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1. Introduction

By B we denote the open unit ball in Cn, S is the unit sphere in Cn, B(z, r) is the open ball centered
at z and with radius r, dσ is the normalized rotation invariant measure on S, dV(z) is the Lebesgue
measure, and dVα(z) := cα,n(1 − |z|2)αdV(z), α > −1, where cα,n is the normalization constant such that
Vα(B) = 1. The linear space of holomorphic functions on B we denote by H(B), whereas S (B) denotes
the class of holomorphic self-maps of B. The standard inner product between the vectors z,w ∈ Cn

is denoted by 〈z,w〉, whereas |z| =
√
〈z, z〉 is the Euclidean norm in Cn. Many classical results on

functions in H(B) can be found in [1]. If f ∈ C(B) is a positive function, then we call it a weight
function, and the class of functions is denoted by W(B). If p, q ∈ N0, p ≤ q, then the notation j = p, q
is an abbreviation for the notation j = p, p + 1, . . . , q. If X is a Banach space, then by BX we denote
the unit ball in X.

Each ϕ ∈ S (B) induces the composition operator Cϕ f (z) = f (ϕ(z)), whereas each u ∈ H(B) induces
the multiplication operator Mu f (z) = u(z) f (z). The radial derivative of f ∈ H(B) is defined by

< f (z) =

n∑
j=1

z jD j f (z),
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where D j f (z) =
∂ f
∂z j

(z), j = 1, n (if n = 1, then we regard D1 f := D f = f ′). There has been a huge
interest in the operators and their products on subspaces of H(B). The first investigations have been
mostly devoted to the case n = 1. Beside the products of the operators Cϕ and Mu, which have been
studied a lot, there have been some investigations of the products of the operators D and Cϕ. For some
products of these and other concrete operators, see, for example, [2–25] and the related references
therein. The boundedness and compactness [26, 27] of the operators have been predominately studied
so far.

The weighted Bergman space Ap
α = Ap

α(B), p > 0, α > −1, consists of all f ∈ H(B) such that

‖ f ‖Ap
α

=

(∫
B

| f (z)|pdVα(z)
)1/p

< +∞,

which for p ≥ 1 is a norm on Ap
α. With the norm the space is Banach. For some results on the space

and operators on it, see, e.g., [4, 6, 14, 15, 22, 28–31].
If µ is a weight function, then the space of all f ∈ H(B) such that

‖ f ‖H∞µ = sup
z∈B

µ(z)| f (z)| < +∞,

is called the weighted-type space and denoted by H∞µ (B) = H∞µ , whereas the little weighted-type space
is its closed subspace consisting of all f ∈ H(B) such that lim|z|→1 µ(z)| f (z)| = 0, and is denoted by
H∞µ,0(B) = H∞µ,0. There has been a huge interest in investigating the spaces, their generalizations, and
linear operators on them, especially in the boundedness and compactness [2, 11, 13, 19, 23, 31–34].

The product operator <m
u,ϕ = MuCϕ<

m was introduced in [35]. For some investigations in the
direction, see also [36]. Motivated, among others, by our investigations in [14–16, 35], I have
introduced the operator

S
m
~u,ϕ =

m∑
j=0

Mu jCϕ<
j =

m∑
j=0

< j
u j,ϕ
, (1.1)

where m ∈ N, u j ∈ H(B), j = 0,m, and ϕ ∈ S (B), and studied it, for example, in [37]. For some related
studies see also [2, 3].

This note continues some of our previous investigations (for example, the ones in [13–16, 35, 37]),
by studying the boundedness and compactness of the operators Sm

~u,ϕ : Ap
α → H∞µ (or H∞µ,0), where p ≥ 1

and α > −1.
By C we denote some positive constants independent of essential variables and functions which

may differ from line to line, whereas a . b (resp. a & b) means that there is C > 0 such that a ≤ Cb
(resp. a ≥ Cb). If a . b and b . a, then we use the notation a � b.

2. Auxiliary results

The first result is a standard Schwartz-type lemma [38].

Lemma 2.1. Assume p ≥ 1, α > −1, µ ∈ W(B), u j ∈ H(B), j = 0,m, m ∈ N, ϕ ∈ S (B), and that the
operator Sm

~u,ϕ : Ap
α → H∞µ is bounded. Then, the operator is compact if and only if for every bounded

sequence ( fk)k∈N ⊂ Ap
α uniformly converging to zero on compacts of B, we have

lim
k→+∞

‖Sm
~u,ϕ fk‖H∞µ = 0.
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The following lemma was essentially proved in [39], so we omit the proof.

