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Atrial fibrillation (AF) underlies almost one third of all ischaemic strokes, with the

left atrial appendage (LAA) identified as the primary thromboembolic source. Current

stroke risk stratification approaches, such as the CHA2DS2-VASc score, rely mostly

on clinical comorbidities, rather than thrombogenic mechanisms such as blood

stasis, hypercoagulability and endothelial dysfunction—known as Virchow’s triad.

While detection of AF-related thrombi is possible using established cardiac imaging

techniques, such as transoesophageal echocardiography, there is a growing need

to reliably assess AF-patient thrombogenicity prior to thrombus formation. Over the

past decade, cardiac imaging and image-based biophysical modelling have emerged

as powerful tools for reproducing the mechanisms of thrombogenesis. Clinical

imaging modalities such as cardiac computed tomography, magnetic resonance

and echocardiographic techniques can measure blood flow velocities and identify

LA fibrosis (an indicator of endothelial dysfunction), but imaging remains limited

in its ability to assess blood coagulation dynamics. In-silico cardiac modelling

tools—such as computational fluid dynamics for blood flow, reaction-diffusion-

convection equations to mimic the coagulation cascade, and surrogate flow metrics

associated with endothelial damage—have grown in prevalence and advanced

mechanistic understanding of thrombogenesis. However, neither technique alone

can fully elucidate thrombogenicity in AF. In future, combining cardiac imaging with

in-silico modelling and integrating machine learning approaches for rapid results

directly from imaging data will require development under a rigorous framework

of verification and clinical validation, but may pave the way towards enhanced

personalised stroke risk stratification in the growing population of AF patients. This

Review will focus on the significant progress in these fields.

KEYWORDS

atrial fibrillation, stroke, computational cardiology, left atrial appendage, medical imaging,
Virchow’s triad, thrombus formation

1. Introduction

Atrial fibrillation (AF) affects almost 50 million people worldwide and accounts for up to
one third of all ischaemic strokes. Its diagnosis and management pose a substantial burden on
healthcare systems, warranting novel clinical approaches, including those for stratifying patient
stroke risks (1, 2).
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The most common and validated risk factors for stroke and
bleeding have been used to formulate simple clinical risk scores based
on patient characteristics and comorbidities, such as the CHA2DS2-
VASc and HAS-BLED scores. Such empirical approaches are
clinically effective for high-risk AF patients but remain suboptimal
for other cohorts (3, 4). A key limitation of these scores is that they
focus mainly on the role of pre-existing conditions as determinants
for future stroke risk, without considering anatomical and functional
metrics from imaging and clinical exams. However, the effectiveness
of treatment is contingent on a reliable and personalised approach to
risk stratification that is based on the assessment of all mechanisms
contributing to the prothrombotic state in AF.

Current risk scores may be partially improved by multi-modal
cardiac imaging, which can capture left atrial (LA) shape and motion,
cardiomyopathies and, via advanced imaging techniques such as
4D Flow MRI, intra-cavity blood flow characteristics. Concurrently,
biophysical computational modelling has emerged as a powerful tool
for personalised simulation of the three main phenomena known
to influence thrombogenesis (5–9)—Virchow’s triad of blood stasis,
hypercoagulability, and endothelial dysfunction (Figure 1A).

This review will present the mechanisms of thrombus formation,
the role of cardiac imaging in detecting LA thrombi, and the state-
of-the-art computational models that have been developed for each
aspect of Virchow’s triad. This will be followed by an overview of
the outstanding challenges and proposed directions of this growing
field to show how integration of novel modelling techniques with
routinely available imaging protocols can improve current knowledge
and stroke risk stratification in AF patients.

1.1. Mechanisms of thrombus formation
in AF

Thrombus formation is mediated by the four-stages of the
blood coagulation cascade, centred around the generation of the
key enzyme thrombin (Figure 1B). In the initiation phase, injury to
the endothelial lining exposes tissue factor (TF) and releases plasma
von Willebrand Factor (vWf), forming trace amounts of thrombin
from its precursor, prothrombin. The subsequent amplification
and propagation phases lead to platelet activation near the injury,
initiating large-scale thrombin generation which cleaves plasma
fibrinogen to form insoluble fibrin monomers. In the ensuing
stabilisation phase, polymerisation of fibrin monomers creates a
crosslinked fibrin net that traps platelets and red blood cells
(erythrocytes). This solidification of blood to a fibrin and erythrocyte-
rich clot (rouleaux) finally generates a haemostatic plug over the
area of endothelial injury to facilitate healing (10). AF alters this
fine-tuned coagulation system and induces a pro-thrombotic state
by the mechanisms outlined in Virchow’s triad (see details below),
significantly increasing the risk of stroke (11).

