Mathematics

Research article

Norms of some operators between weighted-type spaces and weighted Lebesgue spaces

Stevo Stevicich,2,*

${ }^{1}$ Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, Beograd 11000, Serbia
${ }^{2}$ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

* Correspondence: Email: sscite1 @gmail.com, sstevic@ ptt.rs.

Abstract

We calculate the norms of several concrete operators, mostly of some integral-type ones between weighted-type spaces of continuous functions on several domains. We also calculate the norm of an integral-type operator on some subspaces of the weighted Lebesgue spaces.

Keywords: operator norm; weighted-type space; integral-type operator; integral means; multiplication operator
Mathematics Subject Classification: Primary 47B38, 47A30

1. Introduction

By \mathbb{R} we denote the set of real numbers, by \mathbb{R}_{+}the interval $[0,+\infty)$, the space of continuous functions on a set Ω we denote by $C(\Omega)$, whereas the space of continuously differentiable functions on Ω we denote by $C^{1}(\Omega)$. A vector $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we denote by x. If $c \in \mathbb{R}$, then by \vec{c} we denote the vector (c, c, \ldots, c) (for example, $\overrightarrow{1}=(1, \ldots, 1)$). By $\langle x, y\rangle$ we denote the Euclidean inner product of vectors $x, y \in \mathbb{R}^{n}$, that is, $\langle x, y\rangle=\sum_{j=1}^{n} x_{j} y_{j}$. The Lebesgue measure on \mathbb{R}^{n} we denote by $d V(x)$, whereas by $d \sigma(\zeta)$ we denote the surface measure on the unit sphere $\mathbb{S} \subset \mathbb{R}^{n}$. A function $w: \Omega \rightarrow \mathbb{R}$ is called a weight function or simply weight if it is positive and continuous. The class of all weights on Ω we denote by $W(\Omega)$.

Let $w \in W(\Omega)$. The weighted-type space $C_{w}(\Omega)$ consists of all $f \in C(\Omega)$ such that

$$
\begin{equation*}
\|f\|_{w}:=\sup _{t \in \Omega} w(t)|f(t)|<+\infty . \tag{1.1}
\end{equation*}
$$

By using a standard argument, which is applied to the space $C(\Omega)$, it is shown that $C_{w}(\Omega)$ is a Banach space. Various weighted-type spaces of continuous or analytic functions and operators on them have
been investigated considerably for several decades (see, e.g., $[1,2,12,19,25,32-35,38,42,43,48,50,51]$ and the related references therein).

Let $\mathcal{L}_{w}^{p}\left(\mathbb{R}^{n}\right)=\mathcal{L}_{w}^{p}$, where $p \geq 1$ and $w \in W\left(\mathbb{R}^{n}\right)$, be the weighted \mathcal{L}^{p} space consisting of all measurable functions f such that

$$
\|f\|_{\mathcal{L}_{w}^{p}}:=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d V(x)\right)^{1 / p}<+\infty .
$$

With the norm $\|\cdot\|_{\mathcal{L}_{w}^{p}}$ the space \mathcal{L}_{w}^{p} is Banach.
Let X and Y be normed spaces, and $L: X \rightarrow Y$ be a linear operator. We say that the operator is bounded if there is $M \geq 0$, such that

$$
\|L x\|_{Y} \leq M\|x\|_{X}
$$

for every $x \in X([6,26,27,44,45])$.
Norm of the operator is defined by

$$
\|L\|_{X \rightarrow Y}=\sup _{x \in B_{X}}\|L x\|_{Y}
$$

where B_{X} denotes the unit ball in the space X.
Finding norms of linear operators is one of the basic problems in operator theory. Many classical results can be found in books and surveys on functional analysis, operator theory and inequalities (see, for example, $[6,7,9,10,16,23,26,27,44,45]$; see also some of the original sources [13, 14, 28]). For some recent results in the topic, including some on multi-linear operators (for the definition and some examples see [52, p. 51-55]), see, for example, $[4,9,11,20,33-36,38,40-42]$ and the related references therein.

Let u be a function defined on Ω. Then by M_{u} we denote the multiplication operator

$$
\begin{equation*}
M_{u}(f)(t)=u(t) f(t), \quad t \in \Omega, \tag{1.2}
\end{equation*}
$$

where f is a function on Ω.
There has been some interest in the multiplication operators on spaces of functions [35, 49]. Motivated by some of our previous results on calculating and estimating norms of concrete operators and a problem in [45], here we present some formulas for norms of the multiplication and several integral-type operators between weighted-type spaces. We also calculate norm of an integral-type operator on some subspaces of $\mathcal{L}_{w}^{p}\left(\mathbb{R}^{n}\right)$ space. For various integral-type operators see, e.g., $[3-5,7-10,16,19-22,24,29-32,37,39-43,46,47]$. Some of the formulas we have got long time ago, but have never published them. Some of the formulas could be matters of folklore, but we could not found references.

2. Main results

This section presents our main results and some analyses.

2.1. Multiplication operator between weighted-type spaces

The following result is a simple and basic one, and should be a matter of folklore. However, it is useful and instructive, because of which we give a proof.

Theorem 1. Let $w_{1}, w_{2} \in W(\Omega)$. Then the operator $M_{u}: C_{w_{1}}(\Omega) \rightarrow C_{w_{1} w_{2}}(\Omega)$ is bounded if and only if

$$
\begin{equation*}
u \in C_{w_{2}}(\Omega) \tag{2.1}
\end{equation*}
$$

Moreover, if (2.1) holds then

$$
\begin{equation*}
\left\|M_{u}\right\|_{C_{w_{1}}(\Omega) \rightarrow C_{w_{1} w_{2}}(\Omega)}=\|u\|_{w_{2}} . \tag{2.2}
\end{equation*}
$$

Proof. First, assume that condition (2.1) holds, that is, that

$$
\begin{equation*}
\|u\|_{w_{2}}<+\infty \tag{2.3}
\end{equation*}
$$

Then, we have

$$
\left\|M_{u}(f)\right\|_{w_{1} w_{2}}=\sup _{t \in \Omega} w_{1}(t) w_{2}(t)|u(t) f(t)| \leq \sup _{t \in \Omega} w_{2}(t)|u(t)| \sup _{t \in \Omega} w_{1}(t)|f(t)|=\|u\|_{w_{2}}\|f\|_{w_{1}}
$$

from which by taking the supremum over the ball $B_{C_{w_{1}}(\Omega)}$ we get

$$
\begin{equation*}
\left\|M_{u}\right\|_{C_{w_{1}}(\Omega) \rightarrow C_{w_{1} w_{2}}(\Omega)} \leq\|u\|_{w_{2}} . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) the boundedness of the operator $M_{u}: C_{w_{1}}(\Omega) \rightarrow C_{w_{1} w_{2}}(\Omega)$ follows.
Now assume that the operator $M_{u}: C_{w_{1}}(\Omega) \rightarrow C_{w_{1} w_{2}}(\Omega)$ is bounded. Since w_{1} is a positive continuous function we see that $1 / w_{1}$ is also such a function. Note that

$$
\begin{equation*}
\left\|1 / w_{1}\right\|_{w_{1}}=\sup _{t \in \Omega} w_{1}(t) \cdot \frac{1}{w_{1}(t)}=1 . \tag{2.5}
\end{equation*}
$$

Further, we have

$$
\begin{equation*}
\left\|M_{u}\left(1 / w_{1}\right)\right\|_{w_{1} w_{2}}=\sup _{t \in \Omega} w_{1}(t) w_{2}(t)\left|u(t) \frac{1}{w_{1}(t)}\right|=\|u\|_{w_{2}} . \tag{2.6}
\end{equation*}
$$

From (2.5), (2.6) and the boundedness of the operator $M_{u}: C_{w_{1}}(\Omega) \rightarrow C_{w_{1} w_{2}}(\Omega)$ it follows that

$$
\begin{equation*}
\|u\|_{w_{2}} \leq\left\|M_{u}\right\|_{C_{w_{1}}(\Omega) \rightarrow C_{w_{1} w_{2}}(\Omega)}<+\infty, \tag{2.7}
\end{equation*}
$$

which means that (2.1) holds.
If condition (2.1) holds, then from the inequalities in (2.4) and (2.7), we immediately obtain formula (2.2).

Remark 1. Note that the simple fact in (2.5) plays one of the decisive roles in finding the norm of the operator $M_{u}: C_{w_{1}}(\Omega) \rightarrow C_{w_{1} w_{2}}(\Omega)$. Related facts are very useful in finding norms of concrete operators acting from weighted-type spaces and will be also used further in this paper.