Lemma 2.2. A closed set K in H∞µ,0 is compact if and only if it is bounded and

lim
|z|→1

sup
f∈K

µ(z)| f (z)| = 0.

The following lemma is well known (see [29]; for a less precise version see also [1]).

Lemma 2.3. Assume p ∈ (0,∞), α > −1, and f ∈ Ap
α(B); Then,

| f (z)| ≤
‖ f ‖Ap

α

(1 − |z|2)
n+α+1

p

, z ∈ B. (2.1)

Lemma 2.4. Assume p ∈ (0,∞), α > −1, and m ∈ N. Then,∣∣∣<m f (z)
∣∣∣ . |z|

(1 − |z|2)
n+α+1

p +m
‖ f ‖Ap

α
, (2.2)

for every f ∈ Ap
α and z ∈ B.

Proof. Note that it is enough to prove that for all f ∈ Ap
α and z ∈ B,

|<m f (z)| .
|z|

(1 − |z|)
n+α+1

p +m
‖ f ‖Ap

α
. (2.3)

Let r ∈ (0, 1) be fixed. Then, the Cauchy-Schwartz and Cauchy inequalities imply

|< f (z)| . |z|
supw∈B(z,r(1−|z|)) | f (w)|

1 − |z|
, z ∈ B, f ∈ H(B). (2.4)

Inequality (2.1) implies that

sup
w∈B(z,r(1−|z|))

| f (w)| .
‖ f ‖Ap

α

[(1 − r)(1 − |z|)]
n+α+1

p

. (2.5)

Since r is fixed, by (2.4) and (2.5) we get

|< f (z)| .
|z|

(1 − |z|)
n+α+1

p +1
‖ f ‖Ap

α
, (2.6)

that is, (2.3) holds when m = 1.
Assume that for a k ∈ N \ {1} and all f ∈ Ap

α and z ∈ B holds,

|<k−1 f (z)| .
|z|

(1 − |z|)
n+α+1

p +k−1
‖ f ‖Ap

α
. (2.7)

Then, since for w ∈ B(z, r(1− |z|)) we have (1− r)
n+α+1

p +k−1(1− |z|)
n+α+1

p +k−1
≤ (1− |w|)

n+α+1
p +k−1, from (2.7)

we have

sup
w∈B(z,r(1−|z|))

|<k−1 f (w)| .
1

(1 − |z|)
n+α+1

p +k−1
‖ f ‖Ap

α
. (2.8)
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If in (2.4) we replace f by<k−1 f , we get

|<k f (z)| . |z|
supw∈B(z,r(1−|z|)) |<

k−1 f (w)|

1 − |z|
. (2.9)

Combining (2.8) and (2.9), we have

|<k f (z)| .
|z|

(1 − |z|)
n+α+1

p +k
‖ f ‖Ap

α
.

Thus, (2.3) holds for each m ∈ N, implying (2.2). �

The following lemma is well known.

Lemma 2.5. Let p ≥ 1 and α > −1. Then, for any t ≥ 0 and w ∈ B,

fw,t(z) :=
(1 − |w|2)t+1

(1 − 〈z,w〉)
n+α+1

p +t+1
, (2.10)

belongs to Ap
α and supw∈B ‖ fw,t‖Ap

α
. 1.

The following lemma is from [34] and [35].

Lemma 2.6. Let s ≥ 0, w ∈ B and gw,s(z) = (1 − 〈z,w〉)−s. Then,

<kgw,s(z) = s
Pk(〈z,w〉)

(1 − 〈z,w〉)s+k , (2.11)

where Pk(w) = sk−1wk + p(k)
k−1(s)wk−1 +· · ·+ p(k)

2 (s)w2 +w, and where p(k)
j (s), j = 2, k − 1, are nonnegative

polynomials for s > 0;

<kgw,s(z) =

k∑
t=1

a(k)
t

( t−1∏
j=0

(s + j)
)

〈z,w〉t

(1 − 〈z,w〉)s+t , (2.12)

where (a(k)
t ), t = 1, k, k ∈ N, are defined as

a(k)
1 = a(k)

k = 1, k ∈ N; (2.13)

and for 2 ≤ t ≤ k − 1, k ≥ 3,

a(k)
t = ta(k−1)

t + a(k−1)
t−1 . (2.14)

Lemma 2.7. Assume p ≥ 1, α > −1, m ∈ N, w ∈ B, fw,t is defined in (2.10), and (a(k)
t )t=1,k, k = 1,m,

are defined in (2.13) and (2.14). Then,

(a) for each l ∈ {1, . . . ,m}, there is

h(l)
w (z) =

m∑
k=0

c(l)
k fw,k(z), (2.15)
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where c(l)
k , k = 0,m, are numbers, such that

