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Abstract: The fractional grey model is an effective tool for modeling small samples of data. Due
to its essential characteristics of mathematical modeling, it has attracted considerable interest from
scholars. A number of compelling methods have been proposed by many scholars in order to improve
the accuracy and extend the scope of the application of the model. Examples include initial value
optimization, order optimization, etc. The weighted least squares approach is used in this paper in
order to enhance the model’s accuracy. The first step in this study is to develop a novel fractional
prediction model based on weighted least squares operators. Thereafter, the accumulative order of
the proposed model is determined, and the stability of the optimization algorithm is assessed. Lastly,
three actual cases are presented to verify the validity of the model, and the error variance of the model
is further explored. Based on the results, the proposed model is more accurate than the comparison
models, and it can be applied to real-world situations.

Keywords: grey model; fractional-order accumulation; weighted least squares; water consumption
Mathematics Subject Classification: 62-XX, 65-XX

1. Introduction

Grey system theory was pioneered in 1982 [1,2], and one of the important study contents is how to
abstract and establish a model from an unclear system with insufficient overall information to make a
fuzzy long-term description of the law of development of things. This model can make the unclear
factors of the grey system clear, and provide the research basis. GM(1,1) is a grey prediction model
proposed earlier, which has been applied in many fields, such as energy, economy, and
education [1, 2]. For example, Kun [3] applied the grey predicting model to the Chinese automobile

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023198


3950

industry, Feng et al. [4] forecasted the measles incidence in China with GM(1,1), and similarly, Wang
et al. [5] predicted the prevalence of infectious diseases with GM(1,1) model.

Nevertheless, GM(1,1) model has very small samples, and the high overall simulation accuracy does
not necessarily guarantee high prediction accuracy. In order to further improve the accuracy and scope
of the application of GM(1,1), many researchers proposed improved GM(1,1) models. For instance,
Li et al. [6] put forward the weighted least square method to estimate parameters in GM(1,1) model.
Hsu [7] improved the GM(1,1) model by combining the artificial network with residual correction and
predicted the electricity demand in Taiwan. Ma et al. [8] put forward an improved GM(1,1) model
by reconstructing the background value with the Simpson formula. Mao et al. [9] proposed a grey
multivariate time-delay model which solved the modelling problem between oil price and exchange
rate. Wu et al. [10] presented the Grey Riccati model by using the trapezoidal integral formula. Wang
et al. [11] proposed a new grey model which is used to predict the annual electricity consumption in
China. Wu [12] put forward an improved nonlinear grey Bernoulli model to forecast China’s GDP.
Wu et al. [13] put forward a new grey Bernoulli model to make a short-term forecast of natural gas.
Ma et al. [14] predicted primary energy consumption using a novel NDGM(1,1, K, C) model, where
the background value was constructed by Simpson numerical integration formula. Zhou et al. [15]
proposed a grey seasonal least square support vector regression model.

However, when describing the evolution of the complex system with constant order differential
equations, it often fails to accurately describe some characteristics of the system. Accordingly, many
scholars have studied the accumulation operator and sought new solutions. In 2013, Wu et al. [16]
proposed a fractional-order grey model. Compared with the traditional GM(1,1), the grey prediction
model with fractional order accumulation has a better performance. Based on the fractional
accumulation operator, many scholars have proposed some new grey prediction models [17–20].

Chen et al. [21] studied a new fractional-order cumulative grey prediction model with time delay
polynomials. Duan et al. [22] predicted the crude oil consumption in China with a new
fractional-order grey model. Meng et al. [23] used a genetic algorithm to optimize the order of
fractional order grey model and predicted the emission of sulfur dioxide in China. In order to further
improve the prediction performance of the fractional grey model, Xie et al. [24] proposed a new grey
model with conformable fractional derivative and applied it to predict China’s consumption of energy
and coal. Xie et al. [25] also used the quantum evolutionary algorithm to optimize the order of the
grey model and predicted China’s annual electricity consumption. Mao et al. [26] employed a new
nonlinear fractional order grey model to predict urban traffic flow. Wu et al. [27] proposed a novel
fractional order non-homogeneous grey model and obtained the closed solution of this model. Wu
et al. [28] also presented a fractional order cumulative nonlinear Bernoulli grey mode based on the
fractional cumulative generation matrix and Bernoulli equation and used a particle swarm
optimization algorithm to seek the optimal parameters. In order to deal with the system containing
both linear and nonlinear trends, Gao et al. [29] used the least square perturbation theory to determine
the perturbation order of the model and proposed a fractional order grey model with a time-varying
parameter. Wu et al. [30] put forward a seasonal grey prediction model with fractional order
accumulation to describe the characteristics of seasonal fluctuations and improve the prediction
performance [31]. Xie et al. [32] proposed an optimized non-equidistant model with time-varying
characteristics. Xie et al. employed an optimized nonlinear grey Model to predict investment funds
and enrollment in higher education in China [33]. Liu et al. [34] proposed a new grey model with
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fractional order accumulation and Markov chain for short-term power load prediction. In order to
make the parameters adjusted according to the characteristics of the actual data, Kang et al. showed a
multi-variable grey prediction model with a fractional derivative for non-stationary sequence by
optimizing the cumulative order of the differential equation using the particle ant colony algorithm to
predict the municipal solid waste [35]. Based on the new principle of information priority and
considering the influence of non-homogeneous terms, Wu et al. [36] proposed a single variable grey
prediction model based on a fractional accumulation generating operator and trapezoidal
approximation formula of integral using particle swarm optimization algorithm to search parameters
of the model. Then, they presented a fractional order multi-variable grey prediction model by using a
genetic algorithm to determine the optimal order [37]. Liu and Wu [38] proposed an adjacent
non-homogeneous grey model based on the principle of adjacent accumulation considering the weight
between historical data and the latest value. Yuan et al. [39] put forward a nonlinear grey system
model with fractional accumulation to predict the consumption of industrial water in Wuhan. Kang
et al. [40] proposed a fractional viscoelastic traffic flow model in combination with the modelling
principle of the Bass model and application of fractional calculus in a viscoelastic fluid and then
established a fractional grey viscoelastic traffic flow model that can reflect time-varying
characteristics by introducing the conformable fractional derivative and the fractional grey model.
Mao et al. [41] presented a fractional derivative grey model with time delay by introducing fractional
derivative and delay factor into the GLV model. Kang et al. [42] put forward a variable order
fractional derivative grey model based on a definition of variable order fractional accumulation
generation sequence. Yan et al. [43] proposed the grey model with the fractional Hausdorff derivative
is put forward to enhance the forecasting accuracy of the traditional grey model. The proposed model
will not be effect by the initial value. The relationship between the error and the order is proved.