1.2. The left atrial appendage

The primary site of interest is the LA appendage (LAA), a
muscular extension to the LA, in which over 91% of AF-related
thrombi are formed (Figure 1C) (12–15). AF-related thrombi
originating from the LAA are larger and have higher risk of
mortality than other thromboembolic sources but can be prevented

by oral anticoagulation (OAC) (2). The LAA has four clinically
defined morphologies—chicken wing, windsock, cactus, and broccoli
(Figure 1D)—each with thin trabeculated endothelial walls and
varying risks of thrombogenesis associated with their size, shape and
blood flow velocities (16–18). The LAA, especially the “broccoli”
morphology, is most susceptible to pathological thrombus formation
as it demonstrates all three aspects of Virchow’s triad.

1.3. Virchow’s triad

Atrial fibrillation induces blood stasis by facilitating
uncoordinated electrical activations which impair LA contractility
and lead to reduced blood flow velocities, particularly in the LAA
(19, 20). During AF episodes, increased blood residence times
and peak flow velocities of <20 cm/s inside the LAA facilitate
accumulation and interactions between procoagulant factors,
platelets and erythrocytes in this region (Figure 1C) (21–24).

Hypercoagulability in AF patients is expressed by abnormal levels
of vWf, thrombin-antithrombin complex (TAT), plasma fibrinogen
and fibrin D-dimer, all of which are associated with increased
propensity for thrombus formation in the LAA (11). Studies suggest
the hypercoagulable state is induced by the onset of acute AF, with as
little as 15 min of AF being sufficient to increase thrombin generation
(25–27). Markers of endothelial dysfunction, such as inflammation
and matrix remodelling, may be linked with this altered coagulability,
but the precise mechanisms remain unclear (28).

Finally, endothelial dysfunction is caused by abnormalities in the
endothelial lining which can trigger thrombus formation by release of
thrombogenic proteins in the LAA (29). The reduced cardiac output
due to the irregular contractility of the myocardium during AF is
often compensated by LA volume dilation and stretching, resulting in
the deposition of interstitial fibrosis, and are recognised predictors of
all-cause mortality and ischemic stroke risk (30). Studies also suggest
that fibrosis may promote the formation of miniature thrombi on the
rough endocardial surface and create more arrhythmogenic substrate
thereby perpetuating AF and its associated risk of stroke (31, 32).

2. Cardiac imaging for AF and stroke
risk

Cardiac imaging plays a crucial role in assessing stroke risk
through the detection of anatomical and functional anomalies
associated with LA thrombi and assessment of thrombogenic
cardiomyopathies induced by AF (33). Although clinically applicable
imaging modalities for the assessment of hypercoagulability have not
yet been developed, established imaging techniques are routinely used
to identify both blood stasis and markers of endothelial dysfunction.
However, the thin walls of the LA, small diameter of pulmonary veins
(PVs) and intricate, multi-lobar/oriented shapes of the LAA make
imaging of these anatomical structures challenging.

2.1. Blood stasis

For decades, 2D transoesophageal echocardiography (TEE) has
been the gold standard modality for detecting the presence of
LA thrombi and evaluating the appearance of spontaneous echo
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FIGURE 1

AF and thrombus formation. (A) The components of Virchow’s triad for thrombus formation. (B) The simplified coagulation cascade. (C) Schematic of
thrombus formation in a diagram of an LAA. The red arrows represent the magnitude and direction of blood flow velocity u inside the LAA in normal
conditions (top) and during AF with accumulation of erythrocytes (bottom). (D) The four morphologies of the LAA, (i) chicken wing, (ii) cactus, (iii)
broccoli, (iv) windsock (16).

contrast (SEC), a predictor of flow stasis strongly correlated with LA
thrombus formation, as shown in Figure 2 (34). SEC is generated
by ultrasonic backscatter from erythrocytes aggregation, usually
mediated by fibrinogen, and is present in ∼50% of AF patients and
90% of patients with thrombi. The severity of SEC is graded based on
its visual appearance to assess the subsequent risk of LA thrombus
with TEE having an excellent specificity of 100% and a sensitivity of
99% (35). However, the semi-invasive oesophageal intubation is time-
consuming and contraindicated for some patients (33). Non-invasive,
speckle-tracking Doppler echocardiography has been employed to
evaluate LA mechanical function via myocardial strain (36, 37). This
metric measures the contractility/deformation of the LA wall, which
is severely impaired during AF and directly influences intracardiac
blood motion, potentially leading to stasis (38).