< jh(l)
w (w) = 0, 0 ≤ j < l, (2.16)

< jh(l)
w (w) = a( j)

l

|w|2l

(1 − |w|2)
n+α+1

p +l
, l ≤ j ≤ m, (2.17)

hold. Moreover, we have supw∈B ‖h
(l)
w ‖Ap

α
< +∞;

(b) there is

h(0)
w (z) =

m∑
k=0

c(0)
k fw,k(z), (2.18)

where c(0)
k , k = 0,m, are numbers, such that

h(0)
w (w) =

1

(1 − |w|2)
n+α+1

p

, < jh(0)
w (w) = 0, j = 1,m,

hold. Moreover, we have supw∈B ‖h
(0)
w ‖Ap

α
< +∞.

Proof. (a) Let dk = n+α+1
p + k + 1, k ∈ N0. Replace the constants c(l)

k in (2.15) by ck. Then, from (2.12)
we get

h(l)
w (w) =

c0 + c1 + · · · + cm

(1 − |w|2)
n+α+1

p

,

<h(l)
w (w) =

(d0c0 + d1c1 + · · · + dmcm)|w|2

(1 − |w|2)
n+α+1

p +1
,

... (2.19)

<mh(l)
w (w) = a(m)

1
(d0c0 + d1c1 + · · · + dmcm)|w|2

(1 − |w|2)
n+α+1

p +1
+ · · ·

+ a(m)
l

(d0 · · · dl−1c0 + d1 · · · dlc1 + · · · + dm · · · dm+l−1cm)|w|2l

(1 − |w|2)
n+α+1

p +l
+ · · ·

+ a(m)
m

(d0 · · · dm−1c0 + d1 · · · dmc1 + · · · + dm · · · d2m−1cm)|w|2m

(1 − |w|2)
n+α+1

p +m
.

Lemma 2.5 in [11] shows that the determinant of the system,

1 1 · · · 1
d0 d1 · · · dm
...

...
...

l∏
k=0

dk

l∏
k=0

dk+1 · · ·

l∏
k=0

dm+k

...
...

...
m−1∏
k=0

dk

m−1∏
k=0

dk+1 · · ·

m−1∏
k=0

dm+k





c0

c1

...

cm


=



0
0
...

0
1
0
...

0


, (2.20)
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is different from zero (on the right-hand side of (2.20), the unit is in the (l + 1)th position). Thus,
there is a unique solution ck = c(l)

k , k = 0,m, to (2.20). For these ck-s, function (2.15) satisfies (2.16)
and (2.17). By Lemma 2.5 we have supw∈B ‖h

(l)
w ‖Ap

α
< +∞.

(b) The proof is similar, so it is omitted. �

3. Main results

Our main results are formulated and proved in this section.

Theorem 3.1. Let p ≥ 1, α > −1, k ∈ N, u ∈ H(B), ϕ ∈ S (B) and µ ∈ W(B). Then, the operator
<k

u,ϕ : Ap
α → H∞µ is bounded if and only if

Jk := sup
z∈B

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
< +∞, (3.1)

and if it is bounded, then we have

‖<k
u,ϕ‖Ap

α→H∞µ � Jk. (3.2)

Proof. Assume <k
u,ϕ : Ap

α → H∞µ is bounded. Let gw(z) = fϕ(w),1(z). By Lemma 2.6 the coefficients of
the polynomial Pk therein are nonnegative, so we have

s
µ(w)|u(w)||ϕ(w)|2

(1 − |ϕ(w)|2)
n+α+1

p +k
≤ s

µ(w)|u(w)|Pk(|ϕ(w)|2)

(1 − |ϕ(w)|2)
n+α+1

p +k
≤ ‖<k

u,ϕgw‖H∞µ . (3.3)

The boundedness, (3.3) and the fact supw∈B ‖gw‖Ap
α
< +∞, imply

sup
|ϕ(z)|>1/2

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
. ‖<k

u,ϕ‖Ap
α→H∞µ . (3.4)

Further, the fact f j(z) = z j ∈ Ap
α, j = 1, n, implies<k

u,ϕ f j ∈ H∞µ , j = 1, n, from which, together with
< f j = f j, j = 1, n, we get

sup
z∈B

µ(z)|u(z)||ϕ j(z)| = ‖<k
u,ϕ f j‖H∞µ ≤ ‖<

k
u,ϕ‖Ap

α→H∞µ ‖z j‖Ap
α
, j = 1, n,

from which we get

sup
z∈B

µ(z)|u(z)||ϕ(z)| . ‖<k
u,ϕ‖Ap

α→H∞µ . (3.5)

Inequality (3.5) together with

sup
|ϕ(z)|≤1/2

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
. sup
|ϕ(z)|≤1/2

µ(z)|u(z)||ϕ(z)|,

implies

sup
|ϕ(z)|≤1/2

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
. ‖<k

u,ϕ‖Ap
α→H∞µ . (3.6)
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Combining (3.4) and (3.6), we get (3.1) and Jk . ‖<
k
u,ϕ‖Ap

α→H∞µ .