2.2. Appearance of an integral-type operator in differential equations

Consider the initial value problem

$$
\begin{gather*}
y^{\prime}(t)=-\beta(t) y(t)+f(t), \tag{2.8}\\
y(0)=0, \tag{2.9}
\end{gather*}
$$

where $f, \beta \in C\left(\mathbb{R}_{+}\right)$.
By using the Euler multiplier $e_{0}^{\int_{0}^{t} \beta(\zeta) d \xi}$ from (2.8) we have

$$
\left(y(t) e_{0}^{\int_{0}^{t} \beta(\zeta) d \zeta}\right)^{\prime}=f(t) e^{\int_{0}^{t} \beta(\zeta) d \zeta} .
$$

By integrating the last relation and using condition (2.9), after some calculation, we obtain

$$
\begin{equation*}
y(t)=\int_{0}^{t} e^{\int_{t}^{s} \beta(\zeta) d \zeta} f(s) d s \tag{2.10}
\end{equation*}
$$

Note that formula (2.10) presents a linear operator, say, L which is defined as follows

$$
y(t)=L(f)(t), \quad t \in \mathbb{R}_{+},
$$

and acts from $C\left(\mathbb{R}_{+}\right)$into the subspace of $C^{1}\left(\mathbb{R}_{+}\right)$consisting of all $g \in C^{1}\left(\mathbb{R}_{+}\right)$such that $g(0)=0$.
Consider the operator from $C_{w_{1}}\left(\mathbb{R}_{+}\right)$to $C_{w_{2}}\left(\mathbb{R}_{+}\right)$. Using the definitions of the spaces $C_{w_{1}}\left(\mathbb{R}_{+}\right)$and $C_{w_{2}}\left(\mathbb{R}_{+}\right)$, we have

$$
\begin{aligned}
\|L(f)\|_{w_{2}} & =\sup _{t \in \mathbb{R}_{+}} w_{2}(t)\left|\int_{0}^{t} e^{\int_{t}^{s} \beta(\zeta) d \zeta} f(s) d s\right| \\
& \leq\|f\|_{w_{1}} \sup _{t \in \mathbb{R}_{+}} w_{2}(t) \int_{0}^{t} e^{\int_{t}^{s} \beta(\zeta) d \zeta} \frac{d s}{w_{1}(s)},
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\|L\|_{C_{w_{1}}\left(\mathbb{R}_{+}\right) \rightarrow C_{w_{2}}\left(\mathbb{R}_{+}\right)} \leq \sup _{t \in \mathbb{R}_{+}} w_{2}(t) \int_{0}^{t} e^{\int_{t}^{s} \beta(\zeta) d \xi} \frac{d s}{w_{1}(s)} . \tag{2.11}
\end{equation*}
$$

From (2.5) and since

$$
\left\|L\left(1 / w_{1}\right)\right\|_{w_{2}}=\sup _{t \in \mathbb{R}_{+}} w_{2}(t) \int_{0}^{t} e^{\int_{t}^{s} \beta(\zeta) d \xi} \frac{d s}{w_{1}(s)},
$$

we have

$$
\begin{equation*}
\|L\|_{C_{w_{1}}\left(\mathbb{R}_{+}\right) \rightarrow C_{w_{2}}\left(\mathbb{R}_{+}\right)} \geq \sup _{t \in \mathbb{R}_{+}} w_{2}(t) \int_{0}^{t} e^{\int_{t}^{s} \beta(\zeta) d \xi} \frac{d s}{w_{1}(s)} . \tag{2.12}
\end{equation*}
$$

From (2.11) and (2.12) we obtain

$$
\begin{equation*}
\|L\|_{C_{w_{1}}\left(\mathbb{R}_{+}\right) \rightarrow C_{w_{2}}\left(\mathbb{R}_{+}\right)}=\sup _{t \in \mathbb{R}_{+}} w_{2}(t) \int_{0}^{t} e^{e_{t}^{s} \beta(\zeta) d \zeta} \frac{d s}{w_{1}(s)} . \tag{2.13}
\end{equation*}
$$

From the analysis that we have just conduced it follows that the following result holds.
Theorem 2. Let $w_{1}, w_{2} \in W\left(\mathbb{R}_{+}\right), \beta \in C\left(\mathbb{R}_{+}\right)$and

$$
\begin{equation*}
L(f)(t)=\int_{0}^{t} e^{\int_{t}^{s} \beta(\zeta) d \zeta} f(s) d s \tag{2.14}
\end{equation*}
$$

Then the operator $L: C_{w_{1}}\left(\mathbb{R}_{+}\right) \rightarrow C_{w_{2}}\left(\mathbb{R}_{+}\right)$is bounded if and only if

$$
\begin{equation*}
M:=\sup _{t \in \mathbb{R}_{+}} w_{2}(t) \int_{0}^{t} e^{\int_{t}^{s} \beta(\xi) d \zeta} \frac{d s}{w_{1}(s)}<+\infty . \tag{2.15}
\end{equation*}
$$

Moreover, if the operator is bounded then

$$
\|L\|_{C_{w_{1}}\left(\mathbb{R}_{+}\right) \rightarrow C_{w_{2}}\left(\mathbb{R}_{+}\right)}=M .
$$

Let

$$
\|f\|_{\delta}:=\sup _{t \in \mathbb{R}_{+}} e^{\delta t}|f(t)|,
$$

where $\delta \in \mathbb{R}_{+}$, and let

$$
C_{\delta}\left(\mathbb{R}_{+}\right)=\left\{f \in C\left(\mathbb{R}_{+}\right):\|f\|_{\delta}<+\infty\right\} .
$$

The following example shows that for some functions w_{1}, w_{2} and β the norm of the operator $L: C_{w_{1}}\left(\mathbb{R}_{+}\right) \rightarrow C_{w_{2}}\left(\mathbb{R}_{+}\right)$can be explicitly calculated ($[45$, Problem 7.31]).

Corollary 1. Let $w_{1}(t)=e^{\alpha t}, \alpha \geq 0, w_{2}(t)=e^{\gamma t}, \beta(t)=\beta$, and $\beta>\alpha \geq \gamma$. Then the operator $L: C_{\alpha}\left(\mathbb{R}_{+}\right) \rightarrow C_{\gamma}\left(\mathbb{R}_{+}\right)$is bounded and the following statements hold.
(a) If $\alpha=\gamma$, then

$$
\begin{equation*}
\|L\|_{C_{\alpha}\left(\mathbb{R}_{+}\right) \rightarrow C_{\alpha}\left(\mathbb{R}_{+}\right)}=\frac{1}{\beta-\alpha} . \tag{2.16}
\end{equation*}
$$

(b) If $\alpha>\gamma$, then

$$
\begin{equation*}
\|L\|_{C_{\alpha}\left(\mathbb{R}_{+}\right) \rightarrow C_{\gamma}\left(\mathbb{R}_{+}\right)}=\left(\frac{(\alpha-\gamma)^{\alpha-\gamma}}{(\beta-\gamma)^{\beta-\gamma}}\right)^{\frac{1}{\beta-\alpha}} . \tag{2.17}
\end{equation*}
$$

Proof. By Theorem 2, we have that formula (2.15) holds with $w_{1}(t)=e^{\alpha t}, w_{2}(t)=e^{\gamma t}$ and $\beta(t)=\beta$, that is,

$$
\begin{equation*}
\|L\|_{C_{\alpha}\left(\mathbb{R}_{+}\right) \rightarrow C_{\gamma}\left(\mathbb{R}_{+}\right)}=\sup _{t \in \mathbb{R}_{+}} e^{\gamma t} \int_{0}^{t} e^{\beta(s-t)} e^{-\alpha s} d s \tag{2.18}
\end{equation*}
$$

(a) Since $\alpha=\gamma$ from (2.18) we have

$$
\|L\|_{C_{\alpha}\left(\mathbb{R}_{+}\right) \rightarrow C_{\alpha}\left(\mathbb{R}_{+}\right)}=\sup _{t \in \mathbb{R}_{+}} e^{(\alpha-\beta) t} \int_{0}^{t} e^{(\beta-\alpha) s} d s=\sup _{t \in \mathbb{R}_{+}} \frac{1-e^{-(\beta-\alpha) t}}{\beta-\alpha}=\frac{1}{\beta-\alpha} .
$$