Cardiac magnetic resonance (CMR) imaging and cardiac
computed tomography (CCT) are two non-invasive alternatives to
TEE for the identification of thrombi (39). A meta-analysis and
systematic review of clinical trials assessing LA thrombi by CCT
showed a mean sensitivity and specificity of 96 and 92%, with
dual-enhanced CCT protocols able to increase the latter to 100%

(27, 28). A similar meta-analysis showed that contrast-enhanced
CMR angiography has a specificity of 95.2% and sensitivity of 66.7%,
rising to 99.2 and 100%, respectively for delayed-enhancement CMR
with long inversion time (40, 41).

Cardiac magnetic resonance and CCT allow visualisation of the
LA anatomy including the PVs, which can provide useful anatomic
information to guide AF ablation and LAA occlusion therapy (33).
CCT has a spatial resolution of 0.5 mm in the x and y (axial)
plane with slice thickness ranging between 0.5 and 0.625 mm and
a maximum temporal resolution of 20 phases per cardiac cycle
(83–135 ms). CMR achieves spatial resolution of 1–2 mm in the
axial plane with slice thickness of up to 10 mm, however, the
temporal resolution is more than double at 50 phases per cardiac
cycle (20–50 ms) (42). Moreover, CMR techniques such as phase-
contrast MRI enable the assessment of blood stasis by visualising
blood velocity inside the LA, in either a 3D region of interest (4D
Flow) or in slices (2D Flow), shown in Figure 2. However, 4D Flow
suffers from challenges in spatiotemporal resolution and difficulty
in measuring PV flows accurately, which currently prevent its full
clinical translation (43). While CCT sequences cannot image blood
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FIGURE 2

Imaging of blood stasis. 2D TEE imaging of the LA and LAA.
Spontaneous echo contrast (SEC) can be seen with a dense smoke
near inside the LAA indicating presence of a thrombus (top) (123). 4D
Flow MRI results indicating blood stasis within the LA cavity and peak
velocities at the centre and walls of the LA (bottom) (43).

flow, the superior spatial resolution enables detailed visualisation of
the LAA anatomy (16). Doses of ionising radiation in CCT image
acquisition have considerably decreased in recent years but remain
a common limitation of this modality, alongside the administration
of contrast agents, particularly in dual-enhanced imaging (33).

2.2. Endothelial dysfunction

The extent of atrial myopathy, such as fibrotic lesions, is
correlated with the perpetuation of AF and increased potential
for stroke (44). Echocardiography, CCT and CMR can assess AF-
related increases in LA volume, a surrogate metric associated
with endothelial dysfunction and a higher stroke risk (45). Late
gadolinium enhanced MRI (LGE-MRI) can generate detailed
maps of LA fibrosis, with increased fibrosis levels associated
with increased risk of thrombus formation (46, 47). LGE-MRI
maps have also been used to validate LA strain measurements
determined from echocardiographic techniques, finding an inverse
relationship between strain and myocardial fibrosis, as the formation
of stiff fibrotic lesions due to endothelial damage degrades the
local contractility of the LA wall (48). The standard for invasive
substrate characterisation in patients with AF-related myopathies
is electroanatomic mapping, involving transvenous mapping of
endocardial electrogram voltages, with regions of low-voltage
or electrical silence linked to underlying atrial scar (44). Ex-
vivo, scanning electron microscopy has been used to visualise
myocardial damage in the LAA, showing that prolonged AF
can lead to the creation of endothelial craters, which in turn
concurred to form a thrombotic mass, comprised primarily

of erythrocytes, at the location of severe endothelial damage
(Figure 3) (49).

While these imaging techniques can help to reliably identify
LAA thrombi, this is often after their formation. Imaging only
provides snapshots of empirical biomarkers of structural changes
and thrombogenic states at the time of the scan. Thus, it fails to
explain the mechanisms of thrombogenesis or provide prediction of
stroke risk, which are key steps in stroke prevention therapy. The
most cutting-edge applications of cardiac imaging for AF-related
stroke are currently restricted to research environments, limiting
their impact. However, the imaging techniques currently available to
clinicians have fueled the recent progress in image-based biophysical
modelling, showing great promise to identify the mechanistic aspects
of thrombogenesis.

