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Abstract: Using the unified solver technique, the rigorous and effective new novel optical progressive
and stationary structures are established in the aspects of hyperbolic, trigonometric, rational, periodical
and explosive types. These types are concrete in the stochastic nonlinear Schrödinger equations
(NLSEs) with operative physical parameters. The obtained stochastic solutions with random
parameters that are founded in the form of rational, dissipative, explosive, envelope, periodic, and
localized soliton can be utilized in fiber applications. The stochastic modulations of structures’
amplitude and frequency caused by dramatic instantaneous influences of both fibers nonlinear,
dispersive, losing and noise term effects maybe very important in new fiber communications.
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1. Introduction

Nonlinear complex phenomena in a superfluid, optical fiber communications, solid-state physics,
epidemiology, plasma physics can be expressed in deterministic or stochastic nonlinear partial
differential equations (SNPDEs) [1–8]. There are several advantages for using stochastic rather than
deterministic equations, including in finance, biology, chemistry, mechanics, microelectronics and
economics [9–12]. A complete comprehension of SNPDEs theory requires expertise in advanced
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probability and stochastic processes. Recently, many researchers have proposed and developed
various numerical and analytical methods for solving NPDEs [13–16].

The NLSE depicts how waves move across mediums with dispersive and nonlinear effects. This
equation turns into the basic ingredient for describing the wave behaviors in so many vital
applications of applied science such as Bose-Einstein condensations (BEC), bimolecular dynamical
modes, deep water, coastal water motions and semiconductors [17–22]. The NLSE has localized
solutions (soliton), which are especially sturdy and propagate without changing form. The solitonic
features in the molecular chain model that presented by NLSE with saturated nonlinear coefficient
and discrete coupled NLSE have been investigated [23, 24]. Alkhidhr et al. [9] investigated the
stochastic unstable NLSE and higher-order dispersive NLSE. Alharbi et al. [3] studied the perturbed
NLSE with Kerr law nonlinearity in the presence of random dispersion and nonlinear effects. Kumar
et al. [25] presented some innovative solutions to the generalized Schrödinger-Boussinesq equation,
which illustrates the interaction of complex short-wave and real long-wave envelopes. Houwe et al.
investigated the effects of modulated self-Kerr nonlinearities on discrete solitons propagated in
optomechanical arrays. It was noted that nonlinear terms minimize the transient regimes of temporal
solitonic structures [26]. The effect of noise on the propagation of these soliton solutions has received
increased attention in recent years [9, 25, 27]. On the other hand, propagating solitons in materials
having saturation impacts cannot be modeled by the NLS equation [28, 29]. To study these effects, the
WKI equation must be taken into account [28, 29]. Li et al. investigated long time asymptotic
solutions for finite density WKI equation [29]. Riemann–Hilbert (RH) problems is developed to study
the focusing NLS equation with multiple high-order poles under nonzero boundary conditions. The
solutions behaviours in various discrete spectra have been obtained [30].

Recently, the development of fractal solitary structures from a large number of nonlinear equations
using fractal variational principles in various media turns into an effective technique to describe
certain new occurrences in our universe [31–36]. Abdelrahman et al. [27] extracted new stochastic
solutions for the conformable fractional nonlinear NLSE. The Adomian decomposition technique was
defined and used to solve the newly constructed nonlinear Schrödinger equation with spatiotemporal
dispersion [37]. Also, various fractional formulations have been presented to extract exact optical
soliton solutions for modified NLSE with spatiotemporal dispersion [38, 39].

The Wiener process is often called Brownian motion (BM) due to its connection with the physical
process called Brownian motion. Actually, this stochastic process serves as a foundation for a variety
of models in applied science [40, 41]. Since a BM process is non-differentiable, Itô’s formula is often
utilized to get the explicit solution of SNPDEs with a BM process [42, 43]. A 1D NLSE with an
additive space-time white noise is investigated in [44]. This paper considers the NLSE with various
physical optical fiber coefficients forced by multiplicative noise in Itô sense [45]:

iψt + αψxx − δ | ψ |
2 ψ + λψ − iσWt ψ = 0, i =

√
−1 , (1.1)

ψ = ψ(x, t) depicts the slowly pulse amplitude and σ is the noise strength. Indeed, α, δ & λ denote
fiber dispersion, nonlinear and fiber loss effects. The noise Wt denotes derivative of the Brownian
motion process W(t) in time [46]. This noise term will properly manage the increasing, damping,
and conversion affects on the amplitudes and frequencies of the bright/dark envelope and shock forced
oscillatory wave.