(b) In this case from (2.18) we have

$$
\begin{equation*}
\|L\|_{C_{\alpha}\left(\mathbb{R}_{+}\right) \rightarrow C_{\gamma}\left(\mathbb{R}_{+}\right)}=\sup _{t \in \mathbb{R}_{+}} e^{(\gamma-\beta) t} \int_{0}^{t} e^{(\beta-\alpha) s} d s=\sup _{t \in \mathbb{R}_{+}} \frac{e^{(\gamma-\alpha) t}-e^{(\gamma-\beta) t}}{\beta-\alpha} . \tag{2.19}
\end{equation*}
$$

Let $g(t):=e^{(\gamma-\alpha) t}-e^{(\gamma-\beta) t}$, then we have $g(0)=0, \lim _{t \rightarrow+\infty} g(t)=0$ (since $\gamma<\alpha<\beta$), and $g(t)=e^{(\gamma-\beta) t}\left(e^{(\beta-\alpha) t}-1\right) \geq 0, t \in \mathbb{R}_{+}$. Since

$$
g^{\prime}(t)=(\gamma-\alpha) e^{(\gamma-\alpha) t}-(\gamma-\beta) e^{(\gamma-\beta) t}
$$

we have that $g^{\prime}(t)=0$ if and only if

$$
e^{t}=\left(\frac{\alpha-\gamma}{\beta-\gamma}\right)^{\frac{1}{\alpha-\beta}} .
$$

Hence,

$$
\sup _{t \in \mathbb{R}_{+}}\left(e^{(\gamma-\alpha) t}-e^{(\gamma-\beta) t}\right)=\left(\frac{\alpha-\gamma}{\beta-\gamma}\right)^{\frac{\gamma-\alpha}{\alpha-\beta}}-\left(\frac{\alpha-\gamma}{\beta-\gamma}\right)^{\frac{\gamma-\beta}{\alpha-\beta}}=\frac{\beta-\alpha}{\beta-\gamma}\left(\frac{\alpha-\gamma}{\beta-\gamma}\right)^{\frac{\alpha-\alpha}{\beta-\alpha}}
$$

from which together with (2.19) and some calculation, formula (2.17) follows.

2.3. An extension of Theorem 2 and its corollaries

Let

$$
\begin{equation*}
L(f)(t)=h(t) \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} g(s) f(s) d s_{1} \cdots d s_{n} \tag{2.20}
\end{equation*}
$$

where $t=\left(t_{1}, \ldots, t_{n}\right), s=\left(s_{1}, \ldots, s_{n}\right), s_{j}, t_{j} \in \mathbb{R}_{+}, j=\overline{1, n}$, and $g, h \in C\left(\mathbb{R}_{+}^{n}\right)$.
The following theorem is an extension of Theorem 2.
Theorem 3. Let $v, w, h, g \in W\left(\mathbb{R}_{+}^{n}\right)$ and operator L be given in (2.20). Then the operator $L: C_{w}\left(\mathbb{R}_{+}^{n}\right) \rightarrow$ $C_{v}\left(\mathbb{R}_{+}^{n}\right)$ is bounded if and only if

$$
\begin{equation*}
\widetilde{M}:=\sup _{t \in \mathbb{R}_{+}^{n}} v(t) h(t) \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} \frac{g(s)}{w(s)} d s_{1} \cdots d s_{n}<+\infty, \tag{2.21}
\end{equation*}
$$

and if it is bounded then the norm of the operator is equal to \widetilde{M}.
Proof. Assume that (2.21) holds. Then we have

$$
\begin{aligned}
\|L(f)\|_{v} & =\sup _{t \in \mathbb{R}_{+}^{n}} v(t) h(t)\left|\int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} g(s) f(s) d s_{1} \cdots d s_{n}\right| \\
& \leq\|f\|_{w} \sup _{t \in \mathbb{R}_{+}^{n}} v(t) h(t)\left|\int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} \frac{g(s)}{w(s)} d s_{1} \cdots d s_{n}\right|
\end{aligned}
$$

from which along with (2.21) the boundedness of the operator $L: C_{w}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}_{+}^{n}\right)$ follows. Moreover, we have

$$
\begin{equation*}
\|L\|_{C_{w}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}_{+}^{n}\right)} \leq \widetilde{M} . \tag{2.22}
\end{equation*}
$$

If the operator $L: C_{w}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}_{+}^{n}\right)$ is bounded, then since the function $f_{0}(t)=\frac{1}{w(t)}$ belongs to $C_{w}\left(\mathbb{R}_{+}^{n}\right)$ and $\left\|f_{0}\right\|_{w}=1$, we have

$$
\begin{equation*}
\|L\|_{C_{w}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}_{+}^{n}\right)} \geq\left\|L\left(f_{0}\right)\right\|_{v}=\sup _{t \in \mathbb{R}_{+}^{n}} v(t) h(t)\left|\int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} \frac{g(s)}{w(s)} d s_{1} \cdots d s_{n}\right|, \tag{2.23}
\end{equation*}
$$

from which together with the boundedness of the operator $L: C_{w}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}_{+}^{n}\right)$ and positivity of functions g and w we obtain (2.21). From (2.22) and (2.23) we obtain

$$
\|L\|_{c_{w}\left(\mathbb{R}^{n}\right) \rightarrow c_{v}\left(\mathbb{R}^{n}\right)}=\widetilde{M},
$$

completing the proof.
The following corollary is an extension of Corollary 1.
Corollary 2. Let $v, w \in W\left(\mathbb{R}_{+}^{n}\right), j=\overline{1, n}, \beta_{j} \in C\left(\mathbb{R}_{+}\right), j=\overline{1, n}$, and

$$
\begin{equation*}
L(f)(t)=\int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} e^{\sum_{j=1}^{n} \int_{t_{j}}^{s_{j}} \beta_{j}\left(\zeta_{j}\right) d \zeta_{j}} f(s) d s_{1} \cdots d s_{n} \tag{2.24}
\end{equation*}
$$

Then the operator $L: C_{w}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}_{+}^{n}\right)$ is bounded if and only if

$$
\begin{equation*}
\widehat{M}:=\sup _{t \in \mathbb{R}_{+}^{n}} v(t) \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} e^{\sum_{j=1}^{n} \int_{t_{j}}^{s_{j}} \beta_{j}\left(\zeta_{j}\right) d \zeta_{j}} \frac{d s_{1} \cdots d s_{n}}{w(s)}<+\infty . \tag{2.25}
\end{equation*}
$$

Moreover, if the operator is bounded then

$$
\|L\|_{C_{w}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}_{+}^{n}\right)}=\widehat{M} .
$$

The following integral-type operator is a special case of operator (2.24)

$$
\begin{equation*}
\widetilde{L}(f)(t)=\int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} e^{\sum_{j=1}^{n} \beta_{j}\left(s_{j}-t_{j}\right)} f(s) d s_{1} \cdots d s_{n} \tag{2.26}
\end{equation*}
$$

Let $C_{\vec{\delta}}, \delta_{j} \geq 0, j=\overline{1, n}$, be the class of all $f \in C\left(\mathbb{R}_{+}^{n}\right)$ such that

$$
\begin{equation*}
\|f\|_{\vec{\delta}}=\sup _{t \in \mathbb{R}_{+}^{n}} e^{\sum_{j=1}^{n} \delta_{j} t_{j}}|f(t)|=\sup _{t \in \mathbb{R}_{+}^{n}} e^{\langle t, \vec{\delta}|}|f(t)|<+\infty . \tag{2.27}
\end{equation*}
$$

The following consequence of Corollary 2 is an ultimate extension of Corollary 1.
Corollary 3. Let $w_{j}(t)=e^{\alpha_{j} t_{j}}, \beta_{j}(t)=\beta_{j}$, and $\beta_{j}>\alpha_{j} \geq \gamma_{j}, j=\overline{1, n}$. Then the operator $\widetilde{L}: C_{\vec{\alpha}}\left(\mathbb{R}_{+}^{n}\right) \rightarrow$ $C_{\vec{\gamma}}\left(\mathbb{R}_{+}^{n}\right)$ is bounded and

$$
\begin{equation*}
\|\widetilde{L}\|_{C_{\vec{\alpha}}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{\vec{\gamma}}\left(\mathbb{R}_{+}^{n}\right)}=\prod_{\alpha_{j} \neq \gamma_{j}}\left(\frac{\left(\alpha_{j}-\gamma_{j}\right)^{\alpha_{j}-\gamma_{j}}}{\left(\beta_{j}-\gamma_{j}\right)^{\beta_{j}-\gamma_{j}}}\right)^{\frac{1}{\beta_{j}-\alpha_{j}}} \prod_{\alpha_{j}=\gamma_{j}}\left(\frac{1}{\beta_{j}-\alpha_{j}}\right) . \tag{2.28}
\end{equation*}
$$