3. Imaging and modelling of
Virchow’s triad

3.1. Blood stasis

Computational fluid dynamics (CFD) is an established modelling
approach that has been used for decades in (bio)engineering
applications (50, 51). By solving the 3D Navier-Stokes equations
for fluid motion over a user-defined domain, this technology can
quantify blood flow velocity and pressure noninvasively with high
spatiotemporal resolution. The accuracy of the model relies on
input parameters, such as the fidelity of the anatomical domain
segmentation, the conditions defining the behavior of the blood
velocity and/or pressure at the domain boundaries (LA wall, PV
inlets and mitral valve outlet), and the constitutive parameters of
blood (52). Such models can range in complexity from 0D lumped
parameter models of blood flow (53, 54) to 3D patient-specific
models to replicate realistic cardiac haemodynamics (7, 8, 50, 55–
59). Modelling of CFD requires integration in software packages such
as CRIMSON, SimVascular and ELMER to perform simulations of
cardiovascular flows in 0-3D (60–64).

The most successful applications of CFD to LA flow modelling
use 3D patient-specific anatomies and boundary conditions from
imaging data, and average values for blood density and viscosity
(Figure 4). For example, models can account for the patient-specific
myocardial contractility by prescribing the LA wall deformation
based on the wall motion tracked from temporally varying imaging
data such as Cine-MRI or 4D CCT sequences (Figure 4A). The choice
of boundary conditions to personalise the model depends on the
availability and quality of the imaging data. 4D CCT series allow for
a detailed segmentation of the LA and LAA anatomies at the cost
of a low temporal resolution, potentially introducing inaccuracies in
wall motion tracking (7, 65), whereas the reverse is true for Cine-MRI
sequences (57, 66). Hence, quantitative analyses of shape-dependent
LAA haemodynamics are often performed using CCT-based models
(56, 67–69). CCT-based CFD studies of the LAA in sinus rhythm (SR)
and AF were able to quantify blood stasis by computing the blood
residence time inside the LAA, either by releasing a dummy agent
concentration in the LAA as a surrogate for SEC (65), or by particle
tracking and computation of blood velocity at the LAA entrance (5,
56, 67).

Computational fluid dynamics analyses based on Cine-MRI data
yield more accurate measurements of LA cavity flow and motion,
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FIGURE 3

Imaging of endothelial damage. Scanning electron microscopy of a fibrin and erythrocyte rich clot formed in the LAA (left) (49). Visualisation of raw LGE
intensity map derived from LGE-CMR image stack (right).

FIGURE 4

Modelling LA flow from patient data. (A) Extracting patient-specific geometries from temporally varying imaging data by segmentation at T = 0
(end-systole). (B) Setting boundary conditions on inlets, outlets and LA wall. (C) Simulation of LA flow using instantaneous blood flow velocity vectors
(red arrows) (57). (D) Coupling the equations for fluid motion with reaction-diffusion-convection (RDC) equations to model coagulation in
patient-specific geometries.

but due to poor LAA imaging with this modality, idealised shapes
are often used (8, 57, 66). The inflow and outflow conditions are
generally treated by prescribing mass flow rates through the PVs

and the MV (QPV and QMV in Figure 4B) derived from Doppler
echocardiography or 2D Flow data at the valve planes, where available
(57, 66, 70). However, the latter is not routinely acquired, and
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TABLE 1 Models of LA flow.

Study Study
size (N)

Study summary

Vedula et al.
(124)

1 4D CCT LA and aortic model

Koizumi et al.
(66)

3 CMR-derived LA models with phase contrast MRI
for validation

Otani et al. (65) 3 CT-derived LA models with low temporal
resolution, validated with TEE

Masci et al. (7) 2 CT-derived LA models with non-patient-specific
Doppler data used to prescribe flow through MV

Lantz et al. (70) 3 CT-derived LA and LV models, 4D Flow CMR
used for validation

Dillon-Murphy
et al. (57)

2 CMR derived LA and LV models, LV volume
change used to drive flow through MV

Qureshi et al. (8) 2 CMR derived LA models

Wang et al. (90) 1 Static CCT derived model of LA, coagulation
model from Menichini (126) for thrombus growth

Bosi et al. (67) 4 Static CCT-derived models of LA + LAA
morphologies

Masci et al. (56) 5 Single CCT-derived LAA, deformed to generate
five non-clinically

Fanni et al. (5) 4 CCT-derived models of LAA shapes

Alinezhad et al.
(125)

2 CCT-derived models of LA + LAA, AF and SR
conditions simulated

P-S, patient-specific; TEE, transoesophageal echocardiography; LV, left ventricle; MV, mitral
valve. Upper section denotes studies focusing on LA flow while lower section focuses on
LAA haemodynamics.

Doppler data is rarely obtained simultaneously with MRI sequences,
possibly leading to a mismatch between flow patterns observed in SR
or AF using different modalities (6). Several CFD studies achieved
successful validation against Doppler echocardiography and 4D Flow
data, demonstrating the effectiveness of this approach (7, 43, 65, 70).
Currently, all LA flow modelling studies, as summarised in Table 1,
have been restricted to small patient cohorts due to the time- and
resource-intensive nature of CFD simulations. This limitation, in
addition to the lack of a unified validation protocol, has prevented
these models from full deployment in the clinical environment.

