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The secretory pathway is an intracellular highway for the vesicular transport of newly
synthesized proteins that spans the endoplasmic reticulum (ER), Golgi, lysosomes
and the cell surface. A variety of cargo receptors, chaperones, and quality control
proteins maintain the smooth flow of cargo along this route. Among these is
vesicular transport protein TMED9, which belongs to the p24/transmembrane
emp24 domain (TMED) family of proteins, and is expressed across vertebrate
species. The TMED family is comprised of structurally-related type I
transmembrane proteins with a luminal N-terminal Golgi-dynamics domain, a
luminal coiled-coil domain, a transmembrane domain and a short cytosolic
C-terminal tail that binds COPI and COPII coat proteins. TMED9, like other
members of the TMED family, was first identified as an abundant constituent of
the COPI and COPII coated vesicles that mediate traffic between the ER and the
Golgi. TMED9 is typically purified in hetero-oligomers together with TMED family
members, suggesting that it may function as part of a complex. Recently, TMED
family members have been discovered to play various roles in secretory pathway
homeostasis including secreted protein processing, quality control and degradation
of misfolded proteins, and post-Golgi trafficking. In particular, TMED9 has been
implicated in autophagy, lysosomal sorting, viral replication and cancer, which we
will discuss in this Mini-Review.
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Introduction

The first member of the transmembrane emp24 domain (TMED) family proteins,
TMED11, was discovered in rough microsomes derived from canine endoplasmic reticulum
(ER) in 1991 (Wada et al., 1991). Within a few years, TMED9 and other TMED family proteins
were found to be type I transmembrane COPI and COPII coatomer binding proteins localized
to the secretory pathway and conserved across mammals, yeast, and plants (Schimmoller et al.,
1995; Stamnes et al., 1995; Belden and Barlowe, 1996; Elrod-Erickson and Kaiser, 1996; Sohn
et al., 1996; Dominguez et al., 1998; Contreras et al., 2004a; Contreras et al., 2004b). The TMED
family was originally referred to as the p24 family after their size (~24 kDa), subfamily (ɑ, β, δ,
or γ), and the order in which they were identified (1–5) (Strating et al., 2009). Each TMED
protein has several aliases. Strating et al. (2009) organized the names in a useful reference table.

The secretory pathway is the major biosynthetic hub for the production, secretion, and
turnover of soluble secretory and transmembrane proteins in eukaryotic cells. Traffic through
the secretory pathway begins at the ER, where proteins are synthesized, folded, and processed
prior to export to the Golgi for subsequent transport to the cell surface or lysosomes. Within the
early secretory pathway, which is comprised of the ER, ER-Golgi intermediate compartment
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(ERGIC) and Golgi, protein folding is aided and monitored by
chaperones and protein quality control (PQC) machinery (Anelli
and Sitia, 2008; Adams et al., 2019; Sun and Brodsky, 2019). While
TMED9 and TMED family members are well-characterized as
regulators of homeostasis and vesicular transport within the early
secretory pathway (Strating and Martens, 2009; Pastor-Cantizano
et al., 2016; D’Arcangelo et al., 2015; Belden and Barlowe, 2001;
Elrod-Erickson and Kaiser, 1996), their precise functions within
this area are yet to be determined.

TMED family proteins promote efficient and selective secretion of
diverse classes of proteins. TMED family members, including
TMED10 and TMED2, facilitate ER-export of
glycosylphosphatidylinositol-anchored proteins (GPI-APs) in yeast and
cultured mammalian cells (Muniz et al., 2000; Marzioch et al., 1999;
D’Arcangelo et al., 2015; Schimmoller et al., 1995; Belden and Barlowe,
2001; Fujita et al., 2011), and are required for ER-export ofmisfoldedGPI-
APs destined for lysosomal degradation (Satpute-Krishnan et al., 2014;
Sikorska et al., 2016; Zavodszky and Hegde, 2019). TMED10 was recently
shown to promote the unconventional protein secretion (UPS) of
leaderless cargo including mature IL-1β (Zhang M. et al., 2020).
TMED9 in particular has emerged as a major regulator of secretory
pathway protein homeostasis through its involvement in protein
trafficking and degradation. TMED9 has a propensity to form and
function as a hetero-oligomer with other TMED family members
(Belden and Barlowe, 1996; Fullekrug et al., 1999; Muniz et al., 2000;
Fujita et al., 2011). Therefore, in this review we will describe TMED9 in
the context of the larger TMED family of proteins.