Proof. By using (2.26), (2.27), Corollary 1 and Corollary 2, we have

$$
\begin{aligned}
\|\widetilde{L}\|_{C_{\tilde{\alpha}}\left(\mathbb{R}_{+}^{n}\right) \rightarrow C_{\tilde{\gamma}}\left(\mathbb{R}_{+}^{n}\right)} & =\sup _{t \in \mathbb{R}_{+}^{n}} e^{\sum_{j=1}^{n} \gamma_{j} t_{j}}\left|\int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} e^{\sum_{j=1}^{n} \beta_{j}\left(s_{j}-t_{j}\right)} \frac{d s_{1} \cdots d s_{n}}{\prod_{j=1}^{n} e^{\alpha_{j} s_{j}}}\right| \\
& =\prod_{j=1}^{n} \sup _{t_{j} \in \mathbb{R}_{+}} e^{\left(\gamma_{j}-\beta_{j}\right) t_{j}} \int_{0}^{t_{j}} e^{\left(\beta_{j}-\alpha_{j}\right) s_{j}} d s_{j} \\
& =\prod_{\alpha_{j} \neq \gamma_{j}}\left(\frac{\left(\alpha_{j}-\gamma_{j}\right)^{\alpha_{j}-\gamma_{j}}}{\left(\beta_{j}-\gamma_{j}\right)^{\beta_{j}-\gamma_{j}}}\right)^{\frac{1}{\beta_{j}-\alpha_{j}}} \prod_{\alpha_{j}=\gamma_{j}}\left(\frac{1}{\beta_{j}-\alpha_{j}}\right),
\end{aligned}
$$

as desired.
Remark 2. The norm in formula (2.28) is achieved for the function

$$
f_{\vec{\alpha}}(t):=e^{-\langle t, \vec{\alpha}\rangle} .
$$

Indeed, we have $f_{\vec{\alpha}} \in C\left(\mathbb{R}_{+}^{n}\right)$,

$$
\begin{equation*}
\left\|f_{\vec{\alpha}}\right\|_{\vec{\alpha}}=1 \tag{2.29}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|\widetilde{L}\left(f_{\vec{\alpha}}\right)\right\| & =\prod_{j=1}^{n} \sup _{t_{j} \in \mathbb{R}_{+}} e^{\left(\gamma_{j}-\beta_{j}\right) t_{j}} \int_{0}^{t_{j}} e^{\left(\beta_{j}-\alpha_{j}\right) s_{j}} d s_{j} \\
& =\prod_{\alpha_{j} \neq \gamma_{j}}\left(\frac{\left(\alpha_{j}-\gamma_{j}\right)^{\alpha_{j}-\gamma_{j}}}{\left(\beta_{j}-\gamma_{j}\right)^{\beta_{j}-\gamma_{j}}}\right)^{\frac{1}{\beta_{j}-\alpha_{j}}} \prod_{\alpha_{j}=\gamma_{j}}\left(\frac{1}{\beta_{j}-\alpha_{j}}\right), \tag{2.30}
\end{align*}
$$

From (2.28)-(2.30) the claim follows.

2.4. An integral-type operator between weighted-type spaces

Let $g \in C\left([0,1)^{n}\right)$ and

$$
\begin{equation*}
T_{g}(f)(x)=\prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} f\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right) g\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right) \prod_{j=1}^{n} d t_{j} \tag{2.31}
\end{equation*}
$$

where $x \in[0,1)^{n}$. The operator on the polydisk was studied in [32].
From now on, for the operator in (2.31) we use the notation

$$
T_{g}(f)(x)=\prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} f(t \cdot x) g(t \cdot x) \prod_{j=1}^{n} d t_{j}
$$

By $Q_{\vec{\gamma}}$ we denote the space of all $f \in C\left([0,1)^{n}\right)$ such that

$$
\|f\|_{Q_{\vec{\gamma}}}=\sup _{x \in[0,1)^{n}} \prod_{j=1}^{n}\left(1-x_{j}\right)^{\gamma_{j}}|f(x)|<+\infty,
$$

where $\vec{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is such that $\gamma_{j}>0, j=\overline{1, n}$. The quantity $\|\cdot\|_{Q_{\dot{\gamma}}}$ is a norm on the space.
In the theorem which follows we estimate norm of the operator $T_{g}: Q_{\vec{\alpha}} \rightarrow Q_{\vec{\alpha}+\vec{\beta}-\overrightarrow{1}}$, under some conditions posed on the vectors $\vec{\alpha}$ and $\vec{\beta}$, and calculate it for a concrete function g.

Theorem 4. Let $\vec{\alpha}, \vec{\beta} \in \mathbb{R}_{+}^{n}$ be such that $\alpha_{j}+\beta_{j}>1, j=\overline{1, n}$, and

$$
\begin{equation*}
\|g\|_{\alpha_{\vec{\beta}}}<+\infty . \tag{2.32}
\end{equation*}
$$

Then the operator $T_{g}: Q_{\vec{\alpha}} \rightarrow Q_{\vec{\alpha}+\vec{\beta}-\overrightarrow{1}}$ is bounded and

$$
\begin{equation*}
\left\|T_{g}\right\|_{Q_{\vec{\alpha}} \rightarrow Q_{\vec{\alpha}+\vec{\beta}-\overrightarrow{1}}} \leq \frac{\|g\|_{Q_{\vec{\beta}}}}{\prod_{j=1}^{n}\left(\alpha_{j}+\beta_{j}-1\right)} \tag{2.33}
\end{equation*}
$$

If additionally

$$
\begin{equation*}
g(x)=\prod_{j=1}^{n} \frac{1}{\left(1-x_{j}\right)^{\beta_{j}}} \tag{2.34}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|T_{g}\right\|_{Q_{\vec{\alpha}} \rightarrow Q_{\vec{\alpha}+\vec{\beta}-1}}=\frac{1}{\prod_{j=1}^{n}\left(\alpha_{j}+\beta_{j}-1\right)} . \tag{2.35}
\end{equation*}
$$

Proof. Suppose that relation (2.32) holds. Let f be an arbitrary function in $Q_{\vec{\alpha}}$ and x be an arbitrary point in the cube $[0,1)^{n}$. Then by using the definition of the spaces $Q_{\vec{\alpha}}$ and $Q_{\vec{\beta}}$, some known inequalities, as well as some calculations it follows that

$$
\begin{aligned}
\left|T_{g} f(x)\right| & \leq \prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1}|f(t \cdot x) g(t \cdot x)| \prod_{j=1}^{n} d t_{j} \\
& \leq \prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} \frac{|f(t \cdot x)| \prod_{j=1}^{n}\left(1-t_{j} x_{j}\right)^{\alpha_{j}}}{\prod_{j=1}^{n}\left(1-t_{j} x_{j}\right)^{\alpha_{j}+\beta_{j}}}|g(t \cdot x)| \prod_{j=1}^{n}\left(1-t_{j} x_{j}\right)^{\beta_{j}} d t_{j} \\
& \leq\|f\|_{Q_{\vec{d}}}\|g\|_{Q_{\vec{\beta}}} \prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} \frac{d t_{1} \cdots d t_{n}}{\prod_{j=1}^{n}\left(1-t_{j} x_{j}\right)^{\alpha_{j}+\beta_{j}}} \\
& =\|f\|_{Q_{\vec{d}}}\|g\|_{Q_{\overrightarrow{\vec{p}}}} \prod_{j=1}^{n} \int_{0}^{1} \frac{x_{j} d t_{j}}{\left(1-t_{j} x_{j}\right)^{\alpha_{j}+\beta_{j}}} \\
& =\frac{\|f\|_{Q_{\vec{d}}}\|g\|_{Q_{\vec{\beta}}}}{\prod_{j=1}^{n}\left(\alpha_{j}+\beta_{j}-1\right)} \prod_{j=1}^{n} \frac{1-\left(1-x_{j}\right)^{\alpha_{j}+\beta_{j}-1}}{\left(1-x_{j}\right)^{\alpha_{j}+\beta_{j}-1}}
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\prod_{j=1}^{n}\left(1-x_{j}\right)^{\alpha_{j}+\beta_{j}-1}\left|T_{g} f(x)\right| \leq\|f\|_{Q_{\vec{\alpha}}}\|g\|_{Q_{\overrightarrow{\vec{P}}}} \prod_{j=1}^{n} \frac{1-\left(1-x_{j}\right)^{\alpha_{j}+\beta_{j}-1}}{\alpha_{j}+\beta_{j}-1}, \tag{2.36}
\end{equation*}
$$