However, CFD technology is gaining momentum as a clinical
tool, with the HeartFlow software package for assessment of coronary
artery disease receiving FDA approval, which demonstrates the
potential for clinical translation of this approach (71).

3.2. Hypercoagulability

AF increases the risk of LA thrombogenesis by inducing a
hypercoagulable state due to presence of abnormal thrombogenic
protein concentrations (11). Clinical assessment of coagulation
function in AF patients relies on the detection of abnormal
clotting times, e.g., prothrombin time and international normalised
ratio. Coagulability is also evaluated by blood samples to identify
biomarkers of elevated coagulation, such as vWf, prothrombin
fragment 1+2 and D-dimer (72). Recently, thrombin generation
assays have been proposed to reproduce blood coagulation in vitro,
yet issues with standardisation between centres and lack of clinical
validation prompt the search for more robust approaches (73). Blood

coagulation is a complex multifactorial process and the metrics
derived from these techniques can only provide an indication of
underlying abnormalities, without explicitly quantifying the key
factors and mechanisms.

In-silico modelling of the coagulation cascade can address
some of these limitations by developing a standardised framework
to capture the spatiotemporal dynamics of thrombogenic protein
concentrations. Such models can also be used to understand the
most important parameters responsible for coagulation disorders
using sensitivity analyses (74). The complexity of the cascade
requires simplifications to strike a balance between practicality and
physiological accuracy of the models (75). To achieve this, most
studies focus on the final stages of coagulation, where fibrin is
generated by the enzymatic cleaving of fibrinogen in blood (76–
81). Unlike white thrombi, which form in higher pressure arterial
systems and consist mostly of fibrin and platelets, LA thrombi are
primarily comprised of fibrin and red blood cells (82). Although
platelets are frequently included in extra-cardiac coagulation models,
their role in AF-related thrombi and the need to explicitly model
them remains unclear. In this case, the effect of red blood cells
is accounted for by modelling the spatiotemporal evolution of
protein concentrations.

The behavior of clotting factors is commonly modelled by partial
differential equations, known as the reaction-diffusion-convection
(RDC) equations, which are easy to integrate with CFD models
(Figure 4). Two aspects of Virchow’s triad, hypercoagulability and
blood stasis, are reflected in the RDC equations. Hypercoagulability is
associated with the RD terms, which model the biochemical reactions
of thrombin generation and the subsequent stages of coagulation.
Blood stasis is represented by the convective term in the RDC
equation, with the blood velocity coming directly from the CFD
model.

Early studies on coagulability focused on the reactions in the
coagulation cascade in the absence of blood flow (79, 83), followed
by increasingly complex models with multiple kinetic equations for
various proteins in the cascade (77, 78). While reaction equations
alone can describe the chemical interactions between proteins at one
spatial point, reaction-diffusion models are needed to describe their
interplay in space and thrombus growth (83, 84). The more complex
reaction-diffusion models include up to 76 equations to capture
thrombus formation from initiation to stabilisation, with emphasis
on understanding the impact of various proteins on thrombin
generation and spatial growth of thrombi (79–81).

The complete RDC equations enable the most physiologically
accurate representation of in-vivo coagulation by coupling blood flow
with the biochemical reactions of the cascade, demonstrating that
coagulation under flow conditions indicates an increased threshold
for thrombus formation (84). This makes clot solidification less
likely to occur without significant thrombin generation due to
the surrounding blood flow washing thrombogenic proteins away
from site of injury. A pioneering study investigated clot formation
using a system of 15 coagulation proteins and platelets linked
with CFD simulation of blood flow in a 2D channel setting (77).
The polymerisation of fibrin was modelled to create the first two-
way coupling between blood flow and thrombus growth, which
introduced a resistance to flow local to the clot (Figure 5A). This
novel approach has informed subsequent studies in which thrombus
growth influences blood flow velocity (78, 85, 86). The study of
fibrin and thrombus growth dynamics is a continually growing
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FIGURE 5

The evolution of full RDC-based thrombus models coupled with blood flow. (A) Simple 2D channel with white arrows representing velocity and red
regions as bound platelets concentration at the thrombus (77). (B) Semi-realistic 2D contracting chicken wing LAA model in both AF and SR conditions
with yellow arrows to represent blood velocity and red region as fibrin gel formation (86). (C) Patient-specific 3D LA models of LA flow with thrombin
concentration representing the thrombus (see also Supplementary video 1).

area of interest in both clinical and engineering research fields
(87–89).

