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1. Introduction

The theory of fractional calculus has played an important role in engineering and natural sciences.
Currently, the concept of fractional calculus has been effectively used in many social, physical, signal,
image processing, biological and engineering problems. Further, it has been realized that a fractional
system provides a more accurate interpretation than the integer-order system in many real modeling
problems. For more details, one can refer to [1-10].

Oscillation phenomena take part in different models of real world applications; see for instance the
papers [11-17] and the papers cited therein. More precisely, we refer the reader to the papers [18,19]
on bio-mathematical models where oscillation and/or delay actions may be formulated by means of
cross-diffusion terms. Recently and although it is rare, the study on the oscillation of fractional partial
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differential equations has attracted many researchers. In [20-23], the researchers have established the
requirements of the oscillation for certain kinds of fractional partial differential equations.

In [24], Luo et al. studied the oscillatory behavior of the fractional partial differential equation of
the form

DL u(y, 1) + pOD (v, 1) + 0,1 f (1 = h) " u(y. h)dh
0
= aAu(y. ) + ) adAuly.t =), (n)€ QxR =H
i=1

subject to either of the following boundary conditions

Ou(y, 1)
ov

+ B, u(y, 1) =0, (1) €IOQXR,,
u(y,t)=0, ((y,t)€edQ xR,.

They have obtained some sufficient conditions for the oscillation of all solutions of this kind of
fractional partial differential equations by using the integral averaging technique and Riccati
transformations.

On other hand in [25], Xu and Meng considered a fractional partial differential equation of the form

DS, (r()DS u(y, 1)) + p()DL u(y, 1) + q(y, 1) f(u(y, 1))

= a(OAu(y, ) + ) biOAu(,t-T), (.0 € QxR =H
i=1

with the Robin boundary condition

Ou(y, 1)
ON

they obtained some oscillation criteria using the integral averaging technique and Riccati
transformations.
Prakash et al. [26] considered the oscillation of the fractional differential equation

+ g(y9 t)u(y, n=0, (y, NS (9Q X R,,

a !
E(F(I)D‘i,zu(y, N) +q(0.Df ( fo (t=v)uy, V)dV)= a®Au(y,n, (y.1) € O xR,

with the Neumann boundary condition

Ou(y,t)
ON

they obtained some oscillation criteria by using the integral averaging technique and Riccati
transformations.

Furthermore in [27], Ma et al. considered the forced oscillation of the fractional partial differential
equation with damping term of the form

0, (1 edQxR,,

d
E(r(t)Di’,tu(y, 0) + p()DS u(y, 1) + g, D f(u(y, 1) = a(®Au(y, 1) + gy, 1), (v,1) € O xR,
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with the boundary condition

Ou(y, 1)
ON

+pB, Du(y,n =0, (1) €IQXR,,

they obtained some oscillation criteria by using the integral averaging technique.

From the above mentioned literature, one can notice that the Riccati transformation method has
been incorporated into the proof of the oscillation results. Unlike previous results, however, we study
in this paper the forced oscillation of the fractional partial differential equation with the damping term
of the form

0 0 0
o (a(na (rg (D2, r)))) + ) (gD u(y. 1)
= b(OAu(y, )+ ) aDAu(y, 1 - 7))

i=1

—Q(y,t)fo(t—h)_“u(y,h)dh+f(y,t), 0N eQXR, =H (1.1)

via the application of the integral averaging technique only. Equation (1.1) is presented under a high
degree of generality providing a general platform for many particular cases. Here, D{ u(y,?) is the
Riemann-Liouville fractional partial derivative of order @ of u, @ € (0, 1), A is the Laplacian in R”, i.e.,

= Pu(y, 1)
Au(y,t):Z 832 ,

r=1

Q is a bounded domain of R” with the piecewise smooth boundary dQ and R, := (0, c0).
Further, we assume the Robin and Dirichlet boundary conditions

ou(y, 1)

3N + vy, Hu(y,t) =0, (y,1) € 00 XR, (1.2)

and
u(y,t)=0, ((,1)e€edQxR,, (1.3)

where N is the unit outward normal to dQ and y(y, ) > 0 is a continuous function on dQ X R,. The
following conditions are assumed throughout:

(Hy) a(t) € C'([to, 0); R,) and 7(1) € C*([t, ); R,);

(H,) g(t) € C*(R;R) is an increasing function and there exists a positive constant k such that ﬁ =k>
0,yg(y) # 0 fory # 0;

(Hy) p(1) € C([tp, 0):R) and A() = [\ EGde:

(Hy) b(1),a;(t) € C(R,;R,) and 7; are non-negative constants, i € I, = {1,2,...,m};

(Hs) gq(y,7) € C(H;R,) and g(7) = minyep q(y, 1);

(He) f(y,1) € C(H;R).