The effective estimation of parameters in the grey model is an important index that affects the
prediction accuracy of the grey model. Although many improved grey models have been proposed,
the research on the estimation of parameters in the grey model is still insufficient. For example,
although Li et al. [6] proposed the least square method to solve the parameters, it is easy to fall into
the local minimum, resulting in overfitting and low prediction accuracy in the data training stage. In
order to further improve the prediction accuracy of the grey model, in this paper, we propose an
optimized fractional grey model, which uses weighted least squares to estimate the parameters of the
grey model and different values have different weights. As we all know, the traditional least squares
method assigns the same weights to all the parameters, and then the noisy data will be amplified and
affect the prediction accuracy. However, the weighted least squares algorithm can produce different
weights, noisy data will be assigned smaller weights and the valid data will have bigger weights,
which will reduce the affection of noises and improve the accuracy. The main contributions are:

(1) We introduced the weighted least square method into the parameter estimation of the grey
prediction model, which improves the accuracy of the parameter estimation.

(2) We proposed an optimized fractional-order grey prediction model based on weighted least
squares estimation, and used the optimization algorithm to solve the fractional order automatically,
which improves the prediction accuracy of the model.

(3) We applied the new model to the fields of water consumption, power consumption and education
investment. Compared with the popular grey models and machine learning algorithms, we obtained
better fitting and prediction results, which verified the effectiveness of the model.
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The rest of this paper is organized as follows: Section 2 shows the description of the FGM(1,1)
model and depicts the detailed modelling procedure of the proposed model. Section 3 provides real
cases of water consumption, power consumption and education investment to further verify the fitting
and predicting accuracy of the model. Section 4 lists the main conclusions and the proofs are given in
the final section. The primary nomenclatures are listed in the appendix.

2. Methodology

This section introduces the definition of the fractional-order grey model and then introduces the
novel fractional grey model based on weighted least squares, abbreviated as WFGM(1,1).

2.1. Presentation of fractional grey model

As reported in Ref. [16], the fractional grey model (denoted as FGM(1,1) for short) have been
received extensive attention from method to practice. More importantly, combining fractional
accumulation with the grey model enables the model to successfully capture data patterns behind
time-series sequence. By reference to [16], the construction of the fractional grey model includes
three steps covering fractional-order accumulation, time response series solution, and fractional-order
accumulation restoration. Specifically, these steps can be outlined as follows:

(1) Fractional-order accumulation
Let the observed univariate data be X(0) =

{
x(0)(1), x(0)(2), · · · , x(0)(n)

}
under the action of r-order

accumulation operator, the r-order accumulation sequence generated is
X(r) =

{
x(r)(1), x(r)(2), · · · , x(r)(n)

}
, where

x(r)(k) =
k∑

i=1

(
k − i + r − 1

k − i

)
x(0)(i),

(
r − 1

0

)
= 1, Ck

k−1 = 0, (2.1)

(
k − i + r − 1

k − i

)
=

(k − i + r − 1)(k − i + r − 2) · · · (r + 1)r
(k − i)!

(k = 1, 2, · · · , n). (2.2)

(2) Parameter solution
Based on the above definition, we can define the following differential equation to describe the

change process of time series:
dx(r)(t)

dt
+ ax(r)(t) = b. (2.3)

Integrate both sides of Eq (2.3) over the spacing [k, k + 1], we have∫ k

k−1
dx(r)(t) +

∫ k

k−1
ax(r)(t)dt =

∫ k

k−1
bdt. (2.4)

The above formula is solved using the numerical integration method

x(r)(k) − x(r)(k − 1) + az(r)(k) = b, (2.5)

where ∫ k

k−1
ax(r)(t)dt ≈ z(r)(k) =

x(r)(k) + x(r)(k − 1)
2

(k = 2, 3, · · · , n). (2.6)
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With the least square algorithm, the model parameters can be estimated as

[â, b̂]T =
(
ΞTΞ

)−1
ΞTΘ, (2.7)

where

Θ =


x(r)(2) − x(r)(1)
x(r)(3) − x(r)(2)

...

x(r)(n) − x(r)(n − 1)

 , Ξ =

−z(r)(2) 1
−z(r)(3) 1
...