More recent studies coupled CFD with the RDC equations,
advancing from simple 2D channel flows (Figure 5A) to semi-
realistic LAA geometries in AF and SR conditions (Figure 5B) and
finally to patient-specific 3D models of the LA in an effort to achieve
clinical translation (Figure 5C). Rigid-wall CFD models of the LA
based on CCT and Doppler echocardiography data were deployed
to assess the thrombogenic role of AF using bound platelets at the
area of injury as a biomarker of thrombus formation (90). A similar
approach was also used on 3D patient-specific models of the LA
in both SR and in AF derived from Cine-MRI data (8, 83, 91)
where coagulation dynamics were modelled by initiating a thrombin
concentration in two locations (near the PVs and LAA) and the
accumulation of thrombin was compared between SR and AF in
each case.

After the endothelial injury is repaired in regular hemostasis, the
clot is broken down in a process known as fibrinolysis, mediated
by tissue plasminogen activator. This essential process dissolves the

solid thrombotic mass from the endothelial lining (2). However, this
aspect of coagulation, often impaired in AF owing to unregulated
thrombus growth, has been represented by RDC equations in
general channel flow simulations but remains to be modelled in the
fibrillating LA (92).

The modelling of various characteristics of coagulation,
summarised in Table 2, has significantly improved knowledge of
this complex process. The critical next stage is development of
patient-specific coagulation modelling by deriving parameters for
the RDC equations. With current technology, these values are
measured using thrombin generation assays and mathematical
approximations, however significant variability between patients
and expensive testing prohibits this from widespread use (93).
Furthermore, the precise changes to coagulation mechanisms in AF
have not been fully addressed yet (75). Future studies should focus
of identifying a small number of key parameters that can be derived
from patient measurements, and how these parameters change
in AF.
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TABLE 2 Mathematical models of coagulation.

Study Key
parameters

Study summary

Ataullakhanov
et al. (83)

IIa, APC Threshold nature of coagulation and influence
of positive/negative feedback loops on

thrombotic protein concentrations

Hockin et al.
(79)

34 RDC equations
from TF to IIa

Simulated stoichiometric anticoagulants by
varying TF concentration to understand its

influence on thrombin generation

Panteleev et al.
(81)

30+ RDC,
platelets

Identified the three stages of thrombin
generation (initiation, amplification, and

propagation), experimental findings informed
rate constants in RDC

Chatterjee et al.
(80)

76 RDC species More than 100 reactions modelled with focus
on corn trypsin inhibitor on thrombin

generation

Leiderman and
Fogelson (77)

IIa, I (Fg), Ia (Fn),
Platelets

The first two-way coupling between blood flow
and hydraulic resistance due to thrombus

porosity. Clot permeability modelled using
modified Navier-Stokes equations

Tosenberger
et al. (76)

IIa, I (Fg), Ia (Fn),
Platelets

Strength of bonds between platelets in core of
thrombus creates fibrin cap to prevent further

attachment of platelets to slow thrombus
growth in flow conditions

Menichini et al.
(126)

Generic
thrombotic
protein and

platelets

Altered blood viscosity local to thrombus with
application on 3D aortic branch models

Govindarajan
et al. (78)

IIa, I (Fg), Ia (Fn),
Platelets

Validated numerical simulations with
coagulation assays to reproduce physiological

measurements

IIa, thrombin; I, fibrinogen; Ia, fibrin; APC, activated protein C; TF, tissue factor.

3.3. Endothelial dysfunction

In healthy tissue, the lining of endothelial cells has anticoagulant
properties which regulate haemostasis. However, structural
remodelling of the LA myocardium in AF exposes sub-endothelial
TF, triggering coagulation mechanisms. Identification of LA
dysfunction in clinic is primarily based on the presence of increased
concentrations of proteins in blood samples, such as vWf and
asymmetric dimethylarginine (11).