The TMED family of secretory pathway
proteins

TMED protein expression patterns

In humans there are 11 genes annotated as TMED1-11. TMED
family members are expressed throughout the body, as demonstrated
in mice (Strating et al., 2009), and are highly expressed in secretory cell
types (Zhang and Volchuk, 2010). Given their ubiquity, it is thus
unsurprising that some TMED proteins are developmentally essential
and knockout of either TMED2 or TMED10 is embryonic lethal in
mice (Denzel et al., 2000; Jerome-Majewska et al., 2010) and reduces
viability in cultured cells (Blomen et al., 2015).

Various studies have shown that the TMEDproteins form oligomers of
varying stoichiometry (Fullekrug et al., 1999; Emery et al., 2000; Jenne et al.,
2002). A series of siRNAknockdown experiments revealed that knockdown
of TMEDs 2, 4, 5, 9, or 10 destabilized other TMED family members while
TMED7 knockdown primarily affected TMED5. Loss of TMEDs nine or
10 inhibited GPI-AP trafficking, whereas WNT trafficking was inhibited in
cells lacking either TMEDs 2, 4, 9, or 10 (Tashima et al., 2022). Because of
the interdependency between TMED family member expression and
function, it is technically challenging to discriminate between the
functions of individual TMED proteins or their oligomeric complexes.

The role of TMED9 in the secretory pathway

Mammalian TMED9 and its yeast homolog, Erv25p, were first
discovered as secretory pathway proteins (Dominguez et al., 1998;
Marzioch et al., 1999). TMED9 localizes primarily to the ER and

ERGIC, but is found in post-Golgi secretory vesicles along with
other TMED family proteins (Shevchenko et al., 1997; Dominguez
et al., 1998; Marzioch et al., 1999; Breuza et al., 2004). Later
TMED9 was discovered to be critical for the generation of ER
exit sites (ERES) in a cell-free microsome budding assay (Lavoie
et al., 1999). Further emphasizing its role(s) in the secretory
pathway, depletion of TMED9 leads to the fragmentation of
Golgi structures and the partial dissociation of COPI from the
Golgi (Mitrovic et al., 2008). The yeast homolog of TMED9,
Erv25p, has been shown to be play a role in efficient ER-to-
Golgi transport of the yeast GPI-AP, Gas1 (Belden and Barlowe,
1996). However teasing apart TMED9’s individual role from other
TMED-family members, including TMEDs 2 and 10, is difficult
because knockdown of each impacts the expression of the others
(Fujita et al., 2011). Taken together, TMED9 along with its family
appears to regulate multiple critical trafficking steps in the
secretory pathway. Excellent reviews have been written to
discuss the role of the TMED proteins in the early secretory
pathway (Pastor-Cantizano et al., 2016; Aber et al., 2019).

Recently, TMED9 was shown to participate in unconventional
protein secretion (UPS) from the ER to the plasma membrane during
ER stress in cells expressing the dominant-inhibitory form of ADP-
ribosylation factor 1 (ARF1-Q71L), which blocks ER-to-Golgi
transport (Park et al., 2022). TMED9 was found to participate in
the assembly of a heterooligomeric trafficking complex governing
SARS-Cov2 spike protein and cystic fibrosis transmembrane
conductance regulator (CFTR) secretion (Park et al., 2022).
Although Park et al. (2022) found that TMED9 did not bind to
CFTR or Spike proteins, silencing TMED9 reduced the cell surface
trafficking of these UPS cargo. These findings suggest that
TMED9 may participate in a variety of yet undiscovered trafficking
pathways.