By a solution of the problems (1.1) and (1.2) (or (1.1)—(1.3)), we mean a function u(y, t) € C>**(Q x
[0, o0)), which satisfies (1.1) on H and the boundary condition (1.2) (or (1.3)).
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A solution u(y, t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is non-oscillatory.

The rest of the paper is organized as follows. Some basic definitions and known lemmas are
included in Section 2. In Sections 3 and 4, we study the oscillations of (1.1) and (1.2), and (1.1) and
(1.3), respectively. Section 5 deals with some applications for the sake of showing the feasibility and
effectiveness of our results. Lastly, we add a conclusion in Section 6.

2. Preliminaries

Before we start the main work, we present some basic lemmas and definitions which are applied in
what follows.

Definition 1. [4] The Riemann-Liouville fractional integral of order « > 0 of a functiony : R, —» R
on the half-axis R, is defined by

1)) = s )f(r 9y @ds. 1> 0

provided the right-hand side is pointwise defined on R, where I is the gamma function.

Definition 2. [4] The Riemann-Liouville fractional derivative of order a > 0 of a functiony : R, —» R
on the half-axis R is defined by

[a]

(D)) = s

(“”“)(r) t>0

provided the right-hand side is pointwise defined on R, where [a/] is the ceiling function of a.

Definition 3. [4] The Riemann-Liouville fractional partial derivative of order 0 < a < 1 with respect
to t of a function u(y, t) is defined by

(DS w)(y, 1) ==

= )atf(t—ﬁ) “u(y, 9di

provided the right-hand side is pointwise defined on R,.

Lemma 1. [4] Let y be a solution of (1.1) and

L(t) := f(t — )" y(Hdd
0

fora e (0,1)andt > 0. Then
L'(t) = T(1 = a)(Dy)(@).

Lemma 2. [4] Leta > 0,m € Nand D = %. If the fractional derivatives (D%, y)(t) and (D%"y)(t)
exist, then

(D"Dg,y) (1) = (D" y)(®).
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Lemma 3. [4]Ifa € (0,1), then

ylw()

a—1
@) (t—a)",

(I3, Dy, y) (1) = y(t) -

where yi_o(t) = (L;*y)(?).

Lemma 4. [5] The smallest eigenvalue By of the Dirichlet problem

Aw(y) + pw(y) =0in Q
w(®)=00n0Q

is positive and the corresponding eigenfunction ¢(y) is positive in Q.
3. Oscillation of (1.1) and (1.2)

In this section, we establish the oscillation criteria for (1.1) and (1.2).

Theorem 1. If (H;) — (Hg) are valid, lim I!~*U(0) = Cy and if
t—00

lim inf - C +thdT+fh ! fTeA<4)F({)d{ dr|ldi<0 (3.1
—e Joo |7, eAa(r) o @@am\J,, '

and

) (Z‘ h)a 1 i Cl 7i 1 T
hrtrlillp f wE) [2 fto eATa(T)dT+ fm m( fm eA@F({)d{)dT]dmo (3.2)

for some constants Cy,C, and C, with F(t) = fo(y, 1)dy, then all solutions of (1.1) and (1.2) are
oscillatory.

Proof. 1f u(y,t) is a non-oscillatory solution of (1.1) and (1.2) then there exists a , > 0 such that
u(y,t) > 0 (or u(y,t) < 0),t > t,.
Case 1. Let u(y, t) > 0 for ¢ > t,. Integrating (1.1) over Q, we get

d d ., d .,
” (a(t)d_t (r(hg(DLU (t)))) + p(t)d—t (r(Hg(DYU(1)))
~ (1) f Auty, ndy + Y ai(0) f Au(y, t = T)dy