for every $x \in[0,1)^{n}$ and $f \in Q_{\vec{\alpha}}$.
By taking the supremum in (2.36) over the set $[0,1)^{n}$, it follows that the following inequality holds

$$
\begin{equation*}
\left\|T_{g}(f)\right\|_{Q_{\vec{\alpha}+\vec{\beta}-\overrightarrow{1}}} \leq \frac{\|g\|_{Q_{\vec{\beta}}}}{\prod_{j=1}^{n}\left(\alpha_{j}+\beta_{j}-1\right)}\|f\|_{Q_{\vec{d}}} \tag{2.37}
\end{equation*}
$$

for every $f \in Q_{\vec{\alpha}}$.
By taking the supremum in (2.37) over the unit ball $B_{Q_{\vec{\beta}}}$ the boundedness of the operator $T_{g}: Q_{\vec{\alpha}} \rightarrow$ $Q_{\vec{\alpha}+\vec{\beta}-\overrightarrow{1}}$ follows.

Moreover, from inequality (2.37) we obtain the following estimate for the norm of the operator

$$
\begin{equation*}
\left\|T_{g}\right\|_{Q_{\vec{\alpha}} \rightarrow Q_{\vec{\alpha}+\vec{\beta}-1}} \leq \frac{\|g\|_{Q_{\vec{\beta}}}}{\prod_{j=1}^{n}\left(\alpha_{j}+\beta_{j}-1\right)} \tag{2.38}
\end{equation*}
$$

Now, assume that the operator $T_{g}: Q_{\vec{\alpha}} \rightarrow Q_{\vec{\alpha}+\vec{\beta}-\overrightarrow{1}}$ is bounded and that function g is defined as in (2.34).

Let

$$
\begin{equation*}
f_{0}(x)=\frac{1}{\prod_{j=1}^{n}\left(1-x_{j}\right)^{\alpha_{j}}} \tag{2.39}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|f_{0}\right\|_{Q_{\vec{x}}}=1 \tag{2.40}
\end{equation*}
$$

By using (2.34), (2.39) and (2.40), as well as some standard calculations it follows that

$$
\begin{align*}
& \left\|T_{g}\right\|_{Q_{\vec{a}} \rightarrow Q_{\vec{a}+\vec{\beta}-\overrightarrow{1}}} \geq\left\|T_{g}\left(f_{0}\right)\right\|_{Q_{\vec{\alpha}+\vec{\beta}-\overrightarrow{1}}} \\
= & \left.\sup _{x \in[0,1)^{n}} \prod_{j=1}^{n} x_{j}\left(1-x_{j}\right)^{\alpha_{j}+\beta_{j}-1} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t \cdot x)}{\prod_{j=1}^{n}\left(1-t_{j} x_{j}\right)^{\alpha_{j}}} \prod_{j=1}^{n} d t_{j} \right\rvert\, \\
= & \sup _{x \in[0,1)^{n}} \prod_{j=1}^{n}\left(1-x_{j}\right)^{\alpha_{j}+\beta_{j}-1} \int_{0}^{1} \frac{x_{j} d t_{j}}{\left(1-t_{j} x_{j}\right)^{\alpha_{j}+\beta_{j}}} \\
= & \sup _{x \in[0,1)^{n}} \prod_{j=1}^{n} \frac{1-\left(1-x_{j}\right)^{\alpha_{j}+\beta_{j}-1}}{\alpha_{j}+\beta_{j}-1} \\
= & \prod_{j=1}^{n} \frac{1}{\alpha_{j}+\beta_{j}-1} . \tag{2.41}
\end{align*}
$$

From (2.38), (2.41), and since in this case $\|g\|_{Q_{\vec{\beta}}}=1$, we have

$$
\left\|T_{g}\right\|_{Q_{\vec{\alpha}} \rightarrow Q_{\vec{\alpha}+\vec{\beta}-1}}=\frac{1}{\prod_{j=1}^{n}\left(\alpha_{j}+\beta_{j}-1\right)},
$$

finishing the proof of the theorem.

Generally speaking operator (2.31) can be considered on functions defined on any set of the form

$$
\begin{equation*}
\prod_{j=1}^{n}\left[0, c_{j}\right) \quad \text { or } \quad \prod_{j=1}^{n}\left[0, c_{j}\right] \tag{2.42}
\end{equation*}
$$

where $c_{j} \in[0,+\infty], j=\overline{1, n}$, and where we exclude the case $\prod_{j=1}^{n}[0,+\infty]$.
Our next result considers the boundedness of operator (2.31) between such spaces.
Theorem 5. Let $u, v, w \in W(I), g \in C_{v}(I)$, where the set I has one of the forms in (2.42). If

$$
\begin{equation*}
\sup _{x \in I} u(x) \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n}} \frac{d s_{1} \cdots d s_{n}}{w(s) v(s)}<+\infty \tag{2.43}
\end{equation*}
$$

then the operator $T_{g}: C_{w}(I) \rightarrow C_{u}(I)$ is bounded.
If additionally

$$
\begin{equation*}
g(x)=\frac{1}{v(x)} \tag{2.44}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|T_{1 / v}\right\|_{C_{w}(I) \rightarrow C_{u}(I)}=\sup _{x \in I} u(x) \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n}} \frac{d s_{1} \cdots d s_{n}}{w(s) v(s)} \tag{2.45}
\end{equation*}
$$

Proof. Using the definitions of the spaces $C_{w}(I)$ and $C_{u}(I)$, and the change of variables $s_{j}=x_{j} t_{j}$, $j=\overline{1, n}$, we have

$$
\begin{align*}
\left|T_{g} f(x)\right| & =\left|\prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} f(t \cdot x) g(t \cdot x) \prod_{j=1}^{n} d t_{j}\right| \\
& =\left|\prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} \frac{w(t \cdot x) f(t \cdot x) v(t \cdot x) g(t \cdot x)}{w(t \cdot x) v(t \cdot x)} \prod_{j=1}^{n} d t_{j}\right| \\
& \leq \prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\|f\|_{w}\|g\|_{v}}{w(t \cdot x) v(t \cdot x)} \prod_{j=1}^{n} d t_{j} \\
& =\int_{0}^{x_{1}} \cdots \int_{0}^{x_{n}} \frac{\|f\|_{w}\|g\|_{v}}{w(s) v(s)} \prod_{j=1}^{n} d s_{j} \tag{2.46}
\end{align*}
$$

for every $x \in I$ and $f \in C_{w}(I)$.
Multiplying (2.46) by $u(x)$, then taking the supremum over the set I we have

$$
\sup _{x \in I} u(x)\left|T_{g} f(x)\right| \leq\|f\|_{w}\|g\|_{v} \sup _{x \in I} u(x) \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n}} \frac{d s_{1} \cdots d s_{n}}{w(s) v(s)}
$$

from which it follows that

$$
\begin{equation*}
\left\|T_{g}\right\|_{C_{w}(I) \rightarrow C_{u}(I)} \leq\|g\|_{v} \sup _{x \in I} u(x) \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n}} \frac{d s_{1} \cdots d s_{n}}{w(s) v(s)} \tag{2.47}
\end{equation*}
$$

Using the assumption $g \in C_{v}(I)$, (2.43) and (2.47) the boundedness of $T_{g}: C_{w}(I) \rightarrow C_{u}(I)$ follows. If (2.44) holds, then

$$
\begin{equation*}
\|g\|_{v}=1 . \tag{2.48}
\end{equation*}
$$

Now, note that for $\widetilde{f_{0}}(x)=\frac{1}{w(x)}$ we have

$$
\begin{equation*}
\left\|\widetilde{f_{0}}\right\|_{w}=1 \tag{2.49}
\end{equation*}
$$