...

−z(r)(n) 1

 . (2.8)

(3) Time response series solution
Let x̂(r)(1) = x(r)(1), Solve Eq (2.3) to get:

x̂(r)(k) =
(
x(r)(1) −

b̂
â

)
e−â(k−1) +

b̂
â
, k = 2, 3, · · · , n + N (2.9)

where x̂(r)(k) represents the output value of the model, n represents the number of original sequences,
and N is the step size of backward prediction.

(4) Fractional-order accumulation restore
We carry out fractional-order cumulative subtraction according to the following formula

x̂(0)(k) =
k∑

i=1

(
k − i + r − 1

k − i

)
x̂(r)(k)−

k−1∑
i=1

(
k − 1 − i + 1 − r − 1

k − 1 − i

)
x̂(r)(k−1), k = 2, 3, · · · , n+N. (2.10)

2.2. The fractional grey model based on weighted least squares

In Literature [6], weighted least square was introduced into the grey prediction model to estimate
the parameters of the GM(1,1) model, and a good effect is obtained. In addition, literature [6] analyzed
the problems of the common least square method in the grey model: (1) It may cause serious model
morbidity in the solution process; (2) All the sum of squares of errors had the same weight.

Inspired by the reference [6], we introduce the weighted least squares algorithm in FGM(1,1) to
solve the model parameters and improve the accuracy of the model by making different error sums of
squares with different weights. The minimization objective function is designed as follows:

χ2 =

n∑
k=2

wi

(
b − x(r−1)(k) − az(r)(k)

)2
. (2.11)

Let the derivative of χ2 with respect to model parameter â and b̂ be 0, we have
∂χ2

∂b =
n∑

k=2
w (k)

(
2b − 2az(r)(k) − 2x(r−1)(k)

)
= 0,

∂χ2

∂a =
n∑

k=2
w(k)

(
2bz(r)(k) + 2az(r)(k)z(r)(k) + 2z(r)(k)x(r−1)(k)

)
= 0.

(2.12)

The above expression can be written in matrix form as
n∑

k=2
w(k)

n∑
k=2
−w(k)z(r)(k)

n∑
k=2
−w(k)z(r)(k)

n∑
k=2

w(k)
(
z(r)(k)

)2

 ·
(

b
a

)
=


n∑

k=2
w(k)x(r−1)(k)

n∑
k=2
−w(k)z(r)(k)x(r−1)(k)

 . (2.13)
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Using the weighted least squares algorithm, we modify the basic form of FGM(1,1) as

[̂
b, â

]
=

( ∑n
k=2 w(k)

∑n
k=2 −w(k)z(r)(k)∑n

k=2 −w(k)z(r)(k)
∑n

k=2 w(k)(z(r)(k))2

)−1

·

( ∑n
k=2 w(k)x(r−1)(k)∑n

k=2 −w(k)z(r)(k)x(r−1)(k)

)
, (2.14)

where

W =



w (2) 0 0 · · · 0
0 w (3) 0 · · · 0

0 0 . . . · · ·
...

...
...

...
. . . 0

0 0 · · · 0 w (n)


. (2.15)

Remark 1. In the actual programming of parameter estimation, we can use a simple matrix form to
get the parameter estimation of the model, which helps us to write the program. A specific deduction
is shown in the following analysis.

[b̂, â]T =
(
ΞT WΞ

)−1
ΞT WΘ

=




1 −z(r)(2)
1 −z(r)(3)
...

...

1 −z(r)(n)


T

·W ·


1 −z(r)(2)
1 −z(r)(3)
...

...

1 −z(r)(n)



−1

·


1 −z(r)(2)
1 −z(r)(3)
...

...

1 −z(r)(n)


T

·W ·


x(r−1)(2)
x(r−1)(3)
...

x(r−1)(n)


=


n∑

k=2
w(k)

n∑
k=2
−w(k)z(r)(k)

i
n∑

k=2
−w(k)z(r)(k)

n∑
k=2

w(k)
(
z(r)(k)

)2


−1

·


n∑

k=2
w(k)x(r−1)(k)

n∑
k=2
−w(k)z(r)(k)x(r−1)(k)


= 1

d ·


n∑

k=1
w(k)

(
z(r)(k)

)2 n∑
k=1

w(k)z(r)(k)
n∑

k=1
w(k)z(r)(k)

n∑
k=1

w(k)

 ·


n∑
k=1

wix(r−1)(k)
n∑

k=2
−w(k)z(r)(k)x(r−1)(k)


= 1

d ·


(

n∑
k=2

w(k)
(
z(r)(k)

)2
)
·

(
n∑

k=2
wix(r−1)(k)

)
+

(
n∑

k=2
w(k)z(r)(k)

)
·

(
n∑

k=2
−w(k)z(r)(k)x(r−1)(k)

)
(

n∑
k=2

wi

)
·

(
n∑

k=2
−w(k)z(r)(k)x(r−1)(k)

)
+

(
n∑

k=2
w(k)z(r)(k)

)
·

(
n∑

k=2
wix(r−1)(k)

)
 ,

(2.16)

where

d =

 n∑
k=2

w(k)
(
z(r)(k)

)2
 ·  n∑

k=2

w(k)