Assume (3.1) holds. Then, Lemma 2.4 implies that for any f ∈ Ap
α(B) and z ∈ B,

µ(z)
∣∣∣<k

u,ϕ f (z)
∣∣∣ . µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
‖ f ‖Ap

α
. (3.7)

Taking the supremum in (3.7) over BAp
α
, and employing (3.1), the boundedness of<k

u,ϕ : Ap
α → H∞µ and

the relation ‖<k
u,ϕ‖Ap

α→H∞µ . Jk follow, implying (3.2). �

The following result is known. For a more general result, see [31].

Theorem 3.2. Let p ≥ 1, α > −1, µ ∈ W(B), u ∈ H(B) and ϕ ∈ S (B). Then, the operator<0
u,ϕ : Ap

α →

H∞µ is bounded if and only if

J0 =: sup
z∈B

µ(z)|u(z)|

(1 − |ϕ(z)|2)
n+α+1

p

< +∞, (3.8)

and if it is bounded, then ‖<0
u,ϕ‖Ap

α→H∞µ � J0.

Theorem 3.3. Let p ≥ 1, α > −1, m ∈ N, u j ∈ H(B), j = 0,m, ϕ ∈ S (B) and µ ∈ W(B). Then, the
operators< j

u j,ϕ : Ap
α → H∞µ , j = 0,m, are bounded if and only if Sm

~u,ϕ : Ap
α → H∞µ is bounded and

sup
z∈B

µ(z)|u j(z)||ϕ(z)| < +∞, j = 1,m. (3.9)

Proof. Assume Sm
~u,ϕ : Ap

α → H∞µ is bounded and (3.9) holds. We need to prove

I j = sup
z∈B

µ(z)|u j(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p + j
< +∞, j = 1,m, (3.10)

and

I0 = sup
z∈B

µ(z)|u0(z)|

(1 − |ϕ(z)|2)
n+α+1

p

< +∞. (3.11)

If ϕ(w) , 0, then there is h(m)
ϕ(w) ∈ Ap

α such that

< jh(m)
ϕ(w)(ϕ(w)) = 0, 0 ≤ j < m, <mh(m)

ϕ(w)(ϕ(w)) =
|ϕ(w)|2m

(1 − |ϕ(w)|2)
n+α+1

p +m
,

and supw∈B ‖h
(m)
ϕ(w)‖A

p
α
< +∞ (see Lemma 2.7 (a)). This, together with the boundedness of Sm

~u,ϕ : Ap
α →

H∞µ , implies

‖Sm
~u,ϕ‖A

p
α→H∞µ & ‖S

m
~u,ϕh(m)

ϕ(w)‖H∞µ ≥ µ(w)
∣∣∣∣∣ m∑

j=0

u j(w)< jh(m)
ϕ(w)(ϕ(w))

∣∣∣∣∣
=
µ(w)|um(w)||ϕ(w)|2m

(1 − |ϕ(w)|2)
n+α+1

p +m
, (3.12)
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from which it follows that

sup
|ϕ(z)|>1/2

µ(z)|um(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +m
. ‖Sm

~u,ϕ‖A
p
α→H∞µ ,

and along with

sup
|ϕ(z)|≤1/2

µ(z)|um(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +m
. sup

z∈B
µ(z)|um(z)||ϕ(z)| < +∞,

implies Im < +∞.
Assume (3.10) holds for j = s + 1,m, for an s ∈ {1, 2, . . . ,m−1}. Let h(s)

ϕ(w)(z) be as in Lemma 2.7 (a).
Then, supw∈B ‖h

(s)
ϕ(w)‖A

p
α
< +∞, and

µ(w)
∣∣∣∣∣ m∑

j=s

a( j)
s u j(w)

|ϕ(w)|2s

(1 − |ϕ(w)|2)
n+α+1

p +s

∣∣∣∣∣ ≤ sup
z∈B

µ(z)
∣∣∣∣ m∑

j=0

u j(z)< jh(s)
ϕ(w)(ϕ(z))