In the ongoing research, we aim to extract some new stochastic solutions of Eq (1.1) utilizing the
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unified solver approach [47]. This solver is straightforward, sturdy, burly and averts tedious
computations. Moreover, this solver produces various effective solutions for describing physical
phenomena. This solver can simply be utilized as a box solver. The presented solver is applicable to a
wide range of NSPDE classes. Furthermore, it is simple to expand for solutions of stochastic
fractional NPDEs. We also explain how the noise term affects the solutions that have been provided.
Some suggested stochastic solutions’ nonlinear dynamical behavior is shown. To the best of our
knowledge, the proposed solver for resolving the stochastic NLSE with various physical optical fiber
coefficients has never been used before.

This article is organized as follows. Section 2 presents the notions of the Brownian motion process
and its prosperities. Section 3 offers closed-form solutions for a variety of NPDEs. Section 4 presents
the new stochastic solutions for Eq (1.1) via Itô sense. Section 5 introduces the interpretation of the
presented solutions. We also show that the influence of the noise parameter plays an essential role in
changing solution trajectories. Conclusions are summarized in Section 6.

2. Brownian motion and normal distribution

Brownian motion is used to describe the random movement that happened by small particles that
are suspended in liquid or gas. The Brownian motion prohibits the particles from stabilizing in fluids
because it affects on them to be in constant motion. This leads to the stability of colloidal solutions.
Therefore, it assists to differentiate between true and colloid solutions. Furthermore, we note that the
size of particles and the viscosity of the fluid are inversely proportional to the speed of the motion.

Before we speak about the Browning motion, we display a brief description of the normal
distribution. One of the main properties of the normal distribution is that it is a symmetric and
continuous distribution. Also, the data around its mean is more occurrence than when they are far
from it. Furthermore, its mean, median and mode are equal and it is symmetric around the mean. So,
half of the values are to the right of the mean and the other half on the left with the total area under the
curve equals one.

The normal distribution’s probability density function is given by

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , −∞ < x < ∞,

µ and σ denote the mean and standard deviation, which controls the spread of the data from the mean.
One of the important special cases of the normal distribution is the standard normal distribution. It has
zero mean and unit variance. The corresponding probability distribution function of it is

f (z) =
1
√

2π
e−

z2
2 , −∞ < z < ∞.

Now, we note that the Wiener process is defined as a stochastic process, which is continuous in
time. A Brownian motion process {W(t)}t≥0 has the following properties:

(a) W(t), t ≥ 0 is a continuous function of time t and W(t) ∼ N(0, t).
(b) For s < t < u < k, W(s) −W(t) & W(k) −W(u) are independent.
(c) W(t) −W(s) follows a normal distribution with zero mean and variance t − s, i.e. W(t) −W(s) ∼
√

t − s N(0, 1), N(0, 1) is a standard normal distribution.
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3. Unified solver approach

Consider the following NPDEs:

H(q, qx, qt, qxx, qxt, qtt, ...) = 0. (3.1)

Using the wave transformation:

q(x, t) = q(ζ), ζ = x − w t. (3.2)

Equation (3.1) simplified to the following ODE:

G(q, q′, q′′, q′′′, ...) = 0, (3.3)

where w is the wave speed. In applied science, several NPDEs can be reduced to:

L q′′ + M q3 + N q = 0, (3.4)

where L, M and N are constants rely on the proposed equation’s constants and the wave
transformations’ speed. The solutions of Eq (3.4) are based on the unified solver approach [47], given
by:

i) Rational solutions: (when N = 0)

q1,2(x, t) =

∓√
−M
2L

(η + ς)

−1

. (3.5)

ii) Trigonometric solutions: (when N
L < 0)

q3,4(x, t) = ±

√
N
M

tan

√−N
2L

(η + ς)

 (3.6)

and

q5,6(x, t) = ±

√
N
M

cot

√−N
2L

(η + ς)

 . (3.7)

iii) Hyperbolic solutions: (when N
L > 0)

q7,8(x, y, t) = ±

√
−N
M

tanh

√ N
2L

(η + ς)

 (3.8)

and

q9,10(x, y, t) = ±

√
−N
M

coth

√ N
2L

(η + ς)

 . (3.9)

Here, the constant ς is arbitrary.
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4. Stochastic solutions

Using the transformation

ψ(x, t) = eiη(x,t)+σW(t)−σ2tq(ϑ), ϑ = cx + ωt, η(x, t) = px + µt. (4.1)

Equation (1.1) was transformed into the following ODE

αc2q′′(ϑ) − αp2q(ϑ) + λq(ϑ) + δ q3(ϑ)
(
−e2σW(t)−2σ2t

)
− µ q(ϑ) = 0, (4.2)

where ω, p, c and µ are constants. Taking expectation of both sides, we have

αc2q′′(ϑ) − αp2q(ϑ) + λq(ϑ) − µ q(ϑ) − δq3(ϑ)e−2σ2tE(e2σW(t)) = 0. (4.3)