 −  n∑
k=2

w(k)z(r)(k)

2

. (2.17)

2.3. Optimization prediction

The flow chart of optimization prediction is exhibited in Figure 1.
The optimal order r of WFGM(1,1) is estimated with optimizers ALO (Ant Lion Optimizer), PSO

(Particle Swarm Optimization), WOA (Whale Optimization Algorithm) and GWO (Grey Wolf
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Optimizer), respectively, which are the most widely used random-based optimization techniques and
are often used to solve optimization problems. PSO is a population-based stochastic optimization
technique proposed by Eberhart and Kennedy in 1995. It is easy to implement with high precision and
fast convergence. ALO is a meta-heuristic swarm intelligence algorithm proposed by Mirjalili in
2015. it is a kind of search technology with a diverse population, strong optimization performance,
few adjustment parameters and easy implementation because of the introduction of random walk,
roulette strategy and elite strategy. WOA is a swarm intelligence optimization algorithm proposed by
Mirjalili et al. in 2016. It is simple and easy to implement, and it has loose requirements on objective
function conditions and less parameter control. GWO is a population intelligence optimization
algorithm proposed by Mirjalili et al. in 2014 inspired by the predation behaviour of grey wolves. It
has strong convergence performance, a simple structure, few parameters that need to be adjusted, an
adaptive convergence factor and information feedback mechanism, and can achieve a balance
between local optimization and global search, so it has good performance in problem-solving
accuracy and convergence speed. In the four optimizers, PSO needs hyper-parameters and the
configuration of PSO is listed in Table 1.

Start

Raw data

Intelligent optimizer

Time corresponding 
formula

Fractional 
difference

The fitting value 
was obtained

Calculate the error of the 
model

Fractional order 
accumulation

Coefficient matrix

Yes

Get the parameters 
of the model

No

End

Estimate model 
parameters based on 

WLS

Figure 1. Flow chart of optimization prediction.

Table 1. configuration of PSO in WFGM(1,1) model.

hyper-parameter value description

Vmax 6 Maximum velocity
noP 100 Particle number
Wmax 0.9 Maximum inertia factor
Wmin 0.2 Minimum inertia factor
c1 2 The first acceleration constant
c2 2 The second acceleration constant
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3. Application

In order to verify the validity of the proposed model, we fit and predict the comprehensive
production capacity of water supply (CPCWS), power consumption (PC) and educational expenditure
(EE). The data gathered from the National Bureau of Statistics of China, which can be downloaded at
http://www.stats.gov.cn/english/. In the experiments, the corresponding data set was divided into two
sets, one for fitting and the other for prediction. The fitting stage is to train the model, and the
prediction stage is to test the validity of the model. The experimental environment is Matlab 2019b in
a windows 10 system, the processor is AMD Ryzen 7 5800 H with Radeon Graphics 3.20 GHz.

To assess the prediction accuracy of the novel model, the absolute percentage error (APE) and mean
absolute percentage error (MAPE) are taken as the evaluation indexes, which are defined as

APE =

∣∣∣∣∣∣ x̂(0)(k) − x(0)(k)
x(0)(k)

∣∣∣∣∣∣ × 100%, k = 2, 3, · · · n, (3.1)

MAPE =
1

n − 1

n∑
k=2

∣∣∣∣∣∣ x̂(0)(k) − x(0)(k)
x(0)(k)

∣∣∣∣∣∣ × 100%, (3.2)

respectively, where x(0)(k) and x̂(0)(k) are the actual value and corresponding fitted value at time k.

3.1. Fitting and prediction of CPCWS

Water supply is the most basic public utility in a city, which belongs to the category of public
facilities. Most of them take the government as the main body of supply to ensure the public resources
and fairness that serve society to the greatest extent. The importance of water supply as public goods
lies not only in its contribution to economic growth but also in maintaining the sustainable
development of economic and social equity. Since the 21st century, China’s water supply industry has
developed rapidly. For example, the comprehensive production capacity of urban water supply
reached 312 million m3/ day in 2018.

In this section, the proposed model is applied to predict the comprehensive production capacity of
water supply (CPCWS) of Hebei and Liaoning Provinces of China to examine the further applicable
ability of WFGM(1,1) compared with other competitors.

3.1.1. CPCWS of Hebei province

GM(1,1), DGM(1,1), FGM(1,1), ANN and WFGM(1,1) are employed to fit and predict the CPCWS
(10,000 m3/day) of Hebei province, where the data from 2004 to 2015 are used for the fitting and the
data from 2016 to 2019 are for predicting.

The track of seeking the optimum parameters with the four optimizers, ALO, PSO, WOA and GWO,
is given in Figure 2. The figure indicated that the optimal orders r are all about 0.18. In order to verify
the optimizer’s stability, we repeated each of these optimizers 100 times and the results are shown in
Figure 3. It can be seen that all the algorithms are relatively stable. Nevertheless, compared with the
other three optimizers (ALO, PSO and WOA), GWO is optimal on stability and the exact optimal r is
0.185.
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Figure 2. Track of seeking the optimal parameters with different optimizers for case 1.
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Figure 3. The optimal values r after the optimizers are repeated 100 times.