Structure-function relationships in the TMED
family

The TMED proteins are structurally conserved among eukaryotes
despite significant variations in sequence identity (Strating et al., 2009)
(Figure 1A). Each family member contains four major regions: the
GOLD domain, coiled-coil domain, transmembrane domain, and a
cytoplasmic COP-binding region (Figures 1B, C). Whether these
conserved domains allow the TMED proteins to act
interchangeably in certain processes is unknown.

GOLD domain
The Golgi dynamics (GOLD) domain consists of eight β-strands

and one disulfide bond (Nagae et al., 2016). Despite low sequence
homology, the GOLD domains found in TMEDs 1, 2, 5, and 10 are
structurally similar (Nagae et al., 2016; Nagae et al., 2017; Mota et al.,
2022). The GOLD domain is chiefly involved in hetero and homo-
oligomerization (Nagae et al., 2016; Zhang M. et al., 2020; Mota et al.,
2022). Heterodimerization occurs across a range of sites on each
GOLD domain, depending on the TMED proteins involved (Nagae
et al., 2016). Dimerization is dependent on solution ionic strength
(Mota et al., 2022) and pH (Nagae et al., 2016) in vitro, suggesting that
intracellular localization may influence dimerization. These findings
are largely sourced from studies involving purified GOLD domains
rather than intact TMED proteins. Beyond its role in oligomerization,
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the GOLD domain has also been shown to participate in substrate
recognition (Park et al., 2022) and the interaction between TMEDs
9 and 10 with syntaxin 17 (Muppirala et al., 2011).

Coiled-coil domain
The coiled-coil (CC) domain mediates TMED oligomerization

and substrate recognition. Early observations showed that CC
deletion abolished post-ER transport of hetero-oligomeric
complexes (Ciufo and Boyd, 2000; Emery et al., 2000) and
recently the TMED7 CC was shown to participate in TMED7
homooligomerization (Liaunardy-Jopeace et al., 2014). Recent
studies have also shown that the CC domain appears to mediate
substrate recognition in the case of GPI-anchored proteins (Theiler

et al., 2014) and TLR4 complex binding (Liaunardy-Jopeace et al.,
2014).

Transmembrane domain
The transmembrane domain (TMD) is essential in TMED protein

sorting. The TMD of TMED2 but not TMED10 binds to
sphingomyelin (SM) C18, promoting TMED2 dimerization and
regulating cargo transport (Brugger et al., 2000; Contreras et al.,
2012; Aisenbrey et al., 2019; Pannwitt et al., 2019). It is unclear if
other TMED family members interact with SM in this way. Because
membrane lipid content can affect membrane thickness, TMD length
and lipid binding may increase the affinity of TMED proteins for
membrane microdomains that are enriched with SM. Whereas no

FIGURE 1
(A) The protein sequence for human TMEDs 1, 2, 3, 4, 5, 6, 7, 9, and 10 are shown. Sequences were aligned with Muscle and drawn with AlignmentViewer
(alignmentviewer.org). Aligned amino acids are colored in the Clustal2 color code. Structural motifs for TMED9 are indicated (SS: signal sequence, GOLD, CC:
coiled-coil, TMD: transmembrane domain, COP: COPI/II). (B) The Alphafold (Jumper et al., 2021; Varadi et al., 2022) structure for the human TMED9 protein
(AF-Q9BVK6-F1). The signal sequence (SS, red), GOLD domain (yellow), coiled-coil (CC, lilac), transmembrane domain (TMD, green), and COP I/II (pink)
binding sites are indicated (C) A predicted domain map of the human TMED9 protein (Q9BVK6) as compiled and annotated by Uniprot (UniProt, 2021). The
structural domains from the N-terminus “N” to the C-terminus “C” in (B) are indicated, as well as a conserved disulfide bond, N-linked glycan (GlcNAc), and the
COPI and COPII binding sites. Amino acid positions are given and domains are depicted to scale.
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defined sorting motif has been identified within TMED protein TMDs,
lengthening the TMED10 TMD impacts that protein’s sorting (Blum
and Lepier, 2008). Intriguingly, it has been reported that membrane
SM content affects the formation of coatomer protein (COP)-marked
vesicles (Brugger et al., 2000). It is possible this effect is mediated by
TMED proteins, since they interact with membrane lipids and COP
(Pannwitt et al., 2019).