∣∣∣∣
. ‖Sm

~u,ϕ‖A
p
α→H∞µ ,

from which we easily get

µ(w)|us(w)||ϕ(w)|2s

(1 − |ϕ(w)|2)
n+α+1

p +s
. ‖Sm

~u,ϕ‖A
p
α→H∞µ +

m∑
j=s+1

µ(w)|u j(w)||ϕ(w)|2s

(1 − |ϕ(w)|2)
n+α+1

p +s
. (3.13)

From (3.13) and the fact s ≥ 1, we have

sup
|ϕ(z)|>1/2

µ(z)|us(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +s
. ‖Sm

~u,ϕ‖A
p
α→H∞µ +

m∑
j=s+1

sup
|ϕ(z)|>1/2

µ(z)|u j(z)||ϕ(z)|2s

(1 − |ϕ(z)|2)
n+α+1

p + j

≤ ‖Sm
~u,ϕ‖A

p
α→H∞µ +

m∑
j=s+1

I j.

This, together with the fact

sup
|ϕ(z)|≤1/2

µ(z)|us(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +s
. sup

z∈B
µ(z)|us(z)||ϕ(z)| < +∞,

implies (3.10) for j = s. Thus, (3.10) holds for any j ∈ {1, . . . ,m}.
For any w ∈ B, there is h(0)

ϕ(w) ∈ Ap
α such that

h(0)
ϕ(w)(ϕ(w)) =

1

(1 − |ϕ(w)|2)
n+α+1

p

, < jh(0)
ϕ(w)(ϕ(w)) = 0, j = 1,m,

and supw∈B ‖h
(0)
ϕ(w)‖A

p
α
< +∞ (see Lemma 2.7 (b)).

This together with the boundedness of Sm
~u,ϕ : Ap

α → H∞µ implies

µ(w)|u0(w)|

(1 − |ϕ(w)|2)
n+α+1

p

≤ ‖Sm
~u,ϕh(0)

ϕ(w)‖H∞µ . ‖S
m
~u,ϕ‖A

p
α→H∞µ , (3.14)

from which (3.11) follows, as claimed.
Assume < j

u j,ϕ : Ap
α → H∞µ , j = 0,m, are bounded. Then, Sm

~u,ϕ : Ap
α → H∞µ is also bounded. If u

in (3.5) is replaced by u j, we get (3.9). �
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Theorem 3.4. Let p ≥ 1, α > −1, k ∈ N, u ∈ H(B), ϕ ∈ S (B) and µ ∈ W(B). Then, the operator
<k

u,ϕ : Ap
α → H∞µ is compact if and only if it is bounded and

lim
|ϕ(z)|→1

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
= 0. (3.15)

Proof. If<k
u,ϕ : Ap

α → H∞µ is compact, it is also bounded. If ‖ϕ‖∞ < 1, (3.15) automatically/vacuously
holds. If ‖ϕ‖∞ = 1 and (z j) j∈N ⊂ B is such that |ϕ(z j)| → 1 as j → +∞, and h j(z) = fϕ(z j),t(z), then
sup j∈N ‖h j‖Ap

α
< +∞. From lim j→+∞(1 − |ϕ(z j)|2)t+1 = 0, we have h j → 0 as j → +∞, uniformly on

compacta of B. Using Lemma 2.1, it follows that lim j→+∞ ‖<
k
u,ϕh j‖H∞µ = 0, from which, along with the

consequence of (3.3),
µ(z j)|u(z j)||ϕ(z j)|

(1 − |ϕ(z j)|2)
n+α+1

p +k
≤ C‖<k

u,ϕh j‖H∞µ ,

which holds for sufficiently large j, and we easily get (3.15).
If <k

u,ϕ : Ap
α → H∞µ is bounded and (3.15) holds, then Theorem 3.1 implies µ(z)|u(z)||ϕ(z)| ≤ Jk <

+∞, z ∈ B, and (3.15) implies that for any ε > 0 there is δ ∈ (0, 1) such that when δ < |ϕ(z)| < 1,

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
< ε. (3.16)

Suppose ( f j) j∈N is a bounded sequence in Ap
α converging to zero uniformly on compacts of B. Let

sδ = {z ∈ B : |ϕ(z)| ≤ δ}. Then, Lemma 2.4, together with the fact supz∈B µ(z)|u(z)||ϕ(z)| < +∞,

and (3.16), implies

‖<k
u,ϕ f j‖H∞µ ≤sup

z∈sδ
µ(z)