Further, we have

$$
\begin{align*}
\left\|T_{1 / v}\left(\widetilde{f_{0}}\right)\right\|_{u} & =\sup _{x \in I} u(x)\left|T_{1 / v}\left(\widetilde{f_{0}}\right)(x)\right| \\
& =\sup _{x \in I} u(x)\left|\prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} \widetilde{f_{0}}(t \cdot x) g(t \cdot x) \prod_{j=1}^{n} d t_{j}\right| \\
& =\sup _{x \in I} u(x)\left|\prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} \frac{d t_{1} \cdots d t_{n}}{w(t \cdot x) v(t \cdot x)}\right| \\
& =\sup _{x \in I} u(x) \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n}} \frac{d s_{1} \ldots d s_{n}}{w(s) v(s)} . \tag{2.50}
\end{align*}
$$

From (2.49) and (2.50) we obtain

$$
\begin{equation*}
\sup _{x \in I} u(x) \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n}} \frac{d s_{1} \ldots d s_{n}}{w(s) v(s)} \leq\left\|T_{1 / v}\right\|_{C_{w}(I) \rightarrow C_{u}(I)} \tag{2.51}
\end{equation*}
$$

Combining (2.47), (2.48) and (2.50) we get (2.45).
Remark 3. Note that in the case

$$
w(x)=e^{\langle x, \vec{\alpha}\rangle} \quad \text { and } \quad v(x)=e^{\langle x, \vec{\beta}\rangle}
$$

we have

$$
\begin{align*}
\left|T_{g} f(x)\right| & =\left|\prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} f(t \cdot x) g(t \cdot x) \prod_{j=1}^{n} d t_{j}\right| \\
& =\left|\prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\left.e^{\langle t \cdot x, \vec{\alpha}\rangle}\right\rangle(t \cdot x) e^{\langle t \cdot x, \vec{\beta}\rangle} g(t \cdot x)}{e^{\langle t \cdot x, \vec{\alpha}\rangle} e^{\langle t \cdot x, \vec{\beta}\rangle}} \prod_{j=1}^{n} d t_{j}\right| \\
& \leq \prod_{j=1}^{n} x_{j} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\|f\|_{\vec{\alpha}}\|g\|_{\vec{\beta}}}{e^{\langle t \cdot x, \vec{\alpha}+\vec{\beta}\rangle}} \prod_{j=1}^{n} d t_{j} \\
& =\|f\|_{\vec{\alpha}}\|g\|_{\vec{\beta}} \prod_{j=1}^{n} \int_{0}^{x_{j}} e^{-\left(\alpha_{j}+\beta_{j}\right) s_{j}} d s_{j} \\
& =\|f\|_{\vec{\alpha}}\|g\|_{\vec{\beta}} \prod_{j=1}^{n} \frac{1-e^{-\left(\alpha_{j}+\beta_{j}\right) x_{j}}}{\alpha_{j}+\beta_{j}}, \tag{2.52}
\end{align*}
$$

from which by taking the supremum in (2.52) over the set \mathbb{R}_{+}^{n} it follows that

$$
\left\|T_{g} f\right\|_{\infty} \leq\|f\|_{\vec{\alpha}}\|g\|_{\vec{\beta}} .
$$

Here, as usual

$$
\|h\|_{\infty}=\sup _{x \in \mathbb{R}_{+}^{n}}|h(x)|
$$

the standard supremum norm.

2.5. Another integral-type operator between weighted-type spaces

Let $g \in C\left([0,1)^{n}\right)$ and

$$
\begin{equation*}
\widehat{T}_{g}(f)(x)=\int_{0}^{1} \cdots \int_{0}^{1} f\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right) g\left(t_{1}, \ldots, t_{n}\right) \prod_{j=1}^{n} d t_{j} \tag{2.53}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$. From now on, for the operator in (2.53) we use the notation

$$
\widehat{T}_{g}(f)(x)=\int_{0}^{1} \cdots \int_{0}^{1} f(t \cdot x) g(t) \prod_{j=1}^{n} d t_{j}
$$

Let $u \in W\left(\mathbb{R}^{n}\right)$ and

$$
\|f\|_{u}=\sup _{x \in \mathbb{R}^{n}} u(x)|f(x)| .
$$

The following theorem holds.
Theorem 6. Let $g \in C\left([0,1)^{n}\right), g(x) \geq 0, x \in \mathbb{R}^{n}, u, v \in W\left(\mathbb{R}^{n}\right)$, such that

$$
\begin{equation*}
u(t \cdot x)=\prod_{j=1}^{n} t_{j}^{\alpha_{j}} u(x) \tag{2.54}
\end{equation*}
$$

for some $\alpha_{j} \in \mathbb{R}_{+}, j=\overline{1, n}$.
Then the operator $\widehat{T}_{g}: C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)$ is bounded if and only if

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n} \backslash\{\hat{0}\}} \frac{v(x)}{u(x)} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{\prod_{j=1}^{n} t_{j}^{\alpha_{j}}} \prod_{j=1}^{n} d t_{j}<\infty \tag{2.55}
\end{equation*}
$$

Moreover, if the operator $\widehat{T}_{g}: C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)$ is bounded then

$$
\begin{equation*}
\left\|\widehat{T}_{g}\right\|_{C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)}=\sup _{x \in \mathbb{R}^{n} \backslash(0,0\}} \frac{v(x)}{u(x)} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{\prod_{j=1}^{n} t_{j}^{\alpha_{j}}} \prod_{j=1}^{n} d t_{j} \tag{2.56}
\end{equation*}
$$

Proof. Assume that (2.55) holds. Let $f \in C_{u}\left(\mathbb{R}^{n}\right)$. Then by using the definition of the norm in $C_{u}\left(\mathbb{R}^{n}\right)$ and (2.54) we have

$$
\begin{aligned}
\left|\widehat{T}_{g} f(x)\right| & \leq \int_{0}^{1} \cdots \int_{0}^{1}|f(t \cdot x) g(t)| \prod_{j=1}^{n} d t_{j} \\
& \leq\|f\|_{u} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{u(t \cdot x)} \prod_{j=1}^{n} d t_{j} \\
& =\frac{\|f\|_{u}}{u(x)} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{\prod_{j=1}^{n} t_{j}^{\alpha_{j}}} \prod_{j=1}^{n} d t_{j},
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
v(x)\left|\widehat{T}_{g} f(x)\right| \leq\|f\|_{u} \frac{v(x)}{u(x)} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{\prod_{j=1}^{n} t_{j}^{\alpha_{j}}} \prod_{j=1}^{n} d t_{j} . \tag{2.57}
\end{equation*}
$$

By taking the supremum in (2.57) over the set $\mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$, it follows that the following inequality holds

$$
\begin{equation*}
\left\|\widehat{T}_{g}(f)\right\|_{v} \leq\|f\|_{u} \sup _{x \in \mathbb{R}^{n} \|\{\overrightarrow{0}\}} \frac{v(x)}{u(x)} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{\prod_{j=1}^{n} t_{j}^{\alpha_{j}}} \prod_{j=1}^{n} d t_{j} . \tag{2.58}
\end{equation*}
$$

By taking the supremum in (2.58) over the unit ball $B_{C_{u}\left(\mathbb{R}^{n}\right)}$ the boundedness of the operator \widehat{T}_{g} : $C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)$ follows. Moreover, we have

$$
\begin{equation*}
\left\|\widehat{T}_{g}\right\|_{C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)} \leq \sup _{x \in \mathbb{R}^{n} \backslash\{0,0\}} \frac{v(x)}{u(x)} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{\prod_{j=1}^{n} t_{j}^{\alpha_{j}}} \prod_{j=1}^{n} d t_{j} \tag{2.59}
\end{equation*}
$$

Now assume that the operator $\widehat{T}_{g}: C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)$ is bounded. Let

$$
\begin{equation*}
\widehat{f_{0}}(x)=\frac{1}{u(x)} \tag{2.60}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\widehat{f_{0}}\right\|_{u}=1 \tag{2.61}
\end{equation*}
$$

By using (2.54), (2.60) and (2.61), as well as some standard calculations it follows that

$$
\begin{align*}
\left\|\widehat{T}_{g}\right\|_{C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)} & \geq\left\|\widehat{T}_{g}\left(\widehat{f_{0}}\right)\right\|_{v} \\
& =\sup _{x \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}} v(x)\left|\int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{u(x \cdot t)} \prod_{j=1}^{n} d t_{j}\right| \\
& =\sup _{x \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}} \frac{v(x)}{u(x)} \int_{0}^{1} \cdots \int_{0}^{1} \frac{g(t)}{\prod_{j=1}^{n} t_{j}^{\alpha_{j}}} \prod_{j=1}^{n} d t_{j}, \tag{2.62}
\end{align*}
$$

from which (2.55) follows.
If the operator $\widehat{T}_{g}: C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)$ is bounded then from (2.59) and (2.62) we get (2.56), finishing the proof of the theorem.