Cytoplasmic domain
The cytoplasmic tail of the TMED proteins contains a region

required for COP I/II binding, which we will discuss below. In
addition, the cytoplasmic domain has been shown to bind to
mature IL1β for TMED10 (Zhang M. et al., 2020), and syntaxin
17 and TC48 for TMEDs 9 and 10 (Muppirala et al., 2011;
Muppirala et al., 2013). Intriguingly, the TMED9 cytoplasmic
domain was also recently implicated in the formation of
autophagic vesicles through its interaction with Sec12, the guanine-
nucleotide exchange factor for Sar1 that functions upstream of COPII
coat assembly (Weissman et al., 2001; Li et al., 2022).

COPI proteins bind to dilysine (KKXX) motifs and structurally
related sites in cargo proteins (Ma and Goldberg, 2013). Of the
TMEDs, only TMEDs 4, 9, 10, and 11 include a canonical KKXX
motif, however KXK motifs in some TMED orthologs also enable
COPI binding (Teasdale and Jackson, 1996; Dominguez et al., 1998;
Belden and Barlowe, 2001; Pastor-Cantizano et al., 2016; UniProt,
2021). Consequently, TMEDs 9 and 10 have been shown to bind COPI
components more strongly than TMEDs 2, 3, or 7. COPI binding is
important for TMED retrieval from the Golgi back to the ER (Bremser
et al., 1999) and mutations of this motif in TMEDs 2, 9, and 10 alters
their ER-Golgi cycling kinetics (Dominguez et al., 1998; Blum and
Lepier, 2008). Interestingly, COPI components recognize TMED
oligomers rather than TMED monomers (Bethune et al., 2006).

COPII binding to the TMED proteins is mediated through aromatic
residues in the cytoplasmic domain which fit into a binding pocket in
the SEC24 COPII coat proteins (Ma et al., 2017). While all TMED
family proteins display cytoplasmic aromatic residues, variations in the
polypeptide sequence enable different TMED proteins to associate with
different SEC24 isoforms (Wendeler et al., 2007).

TMED9 interactions in health and
disease

Only a handful of diseases have been directly linked to TMED9.
However, TMED family proteins have been tied to a variety of
human diseases. Because the TMED proteins function as
heteromeric complexes, TMED9 is likely to participate in some of
the diseases associated with other TMED family members. Thus, we
have listed diseases associated with each of the TMED proteins in
Table 1.

Cancer

Elevated TMED9 expression has been observed in multiple cancer
types (Ju et al., 2021). In breast cancer, elevated TMED9 levels are
associated with poor prognoses (Ju et al., 2021). In head and neck
squamous cell carcinoma, expression of each of the TMED proteins is
elevated. In particular, high expression of TMEDs 2, 9, and 10 was
found to be associated with poor prognoses, whereas high expression
of TMEDs 1, 3, 4, 5, 6, and 7 was not (Gao et al., 2022). Similarly,
elevated TMED9 expression is associated with reduced survival time in
individuals with epithelial ovarian cancer (EOC) in vivo.
TMED9 knockdown reduces EOC cell proliferation in vitro (Han
et al., 2022).

TMED9 expression may regulate cancer cell proliferation
through its effect on growth factor signaling (Buechling et al.,
2011; Nakano et al., 2017; Zhang X. et al., 2020; Di Minin et al.,
2022; Tashima et al., 2022). For example, biochemical and
microscopy approaches revealed that TMED9 loss was
associated with dysregulation of TGFɑ trafficking and secretion
in colon cancer and hepatocellular carcinoma cells (Mishra et al.,
2019; Yang et al., 2021). Furthermore, loss of TMED9 led to
impaired WNT trafficking (Tashima et al., 2022) and
significant changes in the expression of genes regulated by
WNT signaling (Yang et al., 2021). This TMED9-WNT
signaling axis has been implicated in Paneth cell function in
the intestines (Goga et al., 2021).

TABLE 1 Diseases associated with individual TMED family proteins.