Since E(e2σW(t)) = e2σ2t, Eq (4.3) reduced to

αc2q′′(ϑ) − δq3(ϑ) − (αp2 − λ + µ)q(ϑ) = 0, (4.4)

with dispersion relation

ω =
±

√
−αλc2σ4 + α2c2 p2σ4 + αc2σ4µ − 2α2cp3 + 2αλcp − 2αcp µ

−λ + αp2 + µ
. (4.5)

Equation (4.4) depicts an energy equation of particle dynamical motion in the form

1
2
αc2q′(ϑ)2 −

1
4
δq4(ϑ) − (

1
2
αp2 −

1
2
λ +

1
2
µ)q2(ϑ) = 0. (4.6)

The model has an exact solution as follows

q(ϑ) =
2
√

2
(
−λ + αp2 + µ

)
√
−δ

(
−λ + αp2 + µ

)e
(cx+tω)

√
−λ+αp2+µ
√
αc

(
e

2(cx+tω)
√
−λ+αp2+µ
√
αc + 1

)−1

,

ψ(x, t) =
2
√

2
(
−λ + αp2 + µ

)
√
−δ

(
−λ + αp2 + µ

)e
(cx+tω)

√
−λ+αp2+µ
√
αc

(
e

2(cx+tω)
√
−λ+αp2+µ
√
αc + 1

)−1

eiη(x,t)+σW(t)−σ2t. (4.7)

In light of the presented solver, Eq (4.4) has the following solutions:
First: Rational solutions are:

q1(x, t) =

∓√
δ

2αc2
(cx + ωt + %)

−1

. (4.8)

Hence, the stochastic solutions of Eq (1.1) are

ψ1(x, t) =

∓√
δ

2αc2
(cx + ωt + %)

−1

ei(px+µt)+σW(t)−σ2t. (4.9)
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Second: Trigonometric solutions are

q2,3(x, t) = ±

√
αp2 + µ − λ

δ
tan


√
αp2 + µ − λ

2αc2
(cx + ωt + %)

 (4.10)

and

q4,5(x, t) = u2,3(x, t) = ±

√
αp2 + µ − λ

δ
cot


√
αp2 + µ − λ

2αc2
(cx + ωt + %)

 . (4.11)

Hence, the stochastic solutions of Eq (1.1) are

ψ2,3(x, t) = ±

√
αp2 + µ − λ

δ
tan


√
αp2 + µ − λ

2αc2
(cx + ωt + %)

 ei(px+µt)+σW(t)−σ2t (4.12)

and

ψ4,5(x, t) = ±

√
αp2 + µ − λ

δ
cot


√
αp2 + µ − λ

2αc2
(cx + ωt + %)

 ei(px+µt)+σW(t)−σ2t. (4.13)

Third: Hyperbolic solutions are:

q6,7(x, t) = ±

√
λ − αp2 − µ

δ
tanh


√
λ − αp2 − µ

2αc2
(cx + ωt + %)

 (4.14)

and

q8,9(x, t) = ±

√
λ − αp2 − µ

δ
coth


√
λ − αp2 − µ

2αc2
(cx + ωt + %)

 . (4.15)

Thus, the stochastic solutions for Eq (1.1) are

ψ6,7(x, t) = ±

√
λ − αp2 − µ

δ
tanh


√
λ − αp2 − µ

2αc2
(cx + ωt + %)

 ei(px+µt)+σW(t)−σ2t (4.16)

and

ψ8,9(x, t) = ±

√
λ − αp2 − µ

δ
coth


√
λ − αp2 − µ

2αc2
(cx + ωt + %)

 ei(px+µt)+σW(t)−σ2t. (4.17)

Here, p, c, µ, %, λ, α are constants.