The following theorem is proved similar to Theorem 6, so we omit the proof.
Theorem 7. Let $g \in C[0,1), g(t) \geq 0, t \in \mathbb{R}, u, v \in W\left(\mathbb{R}^{n}\right)$, such that

$$
\begin{equation*}
u(t x)=t^{\alpha} u(x) \tag{2.63}
\end{equation*}
$$

for some $\alpha>0$ and every $t \in[0,1)$ and $x \in \mathbb{R}^{n}$, and

$$
\begin{equation*}
\widehat{L}_{g}(f)(x)=\int_{0}^{1} f(t x) g(t) d t \tag{2.64}
\end{equation*}
$$

Then the operator $\widehat{L}_{g}: C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)$ is bounded if and only if

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}} \frac{v(x)}{u(x)} \int_{0}^{1} \frac{g(t)}{t^{\alpha}}<+\infty . \tag{2.65}
\end{equation*}
$$

Moreover, if the operator $\widehat{L}_{g}: C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)$ is bounded then

$$
\left\|\widehat{L}_{g}\right\|_{C_{u} \rightarrow C_{v}}=\sup _{x \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}} \frac{v(x)}{u(x)} \int_{0}^{1} \frac{g(t)}{t^{\alpha}} .
$$

Example 1. Let

$$
u(x)=\|x\|_{p} \quad \text { and } \quad v(x)=\|x\|_{q},
$$

where $1 \leq \min \{p, q\} \leq \max \{p, q\}<+\infty$ and for $r \geq 1$

$$
\|x\|_{r}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{r}\right)^{1 / r}
$$

Since all the norms on a finite-dimensional linear space are equivalent (here the linear space is \mathbb{R}^{n}), we have that there are positive constants C_{1} and C_{2} such that

$$
C_{1}\|x\|_{q} \leq\|x\|_{p} \leq C_{2}\|x\|_{q} .
$$

Hence, we have

$$
\sup _{x \in \mathbb{R}^{n}\{\{\hat{0}\}} \frac{v(x)}{u(x)} \leq \frac{1}{C_{1}}<+\infty .
$$

Note also that in this case we have

$$
u(t x)=t u(x) .
$$

Hence, to guaranty the boundedness of the operator $\widehat{L}_{g}: C_{u}\left(\mathbb{R}^{n}\right) \rightarrow C_{v}\left(\mathbb{R}^{n}\right)$ in this case, the corresponding condition in (2.65) holds if the function g satisfies the condition

$$
\int_{0}^{1} \frac{g(t)}{t} d t<+\infty .
$$

2.6. On a Hardy integral operator

Let $\widehat{\mathcal{L}}_{w}^{p}\left(\mathbb{R}^{n}\right)=\widehat{\mathcal{L}}_{w}^{p}$ be a linear subspace of \mathcal{L}_{w}^{p} containing constant functions, and such that the integral means

$$
M_{p}^{p}(f, r)=\int_{\mathbb{S}}|f(r \zeta)|^{p} d \sigma(\zeta)
$$

are non-increasing for each $f \in \widehat{\mathcal{L}}_{w}^{p}$.
Example 2. An example of such a space consists of all harmonic functions on $\mathbb{R}^{n}[18,31]$, for which the integral means are nondecreasing functions (see, e.g., [17]; for one-dimensional case see [26]).

Theorem 8. Let μ be a nonnegative Borel measure on the interval $[0,1], w \in W\left(\mathbb{R}^{n}\right)$ be a radial function such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} w(x) d V(x)=1, \tag{2.66}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\mu}(f)(x)=\int_{0}^{1} f(t x) d \mu(t) \tag{2.67}
\end{equation*}
$$

Then the operator $L_{\mu}: \widehat{\mathcal{L}}_{w}^{p}\left(\mathbb{R}^{n}\right) \rightarrow \widehat{\mathcal{L}}_{w}^{p}\left(\mathbb{R}^{n}\right)$ is bounded if and only if

$$
\begin{equation*}
\int_{0}^{1} d \mu(t)<+\infty . \tag{2.68}
\end{equation*}
$$

Moreover, if the operator $L_{\mu}: \widehat{\mathcal{L}_{w}^{p}}\left(\mathbb{R}^{n}\right) \rightarrow \widehat{\mathcal{L}}_{w}^{p}\left(\mathbb{R}^{n}\right)$ is bounded then

$$
\begin{equation*}
\left\|L_{\mu}\right\|_{\overline{\mathcal{L}}_{w}^{p}\left(\mathbb{R}^{n}\right) \rightarrow \widehat{\mathcal{E}}_{w}^{p}\left(\mathbb{R}^{n}\right)}=\int_{0}^{1} d \mu(t) \tag{2.69}
\end{equation*}
$$

Proof. First assume that (2.68) holds. By using Minkowski’s integral inequality (see, e.g., [16, 30]), polar coordinates (see, e.g., [18] or [26, p.150]), the assumption that w is radial, i.e., $w(r \zeta)=w(r)$, $x=r \zeta \in \mathbb{R}^{n}$, and the monotonicity of the integral means, we have

$$
\begin{aligned}
\left\|L_{\mu}(f)\right\|_{\mathcal{\mathcal { L }}_{w}^{p}} & =\left(\int_{\mathbb{R}^{n}}\left|\int_{0}^{1} f(t x) d \mu(t)\right|^{p} w(x) d V(x)\right)^{1 / p} \\
& \leq \int_{0}^{1}\left(\int_{\mathbb{R}^{n}}|f(t x)|^{p} w(x) d V(x)\right)^{1 / p} d \mu(t) \\
& =\int_{0}^{1}\left(\int_{0}^{+\infty} \int_{\mathbb{S}}|f(t r \zeta)|^{p} d \sigma(\zeta) w(r) r^{n-1} d r\right)^{1 / p} d \mu(t) \\
& \leq \int_{0}^{1}\left(\int_{0}^{+\infty} \int_{\mathbb{S}}|f(r \zeta)|^{p} d \sigma(\zeta) w(r) r^{n-1} d r\right)^{1 / p} d \mu(t) \\
& =\|f\|_{\widehat{\mathcal{L}}_{w}^{p}} \int_{0}^{1} d \mu(t),
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\left\|L_{\mu}\right\|_{\mathcal{E}_{w}^{p} \rightarrow \widetilde{\mathcal{L}}_{w}^{p}} \leq \int_{0}^{1} d \mu(t) \tag{2.70}
\end{equation*}
$$

Now, assume that the operator $L_{\mu}: \widehat{\mathcal{L}_{w}^{p}}\left(\mathbb{R}^{n}\right) \rightarrow \widehat{\mathcal{L}}_{w}^{p}\left(\mathbb{R}^{n}\right)$ is bounded. Note that from (2.66) we have

$$
\|1\|_{\mathcal{L}_{w}^{p}}=1 .
$$

On the other hand, by the definition of the space $\widehat{\mathcal{L}_{w}^{p}}$, we have $\widehat{f_{0}}(x) \equiv 1 \in \widehat{\mathcal{L}_{w}^{p}}$. From this and since

$$
\left\|L_{\mu}\left(\widehat{f_{0}}\right)\right\|_{\widehat{\mathcal{L}}_{w}^{p}}=\int_{0}^{1} d \mu(t)
$$

we get

$$
\begin{equation*}
\int_{0}^{1} d \mu(t) \leq\left\|L_{\mu}\right\|_{\overparen{\mathcal{L}_{w}^{p}} \rightarrow \overparen{\mathcal{L}_{w}^{p}}} \tag{2.71}
\end{equation*}
$$

If the operator $L_{\mu}: \widehat{\mathcal{L}_{w}^{p}}\left(\mathbb{R}^{n}\right) \rightarrow \widehat{\mathcal{L}}_{w}^{p}\left(\mathbb{R}^{n}\right)$ is bounded, then from (2.70) and (2.71) we get (2.69).
Remark 4. The operator in (2.67) is a Hardy integral-type operator [15].

3. Conclusions

Here we calculate the norms of several concrete operators between weighted-type spaces of continuous functions on several domains, as well as the norm of an integral-type operator on some subspaces of the weighted Lebesgue spaces. Several methods, ideas and tricks, which could be used in some other settings, are presented.

Acknowledgments

The paper was made during the investigation supported by the Ministry of Education, Science and Technological Development of Serbia, contract no. 451-03-68/2022-14/200029.