0 i—1 o

- fQ (Q(y,l) j(: (t—h)_“u(y,h)dh)dwr fQ f(y, 0)dy, (3.3)

where U(?) = fQ u(y, t)dy with U(t) > 0. By (1.2) and Green’s formula, we have

f Au(y, t)dy = f ﬁd{— f y(y, Hu(y, yd¢ < 0 (3.4)
(¢ a0
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and

fAu(y, t—T1)dy < 0. 3.5)
o

Also, by (Hs), one can get
) (q(y, al <r—h)-“u<y,h>dh)dyzq<r> [a-nr ( J u(y,mdy)dh
= q(OL(), (3.6)

where L(t) = fot(t — h)~*U(h)dh. Because of the inequalities (3.4)—(3.6), (3.3) becomes

d
” (a(t)— (r(g(DLU (t)))) + p(t)— (r(Hg(DLU(1)) < —q(t)L(t) + F(t) < F(2).
Thus, we get

(¢"Va) (DDLU ) = & ((at) (DDLU ) + pO) (rngDLU@))) < V().
Integrating the above inequality over [#,, t], one can get
alt) (ORDIUO) < [ MNP C

where
Ci = " a(ty) (r(t))g(DIU (1)) -

Again integrating the above inequality over [#, t], we get

N t Cl t 1 T
r(ng(DIU®) < C + f aoam T f AOa(D) ( f eA@F@dg)dr

where C, = r(t))g(DSU(ty)). Then using (Hs), we obtain

DQU(I) L t_ 1 ’ A(0)
k =0 ’”(f) ’”(t)j; eA(T)a(T) r(t)j; eADa(T) (fto e F({)dl ) dr.

Applying the Riemann-Liouville fractional integral operator of order « to the above inequality and
using Lemma 3, we obtain

11 QU(O) e 1 (l h)a 1 7 Cl
S r(a)f 1 f "

1 A(0)
+ f, T ( f F(g)dg) dT]dh
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Then

liminf U(?) < liminf —% ! + lim inf e-n A,
mo =nh (@) i r(a) r(h) G+ W e0a(t) T

i 1 T
+ fto = ( j; eA@F(g)dg)dT] dh}.

Therefore, by our hypothesis, as given by (3.1), we get liminf,,,, U(¥) < 0. This leads to a
contradiction to U(¢) > O.

Case 2. Let u(y,t) < 0 for t > fy. Just as in Case 1, we can obtain that (3.3) holds and U(¢) < 0.
By (1.2) and Green’s formula, we get

fAu(y’ t)dy = %d{ = _f 7()” t)u(y, l)d(: >0 (37)
and
fAu(y, t—T1)dy > 0. (3.8)
o
Also, by (Hs), we have
fQ (q(y, 0 fo (1 = By "u(y, h)dh) dy < q(0) fo -y ( fQ UG, h)dy) dn
= q(t)L(1). (3.9)

Because of the inequalities (3.7)—(3.9), (3.3) becomes

d d d
” (“(”E (r(g(DLU (t)))) + ”‘”E (r(Hg(DLU (1)) = —q(t)L(t) + F(t) > F(1), (3.10)
that is,

(¢"a(0) (gL U@)Y ) = & ((a) (O8DIVD) ) + p(0) (rDTU)Y ) = @)

Integrating the above inequality over [y, t], we have

A0a(t) (HODUW)) > f AOFQVC + C,

fo

where
Cy = " a(ty) (r(t))g(DI U(1p))) .

Again integrating the above inequality over [#y, t], we obtain

N t Cl t 1 T
r(g(DIU() = Cy + fm eATa(T)dT+ fm P ( fm eA@)F(g)dg)dr

where C; = r(t))g(D}U(ty)). Then using (Hs), we obtain

DHU(I) L IL L t 1 - o
ko r(t) r(1) fto eA(T>a(T)dT+ (1) L eA(T)a(T)( fto e F({)dg“)dr

AIMS Mathematics Volume 8, Issue 2, 4261-4279.
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Applying the Riemann-Liouville fractional integral operator of order « to the above inequality and
using Lemma 3, we obtain

Ié‘“U(O)al (t- h)“l "G
YO~ T r(a)f 1€ f,oef“ﬂa(r)‘h

" L eA(T)la(T) ( f M OFdL )d’l’]dﬁ

Then

. o Co f (i - h)‘“ fh Ci
| U@ > 1 7 41 e
P U = i S s imsup Ty (27, @0am

[ [ sy

Therefore, by our hypothesis given by (3.2), we get limsup,_,, U(#) > 0. This leads to a contradiction
to U(t) < 0. O

4. Oscillation of (1.1) and (1.3)

In this section, we establish the oscillation criteria for (1.1) and (1.3).