5. Results and discussion

Mathematical treatments of the stochastic nonlinear Eq (1.1), which contains nonlinear, dispersive,
losing and noise terms, produce a dynamical energy Eq (4.6) with restricted Eq (4.5) and various
structurally important solutions that can be as characteristics of wave behaviors in optical
communications. Using Matlab release 18 and Mathematica release 13, we introduce some 2D and
3D graphs for some selected solutions of Eq (1.1) for appropriate parametric choices. Eq (4.5) gives
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all physical relations between Schrödinger equation coefficients and the transformation parameters as
depicted in Figure 1. In this figure, we show the relationship between ω, α, λ and σ, which is a
conditional constraint on the energy equation. It was found that ω increased by increasing both λ and
σ. Moreover, it was concluded that ω increases with the increase of α until a specific value and then
begins to gradually rebate. By examining Eq (4.6) with potential phase portrait variations as shown in
Figures 2 and 3. Both potential and phase portraits represent the regions of stability (instability) of a
particle in a potential well with a change in δ parameter. Phase portrait is a relation plotted between
dq/dϑ and q at different values of energy constant for p = 0.3, λ = 0.3, α = −3, c = 0.5 and µ = 1. It
was noted that there are two stable and one unstable point for δ = −2 as in Figure 2 and an unstable
state for δ = 2 as in Figure 3. To discuss some of the obtained solutions in this work for σ = 0,
Equation (4.7) described bright solitary solutions in the form of breather and bell-shaped solitons as
in Figures 4 and 5. The rational leading form Eq (4.9) is an effective solution for the production of
periodic blow-up solution and explosive solitary behavior as given in Figures 6 and 7.

Figure 1. Plot of ω with α, λ and σ for p = 0.6, c = 0.3, δ = 6, k = 0.5, µ = 1.

Figure 2. Plot of V and dq
dv with q for λ = 0.2, α = 5, p = 0.6, c = 0.5, δ = −2, µ = 1.
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Figure 3. Plot of V and dq
dv with q for λ = 0.2, α = 5, p = 0.6, c = 0.5, δ = 2, µ = 1.

Figure 4. Plot of Reψ(x, t) in (4.7) with x, t for λ = 0.2, α = 5, p = 0.3, c = 0.5, δ = −2,
µ = 1.

Figure 5. Plot of |ψ(x, t)| in (4.7) with x, t for δ = −2, λ = 0.2, α = 5, p = 0.3, c = 0.5, µ = 1.
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Figure 6. Plot of Reψ1(x, t) with x, t for λ = 0.2, α = 5, p = 0.3, c = 0.5, δ = −2, µ = 1.

Figure 7. Plot of |ψ1(x, t)| with x, t for δ = −2, λ = 0.2, α = 5, p = 0.3, c = 0.5, µ = 1.

On the other hand, many trigonometric and hyperbolic dissipative solutions have been illustrated
in Eqs (4.12), (4.13), (4.16) and (4.17). In Figure 8, a blow-up dissipative structure has been obtained.
One of the priorities of this work is to explore the effects of the random pulses on the state and
characteristics of the resulting waves through the change of stochastic time and the consequent
changes of wave shapes and phase differences. Figure 9 shows the variation of Eq (4.7) with time and
σ. We found that the increase of σ reduces the amplitude and affected the soliton tails until the soliton
shape converts to soliton-like dissipative stochastic wave. Variations of Eq (4.16) with time and σ is
depicted in Figures 10 and 11. It was determined to that the shock wave tails were deformed with σ in
form of damping in positive tail and forcing in negative tail. Furthermore, the random parameter
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damped the envelope soliton in the negative t-axis and forced the envelope in the positive t-axis.

Figure 8. Plot of |ψ5(x, t)| with x, t for δ = −2, λ = 0.2, α = 5, p = 0.3, c = 0.5, µ = 1.

Figure 9. Stochastic plot of |ψ(x, t)| in (4.7) with σ, t for δ = −2, λ = 0.2, α = 5, p = 0.6, c =

0.5, µ = 0.3.
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Figure 10. Stochastic plot of |ψ6(x, t)| with σ, t for δ = −2, λ = 0.2, α = 5, p = 0.6, c = 0.5,
µ = 0.3.

Figure 11. Stochastic plot of Reψ6(x, t) with σ, t for δ = −2, λ = 0.2, α = 5, p = 0.6, c = 0.5,
µ = 0.3.

In summary, the stochastic random effects control the properties of solitary and other forms in this
model in the form of damping and forcing wave tails.

6. Conclusions

The random NLSE equation with losing and noise terms has been solved by a mathematical solver.
The stability of the dynamical system corresponding to the random NLSE equation has been examined
by phase plane to identify the solutions appropriate for this model. Several wave profiles have been
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derived in the form of blow-up, periodical, soliton, breather and shock-like structures. The noise effects
in stochastic behaviors play an improvements controller for wave features. The parameter of random
noise modified the shape and features of the model’s solutions. It causes some physical effects as
damping, fluctuations and forcing for amplitudes and wave tails. The results obtained here may be
profitable in physical models with losing terms in stochastic dispersive models.

The unified solver technique in this work via stochastic sense can be applied in studying nonlinear
equations using some recently proposed definitions of fractional calculus such as the generalized
fractional derivative (GFD) definition [48, 49]. Actually, this definition with its special functions [50]
is so powerful because it overcomes some issues associated with conformable derivatives and other
fractional derivatives.
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