Conflict of interest

The author declares that he has no competing interest.

References

1. K. L. Avetisyan, Hardy Bloch-type spaces and lacunary series on the polydisk, Glasgow J. Math., 49 (2007), 345-356. https://dx.doi.org/10.1017/S001708950700359X
2. K. D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Aust. Math. Soc. Ser. A, 54 (1993), 70-79. https://dx.doi.org/10.1017/S1446788700036983
3. D. C. Chang, S. Li, S. Stević, On some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math., 11 (2007), 1251-1285. https://dx.doi.org/10.11650/twjm/1500404862
4. M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687-1693.
5. J. Du, X. Zhu, Essential norm of an integral-type operator from ω-Bloch spaces to μ-Zygmund spaces on the unit ball, Opuscula Math., 38 (2018), 829-839.
6. N. Dunford, J. T. Schwartz, Linear operators, Part I: general theory, New York: WileyInterscience, 1988.
7. Z. Fu, L. Grafakos, S. Lu, F. Zhao, Sharp bounds for m-linear Hardy and Hilbert operators, Houston J. Math., 38 (2012), 225-244.
8. L. Grafakos, Best bounds for the Hilbert transform on $L^{p}\left(\mathbb{R}^{1}\right)$, Math. Res. Lett., 4 (1997), 469-471. https://dx.doi.org/10.4310/MRL.1997.v4.n4.a3
9. L. Grafakos, Modern Fourier analysis, Graduate Texts in Mathematics 250, 2 Eds., New York: Springer, 2009.
10. L. Grafakos, Classical Fourier analysis, 3 Eds., Graduate Texts in Mathematics 249, Springer, New York, 2014.
11. L. Grafakos, T. Savage, Best bounds for the Hilbert transform on $L^{p}\left(\mathbb{R}^{1}\right)$: a corrigendum, Math. Res. Lett., 22 (2015), 1333-1335. https://dx.doi.org/10.4310/MRL.2015.V22.N5.A4
12. Z. Guo, Y. Shu, On Stević-Sharma operators from Hardy spaces to Stević weighted spaces, Math. Inequal. Appl., 23 (2020), 217-229. https://dx.doi.org/10.7153/mia-2020-23-17
13. G. H. Hardy, Notes on some points in the integral calculus LX: an inequality between integrals, Messenger Math., 54 (1925), 150-156.
14. G. H. Hardy, Notes on some points in the integral calculus, LXIV: further inequalities between integrals, Messenger Math., 57 (1927), 12-16.
15. G. H. Hardy, Divergent series, Oxford: Oxford University Press, 1949.
16. G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge: Cambridge University Press, 1952.
17. W. Hayman, P. B. Kennedy, Subharmonic functions, Vol. I, Academic Press, London, 1976.
18. L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Wiley-Interscience, New York, 1969.
19. H. Li, Z. Guo, Note on a Li-Stević integral-type operator from mixed-norm spaces to nth weighted spaces, J. Math. Inequal., 11 (2017), 77-85. https://dx.doi.org/10.7153/jmi-11-07
20. H. Li, S. Li, Norm of an integral operator on some analytic function spaces on the unit disk, J. Inequal. Math., 2013 (2013), 1-7. https://doi.org/10.1186/1029-242X-2013-342
21. S. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc., 45 (2008), 229-248.
22. C. Pan, On an integral-type operator from $Q_{k}(p, q)$ spaces to α-Bloch spaces, Filomat, 25 (2011), 163-173. https://doi.org/10.2298/FIL1103163P
23. A. Pelczynski, Norms of classical operators in function spaces, Astérisque, $\mathbf{1 3 1}$ (1985), 137-162.
24. R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequal. Appl., 18 (2015), 1589-1599. https://doi.org/10.7153/mia-18-122
25. L. A. Rubel, A. L. Shields, The second duals of certain spaces of analytic functions, J. Aust. Math. Soc., 11 (1970), 276-280. https://doi.org/10.1017/S1446788700006649
26. W. Rudin, Real and complex analysis, McGraw-Hill Series in Higher Mathematics, 3 Eds., McGraw-Hill Education, London, New York, Sidney, 1987.
27. W. Rudin, Functional analysis, McGraw-Hill, Inc.,1991.
28. J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., 140 (1911), 1-28. https://doi.org/10.1515/crll.1911.140.1
29. B. Sehba, S. Stević, On some product-type operators from Hardy-Orlicz and BergmanOrlicz spaces to weighted-type spaces, Appl. Math. Comput., 233 (2014), 565-581. https://doi.org/10.1016/j.amc.2014.01.002
30. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton: Princeton University Press, 1970.
31. E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton: Princeton University Press, 1971.
32. S. Stević, Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. Pure Appl. Math., 37 (2006), 343-355.
33. S. Stević, Norms of some operators from Bergman spaces to weighted and Bloch-type space, Util. Math., 76 (2008), 59-64.
34. S. Stević, Norm of weighted composition operators from α-Bloch spaces to weighted-type spaces, Appl. Math. Comput., 215 (2009), 818-820. https://doi.org/10.1016/j.amc.2009.06.005
35. S. Stević, Norms of multiplication operators on Hardy spaces and weighted composition operators from Hardy spaces to weighted-type spaces on bounded symmetric domains, Appl. Math. Comput., 217 (2010), 2870-2876. https://doi.org/10.1016/j.amc.2010.08.022
36. S. Stević, Norms of some operators on bounded symmetric domains, Appl. Math. Comput., 216 (2010), 187-191. https://doi.org/10.1016/j.amc.2010.01.030
37. S. Stević, On operator P_{φ}^{g} from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput., 215 (2010), 4248-4255. https://doi.org/10.1016/j.amc.2009.12.048
38. S. Stević, Norm of some operators from logarithmic Bloch-type spaces to weighted-type spaces, Appl. Math. Comput., 218 (2012), 11163-11170. https://doi.org/10.1016/j.amc.2012.04.073
39. S. Stević, Essential norm of some extensions of the generalized composition operators between k th weighted-type spaces, J. Inequal. Appl., 2017 (2017), 1-13. https://doi.org/10.1186/s13660-017-1493-x
40. S. Stević, Norm of a multilinear integral operator from product of weighted-type spaces to weighted-type space, Math. Methods Appl. Sci., 45 (2021), 546-556. https://doi.org/10.1002/mma. 7794
41. S. Stević, Note on norm of an m-linear integral-type operator between weighted-type spaces, $A d v$. Differ. Equ., 2021 (2021), 1-10. https://doi.org/10.1186/s13662-021-03346-4
42. S. Stević, Note on norms of two integral-type operators on some spaces of functions on \mathbb{R}^{n}, Math. Methods Appl. Sci., 44 (2021), 6500-6514. https://doi.org/10.1002/mma. 7202
43. S. Stević, S. I. Ueki, Integral-type operators acting between weighted-type spaces on the unit ball, Appl. Math. Comput., 215 (2009), 2464-2471. https://doi.org/10.1016/j.amc.2009.08.050
44. V. A. Trenogin, Funktsional'niy analiz (in Russian), Nauka, Moskva, 1970.
45. V. A. Trenogin, B. M. Pisarevskiy, T. S. Soboleva, Zadachi i uprazhneniya po funktsional'nomu analizu (in Russian), Nauka, Moskva, 1984.
46. W. Yang, On an integral-type operator between Bloch-type spaces, Appl. Math. Comput., 215 (2009), 954-960. https://doi.org/10.1016/j.amc.2009.06.016
47. W. Yang, X. Meng, Generalized composition operators from $F(p, q, s)$ spaces to Bloch-type spaces, Appl. Math. Comput., 217 (2010), 2513-2519. https://doi.org/10.1016/j.amc.2010.07.063
48. W. Yang, W. Yan, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, Bull. Korean Math. Soc., 48 (2011), 1195-1205. https://doi.org/10.4134/BKMS.2011.48.6.1195
49. X. Zhu, Multiplication followed by differentiation on Bloch-type spaces, Bull. Allahbad Math. Soc., 23 (2008), 25-39.
50. X. Zhu, Generalized weighted composition operators from Bloch spaces into Bers-type spaces, Filomat, 26 (2012), 1163-1169.
51. X. Zhu, Weighted composition operators from weighted-type spaces to Zygmund-type spaces, Math. Inequal. Appl., 19 (2016), 1067-1087. https://doi.org/10.7153/mia-19-79
52. V. A. Zorich, Mathematical analysis II, Springer-Verlag, Berlin, Heidelberg, 2004.

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