Theorem 2. If (Hy) — (Hs) are valid, lim I}r‘“ U,(0)=A, and if
—00

. (t - h)al " | T A0
h?—{ionff EON ¢ IO eATa(T)dTJr fto eA(T)a(T)( IO e F 1(§)d§)dT]dh<0 4.1)

and

. h‘“ of L T
limsup f t-m' ) C2 f, eATa(T)dT+ ft eA(T)a(T)( fm eA<§>F1(§)d§)dT]dh>0 (4.2)

0 0

for some constants A, Cy and C, with

Fi() = fQ £ 000)dy and Uy(t) = fQ Uy, OO dy,

then all solutions of (1.1) and (1.3) are oscillatory.

Proof. If u(y,t) is a non-oscillatory solution of (1.1) and (1.3) then there exists a #, > 0 such that
u(y,t) > 0 (or u(y, t) < 0) for t > 1.
Case 1. Let u(y, 1) > 0 for t > t,. Multiplying (1.1) by ¢(y) and then integrating over Q, we get

0 0 N P .
fQ 8—t(a(t)a—t(r(t)g(D+,,u(y, t))))¢(y)dy+ fQ p(l)a(r(t)g(DHu(y, t)))¢(y)dy

= | sosu oy + | 3 amuc.-rpseay
i=1
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- fQ ((I(y,l‘) fo (t—h)_"u(y,h)dh)¢(y)dy+ fQ 3, Dp(y)dy.

By Lemma 4 and Green’s formula, we have

fQ Au(y, N¢(y)dy = fQ u(y, DAG(y)dy = —po L u(y, Ng(y)dy <0

and

fQ Au(y, t = 1))y < O.

Also, by (Hs), we get

f (q(y, ) fo (t—m—au(y,hw(y)dh)dyqu fo (6~ Ty ( f u(y,h>¢<y)dy)dh
o 0
= q(t)L(2),

where

L) = f(t - h)*U,(h)dh > 0.
0

Because of the inequalities (4.4)—(4.6), (4.3) becomes

d d d
% (a(r)d—t (r(H)g(DS Ul(t)))) + P% (r(g(DLUL (1)) < —q()Ly(t) + F1(t) < Fi(1),

that is,

I\’ ’

4.3)

4.4)

4.5)

(4.6)

(a0 DU ) = | (arO9DU1@)) ) +p0( DU | O

Integrating the above inequality over [y, 7], we have

A a(t) (HO(DUND)) < f FOF ()L + Cy,

fo

where
C1 = " aty) (r(to)g(DLU1 (1)) -

Again integrating the above inequality over [f, t], we have

N f C t 1 T
(DDLU (1) < Cy + f o f A Oa(r) ( f eA(‘f>F1<§>d§) dr,

where C, = r(ty)g(D5U,(ty)). Then using (Hs), we obtain

DU _C 1 (TG RN AN " AQ )
k = r(?) ’ r() Ji, eA(T)a(T)dT " r(1) eAD g (1) (fto "I F(dl | d.

fo
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Applying the Riemann-Liouville fractional integral operator of order « to the above inequality and
using Lemma 3, we obtain

LU0, (t - )a1 "G
) r(a)f a1 f“A@a(T)dT

+ft eA(T>a(T)( f A(oF]({)dg”)dT]dh

Then

.. AL f (t—h)* 1 f e
1 fU (1) <1 f——1* +1 f —_—
ma 1) < T I'a) 1£1lion ['(a) r(h) = o €A@a(r)

* fz h eA(ﬂla(T) (j; T eA@)Fl({)dg)dT]dh}'

Therefore, by our hypothesis given by (4.1), we get liminf,_,., U(#) < 0. This leads to a contradiction
to Uy(¢r) > 0.