The corresponding MAPEs of five models are listed in Table 2. Figure 4 visualizes the model
errors of Table 2, where APE is the prediction error of the model at each point, and the MAPE is the
corresponding relative error. From Table 2 and Figure 4, we can see that the MAPEs of five models are
4.83%, 4.86%, 4.25%, 4.41%, and 4.23% in the fitting period, and the MAPEs of these competitors
are 6.05%, 5.97%, 5.55%, 8.63%, and 5.05% in predicting period, respectively. Compared to the
grey models of GM(1,1), DGM(1,1), FGM(1,1), and ANN, WFGM(1,1) achieved more precise fitting
result, 4.23%, followed by FGM(1,1), 4.25%. At the same time, our WFGM(1,1) model also gained
the best result in predicting the CPCWS with MAPE of 5.05, and ANN has the worst MAPE, 8.63%.
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Accordingly, by comparison, our method is superior to other models in fitting and predicting. At the
same time, the left image in Figure 4 depicts the APE of each year from 2004 to 2019, and it can be
observed that the APEs are lower than other models in most of the years.

Table 2. Fitting and predicting the CPCWS (10,000 m3/day) of Hebei province with five
classical models.

Time Raw data GM(1,1) Error (%) DGM (1,1) Error (%) FGM (1,1) Error (%) ANN Error (%) WFGM (1,1) Error (%)

2004 888.6 888.6 0.00 888.6 0.00 888.6 0.00 888.60 0.00 888.6 0.00

2005 830.85 834.09 0.39 835.01 0.50 825.88 0.60 830.85 0.00 822.85 0.96

2006 812.6 840.59 3.44 841.34 3.54 827.13 1.79 812.60 0.00 824.08 1.41

2007 816.71 847.14 3.73 847.71 3.80 838.18 2.63 816.71 0.00 835.85 2.34

2008 833.9 853.74 2.38 854.14 2.43 849.9 1.92 855.88 2.64 848.62 1.77

2009 835.39 860.39 2.99 860.61 3.02 859.94 2.94 853.85 2.21 859.84 2.93

2010 888.89 867.09 2.45 867.13 2.45 867.69 2.38 844.13 5.04 868.83 2.26

2011 995.83 873.85 12.25 873.7 12.26 873.17 12.32 894.18 10.21 875.54 12.08

2012 974.18 880.66 9.60 880.32 9.63 876.59 10.02 987.38 1.35 880.14 9.65

2013 887.82 887.52 0.03 886.98 0.09 878.21 1.08 942.31 6.14 882.88 0.56

2014 809.04 894.43 10.55 893.7 10.46 878.32 8.56 854.48 5.62 884.03 9.27

2015 855.56 901.4 5.36 900.47 5.25 877.16 2.52 837.62 2.10 883.82 3.30

MAPE 4.83 4.86 4.25 4.41 4.23

2016 814.64 908.42 11.51 907.3 11.37 874.96 7.40 913.74 12.16 882.47 8.33

2017 885.9 915.5 3.34 914.17 3.19 871.92 1.58 856.91 3.27 880.2 0.64

2018 968.99 922.63 4.78 921.1 4.94 868.21 10.40 882.28 8.95 877.16 9.48

2019 889.1 929.82 4.58 928.07 4.38 863.97 2.83 979.21 10.14 873.51 1.75

MAPE 6.05 5.97 5.55 8.63 5.05
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Figure 4. Prediction Errors of Case 1 with five models.

3.1.2. CPCWS of Liaoning province

As in the first case, our model is compared with GM(1,1), DGM(1,1), FGM(1,1), and ANN in
fitting and predicting the CPCWS of Liaoning province. The data are empirically divided into two
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groups, the data from 2004 to 2015 are used to verify the fitting accuracy of the grey models and the
data from 2016 to 2019 is applied to test the predicting accuracy. In this case, the optimal order r
is estimated with optimizers ALO, PSO, WOA and GWO, respectively, and the track of seeking the
optimum parameters is shown in Figure 5. The r is obtained after the optimizer is repeated 100 times
shown in Figure 6. It can be seen that all the algorithms are stable, and the optimal r is 0.196.

0 50 100

Iteration

0.9556

0.9558

0.956

0.9562

M
AP

E

0.1955

0.196

0.1965

pa
ra

m
et

er

PSO optimizer

MAPE

0 50 100

Iteration

0.95555

0.9556

0.95565

0.9557

0.95575

M
AP

E

0.1959

0.19595

0.196

0.19605

0.1961

pa
ra

m
et

er

GWO optimizer

MAPE

0 50 100

Iteration

0.955

0.956

0.957

0.958

M
AP

E

0.193

0.194

0.195

0.196

0.197

pa
ra

m
et

er

WOA optimizer

MAPE

0 50 100

Iteration

0

0.5

1

M
AP

E

0

0.05

0.1

0.15

0.2

pa
ra

m
et

er

ALO optimizer

MAPE

Figure 5. Track of seeking for the optimal parameters with different optimizers for case 2.
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Figure 6. The optimal values r after the optimizers are repeated 100 times.

The corresponding MAPEs are exhibited in Table 3. Figure 7 visualizes the model errors of Table 3,
where APE is the prediction error of the model at each point, and the MAPE is the corresponding
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relative error. From Table 3 and Figure 7, it can be seen that the MAPE values of five models are
1.59%, 1.59%, 0.97%, 2.0%, and 0.96% in fitting the CPCWS of Liaoning province, and the MAPE
values of these competitors are 9.00%, 8.99%, 6.05%, 7.55%, and 6.02% for predicting the CPCWS,
respectively. It can be observed that our model achieves the best MAPEs in both fitting and predicting
CPCWS of Liaoning Province.

