(r), the
quarkonium wave function,

|S m〉 =
∫

d3rd3R φ(m)(R, r)|R, r;Σ+g 〉 . (3)

Using quantum mechanical perturbation theory we can incorporate the kinetic term and ob-

tain the Shrödinger equation for the standard quarkonium states

(
−∇

2
r

mQ
+ V (0)

Σ+g
(r)

)
φ(m)(r) = Emφ

(m)(r) . (4)

The construction of the hybrid quarkonium states is slightly more complicated due to

their nontrivial gluonic content. The lowest laying hybrid states correspond to the Σ−u and

Πu static energies, which in the short distance can be constructed as the projections into the
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heavy quark-antiquark axis of a glue operator, called gluelump, with quantum numbers 1+−.
The gluelump operator can be expanded into all the glue operators with matching quantum

numbers. Then we assume that there is a correlation between the dimensionality of the in-

terpolating operator and the strength of the interpolation with the hybrid, such that higher

dimension operators are subleading [18], so the series can be truncated at LO. This hypothe-

sis is supported by the ordering of the hybrid static energies. Therefore, the gluelump operator

can be approximated as Ga
B ∼ Z−1/2B Ba. One can estimate the value of ZB using the normal-

ization of the gluelump operators to relate it to the value of the gluon condensate. The latter

is taken from Ref. [22].

The Hybrid static states containing a 1+− gluelump can be written as

|R, r; λ〉 = r̂λ · Ga
B(R)Oa † (R, r) |0〉, (5)

with Oa the heavy quark-antiquark octet field. The full static potentials correspond to

V (0)
λ (r) = lim

t→∞
i
t
log〈R, r; λ; t/2|R, r; λ;−t/2〉 = E(0)

|λ| (r) , (6)

with E(0)
0

(r) = E(0)

Σ−u
(r) and E(0)

|±1|(r) = E(0)
Πu

(r) obtained from lattice QCD. To go beyond the

static limit we use that an eigenstate of the full Hamiltonian can be expressed in the basis of

eigenstates of the static limit

|Hn〉 =
∫

d3rd3R
∑
λ

ψ(n)
λ (R, r)|R, r; λ〉 . (7)

Using quantum mechanical perturbation theory to incorporate the kinetic operator one arrives

at the coupled Shrödinger equations for the hybrid bound states

∑
λ

(
−r̂∗λ′
∇2

r

mQ
r̂λ + V (0)

λ (r)δλ′λ

)
ψ(n)
λ (r) = Enψ

(n)
λ′ (r) . (8)

3 Exclusive Transitions

In weakly-coupled pNRQCD the transitions between hybrid and standard quarkonium are

generated by the operators that couple the heavy quark pair singlet and octet fields. These

operators start appearing at NLO in the multipole or heavy quark mass expansions. The two

lowest order transition operators read as follows:

LpNRQCD =

∫
d3Rd3r

{
gTr

[
S†r · EO + O†r · ES

]

+
gcF

mQ
Tr

[
S†(S1 − S2) · BO + O†(S1 − S2) · BS

] }
. (9)

The spin vectors S1 and S2 correspond to the heavy-quark and heavy-antiquark re-

spectively. The chromoelectric and chromomagnetic fields are defined as Ei = Gi0 and

Bi = −εi jkG jk/2 with ε123 = 1.

Let us compute the transition generated by the first (leading order) operator in Eq. (9).

The amplitude is as follows

〈S mOπ|gTr
[
S†r · EO

]
|Hn〉 = 1

3

√
TF

NcZB
〈Oπ|g2E · B|0〉

∫
d3r

∑
λ

φ(m)(r)r · r̂λψ(n)
λ (r) , (10)
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withOπ denoting a generic final light-quark state. As can be seen from Eq. (10), the amplitude

factorizes into some constant factors, a heavy quark matrix element and a gluonic matrix

element. Selection rules can be derived from the wave functions integral in the heavy quark

matrix element. Since the transition operator is independent of the heavy-quark spin this

should be conserved. If we identify Υ(10753) and Υ(11020) as hybrid bottomonium with

n1P1 and n = 1, 2, respectively, then the final quarkonium states must be hb(m1P1). The

gluonic operator has quantum numbers 0−+ and isospin I = 0, therefore the allowed final

light-quark states must match these quantum numbers. Some examples of these states are π0,
η, η′, higher mass η-like resonances or odd numbers of mesons such as π0π+π− or η π+π−.