Case 2. Let u(y,t) < 0 for t > #,. Multiplying (1.1) by ¢(y) and then integrating over Q, one can
get (4.3). Using Green’s formula, we have

fQ Au(y, )¢(y)dy = fQ u(y, DAG(y)dy = —fo L u(y, )g(y)dy > 0 4.7)

and

fAu(y, t—T1)o(y)dy > 0. 4.8)
0
Also, by (Hs), we have

[ a0 [a=mrucmanlociay < aor [ @-m+( [ utv.mroora)an
0 0 0 0
= q(t)L(1), 4.9)
where )
Li(t) = f(t —h)™ U, (h)dh < 0.
0
Because of the inequalities (4.7)—(4.9), (4.3) becomes
d d d
d—t(a(t)a(r(t)g(Di Ul(r>)))+p<r>z(r<r>g(Di Ul(t»)z —qOLI() + F1(0) > Fy(1), (4.10)

that is,

(¢ 2ato(rog10,@) ) = 2 (ar09D0,0)) ) 400 08DV )2 O 0.

Integrating the above inequality over [, t], we get

A0a(t) (DU, (1)) = f AOF () + €y,

fo

AIMS Mathematics Volume 8, Issue 2, 4261-4279.



4271

where
C, = e"®al(ty) (r(to)g(DIU  (10))) .

Again integrating the above inequality over [#, f], we get

N t C t 1 T
rDgDiUN D) = Cy + f T f e f MOF Qg Jdr

where C, = r(t))g(D;U,(t)). Then using (Hs), we obtain

DaUl(l‘) L f 1 - o
kT V(l) r(f)j; eA(T)a(T) r(t)ft; eA(T>a(T)( j;) ey 1(§)d§)d7'

Applying the Riemann-Liouville fractional integral operator of order « to the above inequality and
using Lemma 3, we obtain

0O (t—h)*! "G
U0 = S r(a)f ) [2 fmeﬂﬂa(r)dT

+ jl; eATa(T) (f A(()Fl(g)dg) dT] dh.

. . Al 1 . f (t—n)* 1 fh C,
lim sup Uy (#) > lim sup ——" +1 o’
e Ui = b w0 “ﬂi“p{n ) |21, Fam

i 1 T
+ fm prpr ( fm eA@Fl(g)dg)dT] dh}.

Therefore, by our hypothesis given by (4.2), we get lim sup,_,., U;(#) > 0. This leads to a contradiction
to Uy(r) < 0. O

Then

5. Applications

In this section, we give two examples to illustrate our main results.

Example 1. Let us consider the fractional partial differential system
5 1
D: u(y,1) = ~Au(y, 1) + 2tAu(y, 1 - 1)
’ /g
1 ! i
- (y2 + 72) f (t — B) 2u(y, i)dh + e* cos(f) sin(y), (y,1) € (0,7) X R, (5.1)
0
with the condition

uy(0,1) = uy(m, 1) = 0. (5.2)

In the above, a(t) = 1,r(t) = 1,g(t) = t,«
g, 1) = (° + £), f(, 1) = €* cos(1) sin(y), Q

1/2,p(t) = 0,b(t) = 1/m,m = 1,a,(t) = 2t, 71 = 1,
(0,7), q(t) = minyen q(y, ) = 1/¢* and o = 0.

AIMS Mathematics Volume 8, Issue 2, 4261-4279.
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Since F(t) = foﬂ e? cos(t) sin(y)dy = 2e* cos(t) and A(t) = 0, we have

(l )a 1 7 Cl il 1 T AO
f r(h) [ 5 ft; —eA(T)a(‘r)dT—l_f,O A0a(0) (ft; e F({)d{)dr] dh
t i3
:sz(t—h)‘”zdh+clf(t—h)‘”z(f dr)a’h
20 t vl ’ Oh 7
+= f (t—h)" 12 (2 f e*™ cos(T)dr + f e* sin(t)dt - 2 f dr)dh
5 0 0 0 0
= (C, — 6/25) f (t —h)'2dh + (C, — 4/5) f h(t — h)"\?dh
0 0

f !
+6/25 f e¥(t — h)"V2 cos(h)dh + 8/25 f e?(t — h)™V? sin(h)dh.
0 0

Fixing y* = t — 1, then

(t-n*" "G " T AQ
f T [2 jt;—eA(ﬂa(T)dT-l_ﬁ eA(T)a(T)(jt;e F(()dg)d‘r]dh

=2(Cy — 6/25)Vt + 4/3(C, — 4/5)¢?