Overall, the proposed model, WFGM (1,1), has higher accuracy than other models in forecasting
CPCWS of Hebei and Liaoning provinces, and it can provide relatively reliable support for electric
systems so as to assist decision-makers in understanding the trend of electricity consumption, and
further formulate corresponding strategies in advance.
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Figure 7. Prediction errors of case 2 with five models.

Table 3. Fitting and predicting the CPCWS (10,000 m3/day) of Liaoning province with five
grey models.

Time Raw data GM(1,1) Error (%) DGM (1,1) Error (%) FGM (1,1) Error (%) ANN Error (%) WFGM (1,1) Error (%)

2004 1356.87 1356.87 0 1356.87 0 1356.87 0 1356.87 0 1356.87 0
2005 1339.14 1374.3 2.63 1374.4 2.63 1326.8 0.92 1339.14 0 1327.8 0.85
2006 1372.4 1369.3 0.23 1369.4 0.22 1354.7 1.29 1372.40 0 1355.5 1.23
2007 1333.02 1364.4 2.35 1364.4 2.35 1375 3.15 1333.02 0 1375.4 3.18
2008 1383.52 1359.4 1.74 1359.5 1.74 1383.5 0.00 1344.38 2.83 1383.5 0.00
2009 1386.06 1354.5 2.28 1354.5 2.28 1382.3 0.27 1345.78 2.91 1382 0.29
2010 1391.14 1349.6 2.99 1349.6 2.99 1374.2 1.22 1368.09 1.66 1373.7 1.25
2011 1354.63 1344.7 0.73 1344.7 0.73 1361.4 0.50 1371.06 1.21 1360.7 0.45
2012 1339.1 1339.8 0.05 1339.8 0.05 1345.7 0.49 1368.00 2.16 1344.9 0.43
2013 1320.17 1335 1.12 1334.9 1.12 1328.2 0.61 1348.33 2.13 1327.4 0.55
2014 1338.06 1330.2 0.59 1330.1 0.59 1310 2.10 1332.25 0.43 1309.2 2.16
2015 1289.32 1325.3 2.79 1325.2 2.78 1291.5 0.17 1323.74 2.67 1290.8 0.11
MAPE 1.59 1.59 0.97 2.0 0.96
2016 1238.25 1320.5 6.64 1320.4 6.63 1273.3 2.83 1311.00 5.88 1272.6 2.77
2017 1110.65 1315.8 18.47 1315.6 18.45 1255.5 13.04 1272.87 14.61 1255 13.00
2018 1198.8 1311 9.36 1310.8 9.34 1238.4 3.30 1205.86 0.59 1238 3.27
2019 1286.62 1306.3 1.53 1306.1 1.51 1222.1 5.01 1169.17 9.13 1221.8 5.04
MAPE 9.00 8.99 6.05 7.55 6.02
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3.2. Fitting and prediction of PC

Energy is the lifeblood of industry and the foundation of economic development. The accurate
prediction of the city’s medium and long-term power consumption is related to the development of
a city and related to the power supply enterprises on the transmission, scheduling and other issues.
We employ the proposed WFGM (1,1) to fit the power consumption from 2011 o 2019 in 30 regions
in China and the results are depicted in Table 4. Figure 8 depicts the track of seeking the optimal
parameter of WFGM(1,1) with GWO in fitting the power consumptions of 30 cities. Then, we use
WFGM(1,1) to forecast the power consumption of 30 regions from 2020 to 2029 and the result is
exhibited in Table 5. The results contribute to decision-making. For example, whether China has
enough energy to support its energy-intensive development and how much energy it will need to meet
its economic needs in the coming decades.
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Figure 8. Track of seeking the optimal parameter with GWO for 30 cities with the proposed
model.
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Table 4. WFGM(1,1) model fitting indicators of PC in 30 regions in China.

Region MAPE MSE MAE RMSE R2

Beijing 1.2015 261.3 11.961 16.165 0.97442
Tianjin 1.4934 301.01 11.894 17.35 0.85363
Hebei 2.6474 12437 88.574 111.52 0.79247
Shanxi 3.4025 5498.2 62.035 74.15 0.83659
Inner Mongolia 2.3629 7183.8 62.926 84.757 0.97412
Liaoning 1.7591 2857.9 36.247 53.459 0.88705
Jilin 1.4371 130.49 9.6899 11.423 0.94374
Heilongjiang 0.76047 62.684 6.7429 7.9173 0.98089
Shanghai 1.4596 680.78 20.996 26.092 0.8979
Jiangsu 1.2693 7756.7 68.451 88.072 0.97561
Zhejiang 1.6271 7060.2 61.152 84.025 0.97288
Anhui 2.1307 1730.6 35.632 41.601 0.98061
Fujian 1.6102 1513.3 31.493 38.902 0.97903
Jiangxi 0.7527 103.72 8.5597 10.184 0.99786
Shandong 2.3326 23595 112.4 153.61 0.96611
Henan 1.8972 6593.6 58.191 81.201 0.87173
Hubei 1.7286 1905 29.453 43.647 0.96232
Hunan 1.7695 1127.8 26.046 33.582 0.95945
Guangdong 0.59285 3458.1 31.391 58.806 0.99235
Guangxi 5.7924 7530.4 78.883 86.778 0.86456
Hainan 0.76418 6.5355 2.2268 2.5565 0.99683
Chongqing 2.2802 620.17 20.998 24.903 0.96822
Sichuan 2.0341 3408.1 41.468 58.379 0.94784
Guizhou 2.5367 1150.9 30.49 33.924 0.95838
Yunnan 4.6281 6705.8 69.503 81.889 0.69338
Tibet 2.6587 1.673 1.125 1.2935 0.99438
Shaanxi 5.0159 5825.5 65.267 76.325 0.91397
Gansu 3.0067 1789.5 33.522 42.303 0.81978
Qinghai 4.1234 1117.2 27.982 33.425 0.40438
Ningxia 1.6882 452.03 15.41 21.261 0.96462