∣∣∣u(z)<k f j(ϕ(z))
∣∣∣ + sup

z∈B\sδ
µ(z)

∣∣∣u(z)<k f j(ϕ(z))
∣∣∣

.sup
z∈sδ

µ(z)
∣∣∣u(z)

∣∣∣|ϕ(z)|
∣∣∣∇<k−1 f j(ϕ(z))

∣∣∣+ sup
z∈B\sδ

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k

. sup
|w|≤δ

∣∣∣∇<k−1 f j(w)
∣∣∣ + ε. (3.17)

The assumption f j → 0 on compacts along with Cauchy’s estimate implies lim j→+∞ |∇<
k−1 f j| = 0

uniformly on compacts of B. The set {w : |w| ≤ δ} is compact, so by letting j → +∞ in (3.17), it
follows that lim sup j→+∞ ‖<

k
u,ϕ f j‖H∞µ . ε, from which it follows that lim j→+∞ ‖<

k
u,ϕ f j‖H∞µ = 0. From

this and Lemma 2.1, the compactness of<k
u,ϕ : Ap

α → H∞µ follows. �

The following theorem is known. For a more general result, see [31].

Theorem 3.5. Let p ≥ 1, α > −1, u ∈ H(B), ϕ ∈ S (B) and µ ∈ W(B). Then, the operator<0
u,ϕ : Ap

α →

H∞µ is compact if and only if it is bounded and

lim
|ϕ(z)|→1

µ(z)|u(z)|

(1 − |ϕ(z)|2)
n+α+1

p

= 0. (3.18)

Theorem 3.6. Let p ≥ 1, α > −1, m ∈ N, u j ∈ H(B), j = 0,m, ϕ ∈ S (B) and µ ∈ W(B). Then, the
operator Sm

~u,ϕ : Ap
α → H∞µ is compact and (3.9) holds if and only if the operators< j

u j,ϕ : Ap
α → H∞µ are

compact for j = 0,m.
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Proof. If Sm
~u,ϕ : Ap

α → H∞µ is compact and (3.9) holds, then the operator is bounded, from which,

together with Theorem 3.3, the boundedness of< j
u j,ϕ : Ap

α → H∞µ , j = 0,m, follows. The previous two
theorems show that it is enough to prove

lim
|ϕ(z)|→1

µ(z)|u j(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p + j
= 0, j = 1,m, (3.19)

and

lim
|ϕ(z)|→1

µ(z)|u0(z)|

(1 − |ϕ(z)|2)
n+α+1

p

= 0. (3.20)

If ‖ϕ‖∞ < 1, then (3.19) and (3.20) hold. Assume ‖ϕ‖∞ = 1. Let (zk)k∈N ⊂ B be such that
limk→+∞ |ϕ(zk)| = 1, and h(s)

k (z) = h(s)
ϕ(zk)(z) for an s ∈ {1, . . . ,m} (see (2.15)). Then, supk∈N ‖h

(s)
k ‖A

p
α
< +∞.

The fact limk→+∞(1 − |ϕ(zk)|2)t+1 = 0, implies limk→+∞ h(s)
k = 0 uniformly on any compact of B. So,

Lemma 2.1 implies

lim
k→+∞

‖Sm
~u,ϕh(s)

k ‖H∞µ = 0. (3.21)

Relation (3.12) implies

µ(zk)|um(zk)||ϕ(zk)|

(1 − |ϕ(zk)|2)
n+α+1

p +m
. ‖Sm

~u,ϕh(m)
k ‖H∞µ , (3.22)

for sufficiently large k. From (3.22) and (3.21) with s = m, relation (3.19) with j = m follows.
If (3.19) holds for j = s + 1,m, for a fixed s ∈ {1, . . . ,m − 1}, (3.13) implies

µ(w)|us(zk)||ϕ(zk)|

(1 − |ϕ(zk)|2)
n+α+1

p +s
. ‖Sm

~u,ϕh(s)
k ‖A

p
α→H∞µ +

m∑
j=s+1

µ(w)|u j(zk)||ϕ(zk)|

(1 − |ϕ(zk)|2)
n+α+1

p + j
,

for k large, from which, along with (3.21) and the hypothesis, the relation (3.19) with j = s follows.
Thus, (3.19) holds for any s ∈ {1, . . . ,m}.