Vi N
+4/25¢ [3 cos(t) f e cos(y?)dy + 3 sin(¥) f e sin(y?)dy
0 0

Vi Vi
+4 sin(r) f e’ cos(y*)dy — 4 cos(t) f e’ sin(yz)dy] . (5.3)
0 0

Pointing out that

Vi \/ﬂ

92 I, i 92 . i, v i, v
le™ cos(y?)| < e, e sin(y?)| < e® and lim e dy = ,
- J, 4

we can conclude that
\/; 2 ‘ﬁ 2
lim e cos(y’)dy and  lim e sin(y?)dy

t—o00 0 t—o0 0

are convergent. Thus, we have that

Vi Vi
lim [cos(t) (3 f e cos(y?)dy — 4 f e sin(yz)dy]
0 0

>0

‘ﬂ 2 \/i 2
+sint {3 f e sin(y*)dy + 4 f e cos(yz)dy]]
0 0

is convergent. Fixing

\/E 2 \/E 2
lim [ e cos(pPdy =P, lim f e sin(p)dy = Q
1—00 0

1—00 0
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and considering the sequence

t 3 +2 arctan 3P~ 40
n— "~ nmw — )
2 30 +4P

we get

n—oo

+sin(t,) (3 f e sin(y?)dy + 4 f e cos(yz)dy)
0 0

= V(3P —40)% + (30 + 4P)? sin (37” + 2nm — arctan (3P _ 4Q) + arctan (3P _ 4Q))

30 + 4P 30 + 4P
=5+4/P%+ Q?sin (37” + 2n7r)
=-5yYP>+ Q%

Since lim ¢, = oo, from (5.3), we have

n—oo

liminfftw C +fh Ld7'+fh ! fTeA@F({)d{ dr|dn
—e Joo oy [T, eA@a(n) o @Oa\J,

\in
= lim inf {2((:2 —6/25)Vt, +4/3(e”'C, — 4/5)t)* + 4/25" [cos(t,,) (3 f e cos(y?)dy
n—oo 0

—4 f e sin(yz)dy)+sin(tn) (3 f e sin(y*)dy + 4 f e cos(yz)dyﬂ
0 0 0

= —o0 < 0.

Vi Vi
lim < cos(t,) (3 f e cos(yH)dy — 4 f e sin(yz)dy]
0 0

Similarly, fixing

3P—4Q)

t z +2 arctan
L= = nm —
30 +4P

2

we get

Vi Vi
lim [Cos(tn) (3 f e cos(y?)dy — 4 f e sin(yz)dy)
0 0

tn Vin
+sin(t,) (3 f e sin(y?)dy + 4 f e cos(yz)dy)l
0 0
=5VP? + Q%

Thus, from (5.3), we can get
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hy*! C "o T
lll'tllioup f - ) [ ft; eA(T)(,lZ(T) dr + ft; eATa(T) (ft; €A({)F(§)d§) dT] dh

Vi,
= lim sup {2(02 —6/25)Vt, +4/3(e”'C, — 4/5)t) + 4/25¢" lcos(tn) (3 f e cos(y?)dy
0

Iy 5 ‘/E 2 In 2
-4 f e sin(yz)dy) + sin(z,) (3 f e sin(y?)dy + 4 f e cos(yz)dyﬂ}
0 0 0
=00 > (.

Therefore, by referring to Theorem 1, the solutions of (5.1) and (5.2) are oscillatory.

Example 2. Let us consider the fractional partial differential system

1 5 1 16 16¢* cos(t)\ [ |
D: ) = Au(y,t - t—h)? nydh

1875 v 0D = s E A0 )+(75><102m3 Sar? )fo( ) Ruly, 1)

+ e* cos(t) cos(10y), (y,1) € (0,m) % (0,1.5) 5.4
with the condition

u(0,1) = u(m, 1) =0. (5.5
In the above, a(t) = 1,r(t) = ﬁ;, gty = t,a = 1/2, p(t) = 0, b(t) = m = 1,

16¢* cos(t) . 210
() = —e, 1 = 0, 1) = el + SO0 £y 1) = & cos(t)sinG), Q = (0,7),q(1) =

2x10513
. zr S . . . .
Minyeom ¢V, 1) = 55707 + 1665 j;”‘” and o = 0. It is obvious that 8, = 1 and ¢(y) = sin(y). Since

Fi(t) = fo * cos(r) cos(10y) sin(y)dy = 5ze* cos(r) and A(f) = 0, we have

(t — h)! hooC I | g
f EON ( 2 IO eA(T>clz(T)dT+f,0 eAa(T) (IO eA@F(g)dg) dT) an
= 3750V_f( )~ l(f (f ezgcos(g)d{)dT)dh