We compute the gluonic matrix element for the production of π0, η, η′. These matrix

elements can be determined from U(1)A anomaly and a mixing scheme. The gluonic matrix

element in Eq. (10) can be rewritten as (g2/πE · B) = αsGμνG̃μν with the dual field-strength

tensor defined as G̃μν = 1
2
εμναβGαβ and ε0123 = 1. The matrix element to obtain is then

ωc = 〈0|αs

4π
GμνG̃μν|ηc(p)〉 , c = π0, η, η′ . (11)

The matrix elements of GμνG̃μν can then be related to the divergence of the axial current and

the pseudoscalar current through the axial anomaly. This leaves us with 18 nonperturbative

parameters corresponding to the matrix elements of the axial and pseudoscalar currents and

final states π0, η, η′. This amount of free parameters can be greatly reduced by the imple-

mentation of a mixing scheme between π0 − η − η′. We use the one in Refs. [23, 24]. The

remaining parameters can be obtained from the masses and decay widths of the Goldstone

bosons.

We obtain the following decay widths for the transitions of Υ(10753) and Υ(11020) to

hb(nP) and π0, η or η′ in the final state:

ΓΥ(10753)→hb(1P)π0 = 2.57(±1.03)m.e.(±0.14)ZB(±0.16)ωπ0 keV , (12)

ΓΥ(10753)→hb(1P)η = 2.29(±0.92)m.e.(±0.13)ZB(±0.08)ωη MeV , (13)

ΓΥ(10753)→hb(2P)π0 = 0.168(±0.067)m.e.(±0.009)ZB(±0.010)ωπ0 keV , (14)

ΓΥ(11020)→hb(1P)π0 = 2.04(±0.82)m.e.(±0.11)ZB(±0.13)ωπ0 keV , (15)

ΓΥ(11020)→hb(1P)η = 2.04(±0.81)m.e.(±0.11)ZB(±0.07)ωη MeV , (16)

ΓΥ(11020)→hb(1P)η′ = 9.23(±3.69)m.e.(±0.51)ZB(±0.39)ωη′ MeV , (17)

ΓΥ(11020)→hb(2P)π0 = 0.104(±0.042)m.e.(±0.006)ZB(±0.006)ωπ0 keV , (18)

ΓΥ(11020)→hb(2P)η = 81.8(±32.7)m.e.(±4.6)ZB(±2.7)ωη keV . (19)

The uncertainties are labeled by their origin. The largest source of uncertainty is the use of

the multipole expansion (m.e.). We estimate this uncertainty as corrections of O
(
Λ2

QCDr2
)
.

Next we focus our attention into the transitions generated by the heavy quark mass sup-

pressed operator in the Lagrangian in Eq. (9). Computing the expected value of this operator

between an initial hybrid bottomonium state and a final standard bottomonium state plus

some light quark hadrons (generically denoted by Oππ) we obtain the following amplitude

〈S mOππ|gcF

mQ
Tr

[
S†(S1 − S2) · BO

]
|Hn〉

=
gcF

3mQ

√
TF

NcZB
〈Oππ|B2|0〉

∫
d3r

∑
λ

φ(m)(r)(S1 − S2) · r̂λψ(n)
λ (r) , (20)

As in the leading order transition the amplitude factorizes into a set of constant factors, a

heavy quark matrix element and a light-quark hadron production matrix element. The heavy
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Figure 3. Normalized differential width for the transitions Υ(11020) → Υ(m3S 1)π
+π−. The variable x

is defined as x = (s − 4m2
π)/(mΥ(11020) − mΥ(mS ) − 4m2

π).

quark matrix element can be computed from the wave functions of the hybrid and standard

bottomonium states involved in the transition. From the heavy-quark spin structure of the

operator we can find the selection rules δS = 1. Since in the hybrid bottomonium picture we

are employing for the Υ(10753) and Υ(11020), these correspond to spin singlet hybrids, the

final quarkonium must be spin triplet. Moreover the total JPC must be conserved. Therefore

the final quarkonium states can only be Υ(m3S 1) or Υ(m3D1). We will only consider the first

case since D-wave bottomonium states have not yet been observed experimentally.

The allowed light-quark hadron products of the transition are controlled by the matrix

element of the gluonic operator B2. Therefore the light-quark hadron products must be 0++

and isospin I = 0. Such states are, for instance π+π−, K+K−, pairs of π0 or η as well as f0
resonances up to the invariant mass allowed by the specific initial and final heavy-quark states.