Table 5. Using WFGM(1,1) to forecast the PC of 30 regions in China from 2020 to 2029.

Region 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Beijing 1209.8 1260.8 1313.6 1368.3 1424.9 1483.6 1544.2 1607 1672 1739.3
Tianjin 892.38 906.28 918.97 930.55 941.11 950.75 959.55 967.56 974.87 981.54
Hebei 3984.4 4233.3 4525.8 4869.3 5272.3 5744.8 6298.8 6948 7708.7 8599.9
Shanxi 2454.1 2697.4 3005.6 3395.9 3890.3 4516.5 5309.7 6314.3 7586.8 9198.6
Inner Mongolia 4102.9 4569.5 5105.3 5720.5 6427.1 7238.6 8170.4 9240.5 10469 11881
Liaoning 2605 2877.3 3242.2 3731.1 4386.2 5264.1 6440.4 8016.6 10129 12959
Jilin 832.09 898.99 985.48 1097.3 1241.8 1428.5 1669.8 1981.6 2384.4 2904.9
Heilongjiang 1031.7 1071.4 1114.9 1162.7 1215.2 1272.9 1336.3 1405.8 1482.2 1566.2
Shanghai 1598.8 1627.3 1654.9 1681.7 1707.5 1732.6 1756.7 1780.1 1802.6 1824.4
Jiangsu 6608.5 6918.3 7242.7 7582.2 7937.7 8309.9 8699.4 9107.3 9534.3 9981.3
Zhejiang 5014.1 5333.9 5678.1 6048.2 6446 6873.4 7332.6 7825.7 8355.2 8923.8
Anhui 2456.9 2652.2 2863.1 3090.8 3336.6 3601.9 3888.3 4197.5 4531.2 4891.5
Fujian 2555.8 2714.4 2882.8 3061.7 3251.7 3453.5 3667.8 3895.4 4137.1 4393.8
Jiangxi 1667 1808 1959.5 2122.2 2296.6 2483.8 2684.6 2899.8 3130.6 3378.1
Shandong 6524.5 6812.8 7088.2 7351.2 7602.5 7842.5 8071.7 8290.7 8499.8 8699.6
Henan 3455.6 3547.8 3640.7 3734.4 3828.9 3924.2 4020.2 4117 4214.7 4313.1
Hubei 2449.1 2744.1 3115.2 3582.2 4169.7 4908.8 5838.7 7008.7 8480.5 10332
Hunan 2052.4 2293.9 2604.2 3003 3515.4 4173.8 5019.8 6106.8 7503.5 9298.1
Guangdong 7116.8 7576.1 8078.1 8626.9 9226.8 9882.6 10600 11383 12240 13177
Guangxi 1968.3 2132.9 2311.2 2504.5 2713.9 2940.8 3186.7 3453.2 3741.9 4054.8
Hainan 374.67 399.12 424.91 452.15 480.94 511.39 543.62 577.74 613.87 652.14
Chongqing 1236.9 1319.5 1407.3 1500.7 1600.2 1706.2 1819 1939.1 2067.1 2203.4
Sichuan 2922 3287.6 3754.8 4351.9 5115 6090.2 7336.4 8929.1 10964 13566
Guizhou 1636.2 1736.7 1843.4 1956.6 2076.8 2204.4 2339.8 2483.5 2636.1 2798
Yunnan 1821.3 1902 1986.3 2074.4 2166.3 2262.3 2362.6 2467.3 2576.7 2690.9
Tibet 91.736 107.36 125.64 147.04 172.07 201.38 235.67 275.8 322.77 377.74
Shaanxi 1979.5 2168.7 2376 2603.2 2852 3124.7 3423.4 3750.7 4109.2 4502.1
Gansu 1337.5 1390.7 1446 1503.5 1563.3 1625.4 1690 1757.2 1827.1 1899.7
Qinghai 720.69 725.47 729.63 733.25 736.41 739.18 741.6 743.72 745.57 747.18
Ningxia 1150.4 1213.1 1279.1 1348.6 1421.7 1498.6 1579.6 1665 1754.8 1849.5
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3.3. Fitting and prediction of EE

Educational expenditure (EE) is an essential financial condition for running a school. In China,
educational expenditure mainly refers to the state’s expenditure for the development of educational
undertakings at all levels, which is the material basis and guarantee for the realization of educational
tasks, and it plays a fundamental role in the development of education. We fit and predict the EE of
the Inner Mongolia Autonomous Region with the proposed WFGM(1,1) model. The data from 2002
to 2009 are used for fitting and 2010 and 2011 are used for prediction.