Computational models of endothelial dysfunction may provide
a significant advantage in predicting locations that are prone to
thrombus formation. Although this area of research is still in
its infancy, existing approaches for personalised identification of
cellular remodelling may be translated to thrombogenicity in AF
patients (94). The most common approaches for identifying regions
of endothelial injury through computational modelling use CFD
simulations to assess the time averaged wall shear stress (TAWSS) and
oscillatory shear index (OSI), Eqs. 1 and 2. These are indirect metrics
for identifying locations where endothelial cellular processes may be
altered due to abnormal flow patterns (95, 96). An extension to these
metrics proposed a new measurement, known as the endothelial cell
activation potential (ECAP), based on the ratio of OSI to TAWSS,
with higher ECAP values corresponding to greater risk of endothelial
susceptibility, Eq. 3 (97). This was then taken further to calculate
a platelet activation potential (PLAP) in Eq. 4 which represents the
magnitude of shear rates that a fluid particle accumulates travelling
through the fluid domain, and ultimately a metric for thrombus

formation potential (TFP) defined as the product of ECAP and
PLAP. These measures were then used to assess the thrombogenic
risk of different regions in a patient-specific anatomy based on their
magnitude and spatial distribution (98). While these methods have
primarily been tested on a series of carotid arteries with ECAP
with expected orders of magnitude ranging from 0.1 to 10 Pa−1

for the ECAP, with further validation, they may also have potential
application to the LA in AF. Combining such approaches with the
image-based myocardial wall models outlined in Section 3.1 may
provide a powerful tool for the prediction of thrombus formation (9,
99, 100).

TAWSS =
1
T

∫ T

0
|τW | dt (1)

OSI =
1
2

1−

∣∣∣∫ T
0 τW dt

∣∣∣∫ T
0 |τW | dt

 (2)

ECAP =
OSI

TAWSS
(3)

PLAP (x, t) =
∫ t

t−2T
|D(x (τ) , τ)| dτ (4)

Endothelial dysfunction is the most under-explored factor in
the modelling of Virchow’s triad. Our incomplete understanding of
thrombus formation in AF prompts fundamental questions, such as
whether blood stasis or the hypercoagulable state alone would lead
to thrombus formation if the endothelium was not compromised,
or if the endothelial injury is essential for initiating coagulation in
AF. With a lack of consensus on the relative importance of the three
factors in Virchow’s triad, further research is required to quantify the
role of each factor in thrombogenesis.

4. Challenges and future directions

The development of novel medical technologies to improve
patient outcomes is the cornerstone of cardiovascular research.
Exploration of the latest cardiac modelling techniques may enable a
paradigm shift towards low-cost, in-silico technologies to supplement
routinely available clinic procedures, as shown by HeartFlow for
coronary flow modelling and machine learning algorithms to
assess acute stroke severity. Although the cutting-edge modelling
approaches described in this Review are still in the early phase of
development with limited sample sizes and validation against clinical
endpoints, the rapid growth in this field has reached a critical mass
in the aim to provide mechanistic tools to improve AF-related stroke
risk stratification.

In future, describing all aspects of Virchow’s triad using
image-based modelling may enable a comprehensive evaluation of
patient-specific prothrombotic factors (Figure 6). This approach
could be used to refine the risk stratification from the CHA2DS2-
VASc score, enabling a true personalisation of anticoagulation
drug therapy and optimising of the frequency of imaging
follow-up exams based on the prediction of patient outcomes.
To achieve this goal, several limitations must be overcome in
both fields of imaging and modelling. Cardiac imaging is a
leading approach for monitoring risks of thrombus formation
in AF patients, but it falls short in evaluating the underlying
thrombogenic mechanisms, especially cellular processes in the
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FIGURE 6

Modelling each aspect of Virchow’s triad. The LAA during SR (top row) and AF (bottom row). Peak LAA blood flow velocities (A,D), ECAP with the location
of the maximum ECAP chosen to initiate coagulation [(B,E) and black circles] and fibrin thrombus growth due to coagulation after 4 cardiac cycles
shown (C,F). Modelling of Virchow’s triad-based mechanistic risk profile also suggested per patient (In Press – Computing in Cardiology 2022).

endothelium, the coagulation cascade, and capturing the intricate
structure of the trabeculated LAA. Although new emerging
technologies such as 18F-FDG-PET/CT can assess myocardial
inflammation by measuring increased fluorodeoxyglucose
(FDG) uptake during AF, they remain a niche research area
due to limited cost-effectiveness and equipment barriers
(101–103).

The significant recent progress in biophysical computer
modelling holds potential for enhancing current risk stratification by
a comprehensive quantification of patient-specific thrombogenicity
based on Virchow’s triad; however, this approach is challenging
to perform at the point of care due to significant time-consuming
computational expense.