We compute the first two cases, π+π−, K+K−, for which we build a dispersive representation

of the gluonic matrix element following Refs. [25, 26]. However, unlike those references our

matrix element contains not only an S -wave piece but also D-wave one. We have extended

the coupled Muskhelishvili-Omnès approach to the D-wave final state interactions for the

first time. We use the parametrizations of the ππ → ππ and ππ → KK̄ partial waves from

Refs. [27, 28], which to our knowledge are the most accurate currently available. For the

numerical solution of the coupled Muskhelishvili-Omnès equations we use the techniques

of Refs. [26, 29]. The subtraction constants of the dispersive representations are determined

by matching to a chiral representation of the form factors for small invariant mass of the

dipion (s). This depends of three low-energy constants that can be determined from the scale

anomaly [30], the Feynman-Helmann theorem and the last remaining one can be extracted

from two pion transitions in standard quarkonium [18]. In Fig. 3 we plot the normalized

differential decay widths for the transitions of Υ(11020) with to standard bottomonium and

π+π−. Integrating the differential transition width over the kinematically allowed range of s
we obtain the following transition widths:

ΓΥ(10753)→Υ(1S )π+π− = 43.4(±17.3)m.e.(±2.4)ZB(±8.6)αs (
+0.5
−0.0)κ keV , (21)

ΓΥ(10753)→Υ(2S )π+π− = 2.75(±1.10)m.e.(±0.15)ZB(±0.55)αs (
+0.13
−0.12)κ keV , (22)

ΓΥ(10753)→Υ(3S )π+π− = 0.98(±0.39)m.e.(±0.05)ZB(±0.19)αs (±0.03)κ eV , (23)

ΓΥ(10753)→Υ(1S )K+K− = 3.98(±1.59)m.e.(±0.22)ZB(±0.79)αs (
−0.50
+0.67)κ keV , (24)
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[ ]|Hn〉

Figure 4. The single and double lines represent quarkonia in singlet and octet states respectively. The

curly line stands for a gluon. Note that the spectator gluons forming the Hn state are not displayed.

and

ΓΥ(11020)→Υ(1S )π+π− = 99.1(±39.6)m.e.(±5.5)ZB(±19.7)αs (
+26.3
−21.8)κ keV , (25)

ΓΥ(11020)→Υ(2S )π+π− = 3.96(±1.58)m.e.(±0.22)ZB(±0.70)αs (
−0.16
+0.17)κ keV , (26)

ΓΥ(11020)→Υ(3S )π+π− = 1.33(±0.53)m.e.(±0.07)ZB(±0.27)αs (±0.02)κ keV , (27)

ΓΥ(11020)→Υ(1S )K+K− = 5.93(±2.37)m.e.(±0.33)ZB(±1.18)αs (
+1.75
−1.18)κ keV . (28)

As in the leading order transitions the uncertainties are labeled by their origin. The last

two uncertainties are related to the determination of the low-energy constants of the chiral

representation of the form factors.

4 Semi-Inclusive Transitions

When the energy gap between a hybrid and a standard quarkonium state is large, the gluon

emitted by the heavy quarks in the transition from an octet to a singlet state can be considered

perturbative and semi-inclusive decay widths can be computed [11]. These semi-inclusive

decay widths correspond to the expected value of the hybrid states of the imaginary part of the

diagram in Fig. 4. The vertices in the diagram can be either of the operators in the Lagrangian

in Eq. (9). Among the transitions we studied in the exclusive channels, the following have

large enough energy gaps

ΓLO
Υ(11020)→hb(1P) = 20(±9)αs MeV , (29)

ΓNLO
Υ(10753)→Υ(1S ) = 9.7(±3.8)αs MeV , (30)

ΓNLO
Υ(11020)→Υ(1S ) = 7.3(±2.5)αs MeV , (31)

ΓNLO
Υ(11020)→Υ(2S ) = 1.1(±0.5)αs MeV . (32)

Finally it is interesting to notice that the sum of semi-inclusive widths for ΓLO+NLO
Υ(11020)

= 28.4 ±
9.4 MeV is compatible with the experimental value of the total width Γ

exp

Υ(11020)
= 24+8−6 MeV.

This is a strong indication that Υ(11020) is a hybrid bottomonium state.

5 Conclusions

We reported on a computation, presented in Ref. [19], in which we computed the transitions

of Υ(10753) and Υ(11020) into standard quarkonium and some light quark hadrons under the

assumption that they are bottomonium hybrid.
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