In order to further verify the validity of the proposed model, we compare WFGM(1,1) with the latest
grey model and popular approaches including support vector regression (SVM), linear regression (LR),
Artificial Neural Network (ANN), Bayesian linear regression (BLR), and conformable fractional grey
model (CFGM) [20]. The best order is obtained with PSO and the order r is 0.28626. The results are
shown in Table 6. It’s noted that the machine learning model (such as SVM, LR, ANN and BLR) is
predicted by a rolling mode, and here it is one roll for every two data, so the first two values are not
output in the fitting stage.

Table 6. Fitting and predicting the EE (10,000 yuan) of Inner Mongolia Autonomous Region
with six methods.

Time Raw data SVM LR ANN BLR CFGM WFGM

2002 854998 - - - - 854998 854998
2003 935815 - - - - 8.33E+05 8.83E+05
2004 1115216 984953.7511 1134576.331 1160062.1 1141319.647 1.04E+06 1.06E+06
2005 1293432 1362859.767 1362887.741 1384807.9 1354198.811 1.29E+06 1.31E+06
2006 1480999 1436761.995 1590649.542 1605943.2 1601270.197 1.61E+06 1.63E+06
2007 2019987 1546780.587 1830259.53 1838739.9 1857499.071 2.01E+06 2.04E+06
2008 2625527 2850180.183 2515658.633 2509465 2477229.351 2.51E+06 2.55E+06
2009 3187733 3315977.358 3288862.223 3261221.2 3291376.923 3.12E+06 3.19E+06

MAPE 9.3402 5.2099 5.8702 5.3506 4.8392 3.6413

2010 4143731 3428664.949 4007749.907 3958607.8 4085017.258 3.89E+06 3.99E+06
2011 5040005 5042312.775 5225655.356 5147017.5 5266659.694 4.85E+06 4.98E+06

MAPE 8.6512 3.4826 3.2954 2.9570 4.8752 2.4530

It can be observed that the MAPE values of six models are 1.59%, 1.59%, 0.97%, 2.0%, and
0.96% in fitting the EE of Inner Mongolia Autonomous Region, and the MAPE values of these
competitors are 9.3402%, 5.2099%, 5.8702%, 5.3506%, 4.8392%, and 3.6413% for predicting the
EE, respectively. It shows that our model achieves the best MAPEs in fitting, followed by the CFGM
model. In the prediction stage, the MAPE values are 8.6512%, 3.4826%, 3.2954%, 2.9570%,
4.8392%, and 2.4530%, respectively. It exhibits that our model achieves the best MAPEs in
prediction, followed by the BLR model. Accordingly, the WFGM (1,1) model achieved the best result
both in fitting and prediction.
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4. Conclusions and discussion

This paper aims to further enhance the prediction performance of the classic fractional grey model
(FGM), and develops an optimized fractional grey model by incorporating the weighted least square
method, as a consequence, an extended fractional grey model (abbreviated as WFGM(1,1)) is
presented. The primary conclusions can be summarized as follows.

(1) We introduce the traditional fractional grey model and on this basis, we develop an optimised
factional grey model by combining the grey modelling technique with the weighted least square
method. By doing so, an enhanced grey model is presented to further improve the prediction accuracy
of the model already in place. After that, we estimate the model parameters, determine weights in the
coefficient matrix and derive the time response function.

(2) In particular, for convenience purposes, we introduce four advanced algorithms to search for
the optimal fractional accumulation order and weights, which are the grey wolf optimization (GWO),
whale optimization algorithm (WOA), particle swarm optimization (PSO) and ant lion algorithm
(ALO). By observing error-value metrics by these four algorithms, we conclude the GWO algorithm
has a better performance in numerical experiments.

(3) To demonstrate the superiority of the presented model, we apply it to three real-world data sets.
It is clear that the proposed model has a higher prediction accuracy in these data sets, indicating the
presented model can achieve successful prediction in these experiments, also verify that the proposed
model can increase the prediction performance of the classic fractional grey model.

The least squares algorithm can find the best function match of data by minimizing the sum of
squares of error. It can be used to obtain the unknown data easily and minimize the sum of squares
between the obtained data and the actual data. When both the independent variable and the dependent
variable have random errors with zero mean and the same variance, this method can give the best
parameter-fitting results in the statistical sense. Using the weighted least squares algorithm in the
estimation of grey model parameters can prevent local amplification, increase the stability of its
stability estimation parameters, and effectively prevent overfitting.

Nevertheless, in reality, much of the data is a time series generated by a nonlinear system. Time
series can be regarded as the mapping of a nonlinear system in one-dimensional space, so if a linear
model is used to describe the dynamic changes of a nonlinear system, it will produce an inaccurate
estimation. In this paper, the proposed model is linear, therefore, in future work, we will propose a
nonlinear grey prediction model based on the least squares algorithm to broaden the application of the
grey models.
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Nomenclature

r The order of accumulation generation
x(r)(k) Fractional order cumulative sequence, k = 1, 2, 3 · · · , n
X0 Original time series
(a, b) Parameter to be estimated
z(r)(k) Background value coefficient
W The weighted matrix
ANN Artificial Neural Network
MAPE The mean absolute percentage error
GM(1,1) Univariate grey prediction model
DGM(1,1) Univariate discrete grey prediction model
FGM(1,1) Fractional order prediction model
WFGM(1.1) Grey prediction model based on weighted least squares
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