4.1. Application of artificial intelligence

Some of these limitations can be overcome by incorporation of
machine/deep learning methods to infer prothrombotic biomarkers
using image-based biophysical models to accelerate aspects of

patient-specific functional assessment (Figure 7) (9, 104–112).
An example of this approach is the advent of physics informed
neural networks (PINNs) which integrate the PDEs discussed in
Section 3.2 as part of the loss function to enable more correct
approximations of the solution than earlier forms of machine
learning, even with limited data availability (104, 113–115). This
development is in line with the Digital Twin vision for precision
cardiology which involves creation of a digital representation
of the heart updated in real time using data harnessed from
electronic health records, imaging data, and wearable technology
(116). Combining these approaches by integrating advanced machine
learning techniques directly into medical imaging technologies (MRI,
CT and Echocardiography devices) to automatically update the in-
silico Digital Twin may provide the greatest benefit to the patient.
With rapid artificial intelligence inference times enabling simulation
results in mere seconds directly from patient scans, clinicians
may be able to monitor changes in vital patient information to
aid in decision making. This approach has grown in availability,
with clinically-validated commercial machine learning algorithms
(e.g., Brainomix R© and RapidAI R©) frequently being employed in
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FIGURE 7

Future direction: A proposed approach on combining patient imaging and modelling of thrombogenic mechanisms in Virchow’s triad. This can improve
patient stroke risk stratification and with the aim of preventing stroke prior to thrombus formation. A similar technique is routinely available in clinic using
machine learning-based approaches to assess stroke severity and determine the optimal treatment approach, such as performing a thrombectomy
(Image courtesy of Brainomix). Integration of machine learning with image-based cardiac modelling can facilitate rapid simulation results and continual
updates of a Cardiac Digital Twin for the personalisation and enhancement of AF-related stroke therapy (Figures sourced from 127–129).

highly time-sensitive evolving stroke cases to optimise triaging
and treatment, showing a potential for translation to stroke-
prevention for AF patients (Figure 7, right panels) (117–120).
Ultimately, combining biophysical modelling accelerated by deep
learning approaches in a similar manner may allow for mechanism-
based treatment to be tailored to the patient prior to the
occurrence of stroke, massively improving patient outcomes and
reducing healthcare costs as proposed in Figure 7 (left panels).
However, both in-silico modelling and machine learning for cardiac
thrombogenesis prediction must be developed within a rigorous
framework of verification, validation and uncertainty quantification
to fulfil regulatory evaluation and become applicable in clinics as a
reliable approach to stroke risk assessment (121, 122). A proposed
approach for validation of these cutting-edge techniques in a clinical
setting may require funding for prospective research studies under
controlled conditions with sizeable AF patient cohorts. Parameters

from imaging techniques such as Cine MRI, CCT, TEE, Doppler
flow, and blood samples would be measured prospectively and used
to build computational models. The results of such models can be
compared with the patient outcomes and the CHA2DS2-VASc scores
to quantify the accuracy and reliability of in-silico technologies for the
assessment of patient stroke risk (112).

4.2. In-silico stroke prevention

Further to the proposed improvements to patient stroke risk
stratification, in-silico and imaging techniques can also be used to
improve current stroke prevention approaches. Primary treatments
for patients at risk of stroke due to AF include prescription of OACs,
cardioversion and LAA occlusion therapy. Development of novel
OAC’s can be challenging and expensive, however, modelling tools
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are often employed in the early stages of pharmacological studies
using RDC equations (75). Studies have investigated the patient-
specific effects of warfarin and heparin on coagulation mechanisms,
providing the scope for these tools to be extended to the most recent
range of OACs, and development of new drugs for AF patients (93).
The choice of whether to cardiovert is based on detection of an
LAA thrombus, which can possibly be predicted using the modelling
techniques outlined in this Review and ultimately identified by
means of routinely available imaging techniques such as TEE. Finally,
LAA occlusion (LAAO) is a challenging surgical procedure which
involves closing of the LAA entrance to prevent thrombogenesis
and is performed when patients are contraindicated to OACs. This
technique has warranted pre-surgery virtual implantation using in-
silico tools which leverage the patient-specific geometries derived
from imaging data. Such interactive modelling can be used to
guide and optimise pre-implant planning for clinicians and has
shown promising results to reduce risk of device-induced thrombus
formation (99, 100).

The field of image-based biophysical modelling is rapidly
growing, and novel technologies are continuously being proposed
to tackle the greatest challenges facing AF and its associated risk
of stroke. The recent developments covered in this Review lay the
foundation for the future of this field and eventually, with wider
adoption and development, can lead to the translation of such
techniques into the clinic for the betterment of the large and growing
AF patient population.

5. Conclusion

Imaging and modelling of the patient-specific factors and
mechanisms of LA thrombus formation can shed light on different
aspects of the complex relationship between Virchow’s triad, AF and
stroke. Integration of these key aspects will pave the way to develop a
new generation of translational models that can enable a cost-effective
assessment of patient-specific stroke risks, improving the quality of
life and outcomes for the millions of AF patients globally.
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