Protein Associated diseases Additional reference

TMED1 Cardiovascular disease Liew et al. (2010); Connolly et al. (2013)

TMED2 Non-alcoholic fatty liver disease Hou et al. (2017)

TMED3 Colon cancer Duquet et al. (2014)

TMED4

TMED5 Cervical cancer (Yang et al., 2019; Yang et al., 2021)

TMED6 Diabetes Wang et al. (2012)

TMED7 Amyotrophic lateral sclerosis (Pradat et al., 2012)

TMED9 Breast cancer, Colon cancer, Head and neck squamous cell carcinoma, Hepatocellular
carcinoma, Mucin-1 kidney disease, Epithelial ovarian cancer

Dvela-Levitt et al. (2019); Mishra et al. (2019); Ju et al. (2021); Yang et al.
(2021); Han et al. (2022)

TMED10 Alzheimer’s disease Chen et al. (2006); Shin et al. (2019)
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Neurodegenerative disease

The TMED proteins have been implicated in various
neurodegenerative diseases. TMED10 associates with and is
required for the clearance of artificial and prion-disease associated
mutants of prion protein (PrP) (Satpute-Krishnan et al., 2014).
TMED2 was found to co-immunoprecipitate with atlastin whose
misfolding leads to hereditary spastic paraplegia (Namekawa et al.,
2007). Although TMED9 has not been thoroughly studied in the
context of neurological disease, TMED9 has been shown to interact
with wild type TDP-43, whose aggregation has been associated with
the development of amyotrophic lateral sclerosis (ALS) (Redler and
Dokholyan, 2012; Feneberg et al., 2020), and to associate with spastin
whose mutations lead to hereditary spastic paraplegia (Reid et al.,
2005). The precise motifs or domains of TMED9 involved in binding
to TDP-43 or spastin remain unknown.

Various studies have demonstrated that alterations in TMED9 and
TMED10 (commonly referred to as TMP21 in the Alzheimer’s field)
expression promote the processing of amyloid precursor protein
(APP) to amyloid beta (Aβ) by γ-secretase. Alzheimer’s disease has
been associated with mutations in the genes encoding subunits of γ-
secretase (Zhang et al., 2011). A single nucleotide polymorphism in
TMED10 that resulted in heightened TMP21 expression was found to
be genetically associated with Alzheimer’s disease in patients (Zhang
et al., 2018). Additionally, alterations in TMED10 expression were
found to impact pathological APP processing in cell culture models
(Zhang et al., 2018). TMED10/TMP21 has been shown to co-
immunoprecipitate with and regulate the activity of the γ-secretase
complex. Intriguingly, depletion of TMED10/TMP21, results in
increased generation of Aβ (Chen et al., 2006; Dolcini et al., 2008).
Similarly, TMED9 co-immunoprecipitates with the core γ-secretase
components and knockdown of TMED9 mRNA induces an increase
in Aβ generation (Hasegawa et al., 2010; Bai et al., 2015). Because of
TMED9’s tendency to heterooligomerize with TMED10/TMP21
(Dominguez et al., 1998; Fullekrug et al., 1999), TMED9 may
function in a complex with TMED10/TMP21 to regulate γ-
secretase processing of APP.

Mucin kidney disease

The proteinopathy mucin-1 kidney disease (MKD) results from a
frameshift mutation in the MUC1 gene. (Dvela-Levitt et al. (2019)
recently demonstrated that TMED9 binds to andmediates the post-ER
trafficking of MUC1 aggregates. Under steady-state conditions, this
TMED9-MUC1 complex drives the accumulation of toxic MUC1 in
the ERGIC. Fortuitously, the authors found that the small molecule
BRD4780 was able to reduce MUC1 aggregate levels both in vivo in
mice and in vitro in cell culture and human kidney organoidmodels by
reducing TMED9 stability and accelerating clearance of TMED9-
MUC1 complexes from the ER and ERGIC to lysosomes (Dvela-
Levitt et al., 2019).

TMED9 in autophagy

Over the last decade, TMED9 has emerged as an important regulator
of cellular proteostasis. It has recently been shown that
TMED9 contributes to autophagy and autophagosome biogenesis.