Let h(0)
k (z) = h(0)

ϕ(zk)(z) (see Lemma 2.7 (b)). Then, supk∈N ‖h
(0)
k ‖A

p
α
< +∞, and limk→+∞ h(0)

k (z) = 0
uniformly on compacts of B. From Lemma 2.1 we have that limk→+∞ ‖S

m
~u,ϕh(0)

k ‖H∞µ = 0, from which,
along with the consequence of (3.14),

µ(zk)|u0(zk)|

(1 − |ϕ(zk)|2)
n+α+1

p

. ‖Sm
~u,ϕh(0)

k ‖H∞µ ,

(3.20) follows.
Assume < j

u j,ϕ : Ap
α → H∞µ , j = 0,m, are compact. Then, Sm

~u,ϕ : Ap
α → H∞µ is also compact, and by

Theorem 3.3 is obtained (3.9). �

Theorem 3.7. Let p ≥ 1, α > −1, m ∈ N, u j ∈ H(B), j = 0,m, ϕ ∈ S (B) and µ ∈ W(B). Then, the
operator Sm

~u,ϕ : Ap
α → H∞µ,0 is bounded if and only if Sm

~u,ϕ : Ap
α → H∞µ is bounded and

lim
|z|→1

µ(z)
∣∣∣∣∣ m∑

j=0

u j(z)l j
∣∣∣∣∣|ϕ(z)|l = 0, l ∈ N0. (3.23)
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Proof. If Sm
~u,ϕ : Ap

α → H∞µ is bounded and (3.23) holds, then since any polynomial p is represented as

p(z) =
∑t

l=0 pl(z), where pl, l = 0, t are homogeneous polynomials of degree l, it follows that as |z| → 1,

µ(z)
∣∣∣(Sm

~u,ϕp)(z)
∣∣∣ ≤ t∑

l=0

µ(z)
∣∣∣∣∣ m∑

j=0

u j(z)l j
∣∣∣∣∣|pl(ϕ(z))| .

t∑
l=0

µ(z)
∣∣∣∣∣ m∑

j=0

u j(z)l j
∣∣∣∣∣|ϕ(z)|l → 0.

Hence, Sm
~u,ϕp ∈ H∞µ,0. The density of the set of polynomials in Ap

α, implies that for any f ∈ Ap
α there are

polynomials (pk)k∈N such that limk→+∞ ‖ f − pk‖Ap
α

= 0. From the boundedness of Sm
~u,ϕ : Ap

α → H∞µ we
have

‖Sm
~u,ϕ f −Sm

~u,ϕpk‖H∞µ ≤ ‖S
m
~u,ϕ‖A

p
α→H∞µ ‖ f − pk‖Ap

α
→ 0,

as k → +∞. So, Sm
~u,ϕ(Ap

α) ⊆ H∞µ,0, implying the boundedness of Sm
~u,ϕ : Ap

α → H∞µ,0.
If Sm

~u,ϕ : Ap
α → H∞µ,0 is bounded, then Sm

~u,ϕ : Ap
α → H∞µ is also bounded. The fact fs,l(z) = zl

s ∈ Ap
α,

s = 1, n, l ∈ N0, implies Sm
~u,ϕ fs,l ∈ H∞µ,0, s = 1, n, l ∈ N0. Hence, for s = 1, n, l ∈ N0, we have

lim
|z|→1

µ(z)|Sm
~u,ϕ fs,l(z)| = lim

|z|→1
µ(z)

∣∣∣∣∣ m∑
j=0

u j(z)l j
∣∣∣∣∣|ϕs(z)|l = 0,

from which, along with |ϕ(z)|l .
∑n

s=1 |ϕs(z)|l, (3.23) follows for each l ∈ N0. �

Theorem 3.8. Let p ≥ 1, α > −1, k ∈ N, u ∈ H(B), ϕ ∈ S (B) and µ ∈ W(B). Then, the operator
<k

u,ϕ : Ap
α → H∞µ,0 is compact if and only if

lim
|z|→1

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
= 0. (3.24)

Proof. Relation (3.24) implies (3.1). Taking the supremum in (3.7) over B and BAp
α
, and

employing (3.1), it follows that

sup
f∈BAp

α

sup
z∈B

µ(z)
∣∣∣<k

u,ϕ f (z)
∣∣∣ . sup

z∈B

µ(z)|u(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p +k
< +∞. (3.25)

Hence, the set S = {<k
u,ϕ f ∈ H∞µ : f ∈ BAp

α
} is bounded in H∞µ . From (3.7) and (3.24) we easily

get <k
u,ϕ f ∈ H∞µ,0 for any f ∈ BAp

α
, i.e., S ⊂ H∞µ,0. Taking the supremum in (3.7) over BAp

α
and

employing (3.24), it follows that

lim
|z|→1

sup
f∈BAp

α

µ(z)
∣∣∣<k

u,ϕ f (z)
∣∣∣ = 0.