TMED9 was first identified in intracellular vesicles enriched with
ATG9 and Rab1 thought to participate in autophagosome assembly
(Kakuta et al., 2017). A role for TMED9 in autophagosome
maturation was later demonstrated by Evans et al. (2021). The authors
found that TMED9 knockdown attenuated autophagic activity and
reduced viral production, potentially by decreasing COPII-dependent
viral transport (Delorme-Axford et al., 2014; Evans et al., 2021).

In line with these findings, TMED9 was recently shown to directly
participate in autophagosome biogenesis. It has long been known that
TMED9 participates in ER exit site (ERES) formation for cargo transport
to the Golgi (Lavoie et al., 1999; Fujita et al., 2011). However, Li et al.
(2022) found that ERES-localized Sec12 and ERGIC-localized
TMED9 interact directly in trans through their cytoplasmic domains,
bringing ERES into close proximity with the ERGIC. ERES-ERGIC
association is important for the generation of starvation-induced
autophagosomes (Li et al., 2022). These findings suggest that
TMED9 may directly influence the recruitment of COPII machinery
at the ERGIC to contribute membranes for autophagosome formation.

Discussion

TMED9 has been found in every organelle along the secretory
pathway from the ER and Golgi, to the plasma membrane, to
lysosomes and autophagosomes (Hasegawa et al., 2010; Li et al., 2022).
While precise mechanistic functions of TMED9 remain elusive at each
point, it is clear that TMED9 wears many hats in secretory pathway
homeostasis. Building upon early findings that TMED9 binds to COPI
and COPII coat proteins (Lavoie et al., 1999), recent studies indicate that
TMED9 regulates the initial recruitment of COPmachinery to the ERGIC
membrane to promote the formation of autophagic membranes in
coordination with COPII machinery (Kakuta et al., 2017; Evans et al.,
2021; Li et al., 2022). Furthermore, TMED9 expression correlates with the
development of multiple cancer types. Roles for TMED9 in the regulation
of cancer cell growth (Mishra et al., 2019; Ju et al., 2021; Yang et al., 2021),
APP processing (Hasegawa et al., 2010; Bai et al., 2015), and protein
degradation (Dvela-Levitt et al., 2019) underscore the importance of this
cargo receptor in health and disease.

Future directions

The TMED protein family field is a rapidly evolving area of research.
The exciting discovery that BRD4780 targets pathological TMED9-
MUC1 aggregates to lysosomes demonstrates the potential to
pharmacologically target TMED proteins for the resolution of
proteinopathies (Dvela-Levitt et al., 2019). It is as yet unclear how
BRD4780 induces lysosomal degradation of TMED9-MUC1, but
possible mechanisms may involve directly altering TMED9’s structure
or by preventing its oligomerization with other TMED family members.
Preventing hetero-oligomerization of TMED9 has been shown to reduce
its stability and the stability of other TMED proteins (Tashima et al.,
2022). Because of this interdependence, BRD4780 may potentially be
exploited to modulate various PQC pathways involving TMED
heterooligomers. These findings encourage future research into the
role of TMED9 and the other TMED proteins in clinical proteinopathies.

Beyond their clinical implications, the TMED proteins have now
been shown to participate in a variety of essential cellular processes.
New empirical tools such as cryoelectron microscopy and AI based
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modeling tools like Alphafold2 enable future structural studies to
better characterize the interaction of the TMED proteins with one
another and their cargo. Furthermore, structure-driven mutagenesis
strategies may be used to disrupt oligomer formation in order to reveal
the independent functions of the TMED proteins in the secretory
pathway. Compelling questions include: Does environmental
pH affect the function and binding of TMED proteins? Does
N-linked glycosylation influence TMED cargo recognition? What is
the precise role of TMED9 in autophagosome biogenesis, and how is
this balanced with its role in secretion? What are the specific roles of
each TMED family member and their various oligomeric states? As we
gain answers, we may soon understand the functions and clinical
relevance of TMED9 and its stubbornly mysterious family of proteins.
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