This fact and Lemma 2.2 imply the compactness of<k
u,ϕ : Ap

α → H∞µ,0.
If<k

u,ϕ : Ap
α → H∞µ,0 is compact, then<k

u,ϕ : Ap
α → H∞µ is also compact. From Theorem 3.4 we have

that (3.15) and (3.16) hold. The fact f j(z) = z j ∈ Ap
α, j = 1, n, implies <k

u,ϕ f j ∈ H∞µ,0, j = 1, n, from
which we have lim|z|→1 µ(z)|u(z)||ϕ j(z)| = 0, j = 1, n. Hence,

lim
|z|→1

µ(z)|u(z)||ϕ(z)| = 0. (3.26)

From (3.26) together with (3.16) we obtain (3.24) in a standard way. �
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The following result is known. For a more general result, see [31].

Theorem 3.9. Let p ≥ 1, α > −1, u ∈ H(B), ϕ ∈ S (B) and µ ∈ W(B). Then, the operator<0
u,ϕ : Ap

α →

H∞µ,0 is compact if and only if

lim
|z|→1

µ(z)|u(z)|

(1 − |ϕ(z)|2)
n+α+1

p

= 0. (3.27)

Theorem 3.10. Let p ≥ 1, α > −1, m ∈ N, u j ∈ H(B), j = 0,m, ϕ ∈ S (B) and µ ∈ W(B). Then, the
operator Sm

~u,ϕ : Ap
α → H∞µ,0 is compact and

lim
|z|→1

µ(z)|u j(z)||ϕ(z)| = 0, j = 1,m, (3.28)

if and only if< j
u j,ϕ : Ap

α → H∞µ,0 are compact for j = 0,m.

Proof. Suppose Sm
~u,ϕ : Ap

α → H∞µ,0 is compact and (3.28) holds. For the compactness of < j
u j,ϕ : Ap

α →

H∞µ,0, j = 0,m, it is enough to prove (see Theorems 3.8 and 3.9),

lim
|z|→1

µ(z)|u j(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p + j
= 0, j = 1,m, (3.29)

and

lim
|z|→1

µ(z)|u0(z)|

(1 − |ϕ(z)|2)
n+α+1

p

= 0. (3.30)

Note that Sm
~u,ϕ : Ap

α → H∞µ is compact, whereas (3.9) follows from (3.28). The compactness of

<
j
u j,ϕ : Ap

α → H∞µ , j = 0,m, follows from Theorem 3.6. Hence, we have (3.19) and (3.20). Therefore,
for every ε > 0 there is δ ∈ (0, 1) such that for δ < |ϕ(z)| < 1,

µ(z)|u j(z)||ϕ(z)|

(1 − |ϕ(z)|2)
n+α+1

p + j
< ε, j = 1,m, and

µ(z)|u0(z)|

(1 − |ϕ(z)|2)
n+α+1

p

< ε. (3.31)

From (3.28) and (3.31), (3.29) easily follows. From the fact f0(z) ≡ 1 ∈ Ap
α it follows that Sm

~u,ϕ1 = u0 ∈

H∞µ,0, from which, together with (3.31), we similarly get (3.30).

If < j
u j,ϕ : Ap

α → H∞µ,0, j = 0,m, are compact, then Sm
~u,ϕ : Ap

α → H∞µ,0 is also compact. Beside
this (3.26) holds when u is replaced by u j for each j ∈ {1, 2, . . . ,m}, that is, (3.28) also holds. �

Remark 3.1. The quantities J0 and Jk, k ∈ N, in Theorems 3.1 and 3.2, are essentially obtained by
using the point evaluations in (2.1) and (2.2), respectively. Since the numerator of the right-hand
side in (2.1) does not contain the term |z|, the quantity J0 does not contain the term |ϕ(z)|, unlike the
quantities Jk, k ∈ N. This is connected with the definition of the radial derivative operator.
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4. Conclusions

Motivated, among others, by our investigations in [14–16, 35], in 2016 I came up with an idea
of studying finite sums of the weighted differentiation composition operators and introduced several
operators of this form acting on spaces of holomorphic functions on the unit disk or on the unit ball.
One of them was the operator in (1.1). In [37] we have studied the operator from Hardy spaces to
weighted-type spaces on the unit ball. Here we complement the main results therein by characterizing
the boundedness and compactness of the operator from the weighted Bergman space to the weighted-
type spaces on the unit ball. The methods, ideas and tricks presented here, with some modifications,
can be used in some other settings, which should lead to some further investigations in the direction.
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