_ 50‘/_f(t ) Y2dn + SOOV_fh( m2dn

504
33

[3 f 2t = h)™V? cos(h)dh + 4 f et — h)™? sin(h)dh].
0 0

Fixing y> = t — 7, then

(t—h)>! e "o T AO
f r(h) [ 2 L eA(T)a(T)dT-i_f,; eAMa(T) (f ¢ 'F({)d{)d?’] dn

102Vt 2x10° 1()
_ NGl L 2X s \/_ e {3 cos(t)f 2 cos(y))dy

11 99
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Vi Vi Vi
+3 sin(?) f ¢ sin(y?)dy + 4 sin(?) f e cos(y?)dy — 4 cos(?) f e sin(yz)dy} . (5.6)
0 0 0

Pointing out that

Vi 2
; _ _ . _ . 2y T
|e‘2’2 cos(y?)| < e 2y2, e’ sin(y?)| < e 2" and lim e 2’zdy ==
t—o00 0
we can conclude that
Vi Vi

: -2y? 2 : =2y i 2
lim e 7 cos(y’)dy and lim e 7 sin(y“)dy
—00 0 —o0 0

are convergent. Thus, we have that

Vi Vi
lim [Cos(t) (3 f e cos(yH)dy — 4 f e sin(yz)dy)
11— 0 0
Vi Vi
+sint[3 f e sin(y?)dy + 4 f e cos(y2)dy]
0 0

is convergent. Fixing

Vi Vi
lim e cos(y’)dy = P and lim e’ sin(y*)dy = Q

—00 0 —00 0
and considering the sequence

3
t, = — + 2nm — arctan

d 3P - 4Q)’

30 +4P

we get

lim {cos(tn) [3 f e cos(A)dy — 4 f o sin(y2)dy]
0 0

+sin(t,) (3 f e sin(y*)dy + 4 f e cos(yz)dy]
0 0

= V(3P —40)% + (30 + 4P)? sin (%ﬂ + 2nm — arctan (—3P _ 4Q) + arctan (—3P _ 4Q))

30 + 4P 30 + 4P
=5+P% + Q?sin (:%ﬂ + 2n7r)
= -5P*+ Q%

Since lim ¢, = oo, from (5.6), we have

n—oo
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hy! C "o i
llItIliup f (t ) [ ‘ft; eA(T)cll(T) dr + v[t; eAT(T) (f eA(é)F(f)d{) dT] dh

02 \/7t,, 2% 103 10 vie
= lim sup{ \/_n ,31/2 3;/_ 2tn [COS(tn) (3 f ey cos(yz)dy
0

n—oo

Vin In In
—4 f e sin(yz)dy)+sin(t,,) (3 f e sin(y?)dy + 4 f e cos(yz)a’y)l}
0 0 0

=00 > 0.

Similarly, fixing

3P-4
t, = g +2nﬂ—arctan(3Q+4g),

we get

CEE Vi
lim cos(z,,)[s f e cos(y?)dy — 4 f e sin(yz)dy)
0 0

Vin T
+ sin(t,) (3 f e’ sin(y*)dy + 4 f e’ cos(yz)dy]}
0 0

=5VP2+ Q%
Thus, from (5.6), we get

lim inf f e-n f ' LS f "1 f TeA(”F({)dé dr|dh
=0 |, dam » Oam\J,

0 vt 2% 10° 10? Vi
= lim inf{ : 1” v, + >;—Q()t,3/2 - 03—3‘/’_’(3”" [cos(rn) (3 f e cos(y?)dy
0

—4 f e sin(yz)dy)+sin(t,,) (3 f e sin(y*)dy + 4 f e cos(yz)dy)l
0 0 0
=—00 < 0.

Therefore, by referring to Theorem 2, the solutions of (5.4) and (5.5) are oscillatory. In fact, u(y,t) =
/2 cos(10y) is a solution of (5.4) and (5.5) and its oscillatory behavior is demonstrated in Figure 1.
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r e T, 05

Figure 1. Oscillatory behavior of u(y, t) = /% cos(10y).

6. Conclusions

In this paper, we have obtained some new oscillation results for the fractional partial differential
equation with damping and forcing terms under Robin and Dirichlet boundary conditions. The main
results are proved by using only the integral averaging technique and without implementing the Riccati
approach. Further, the obtained results are justified by some examples which can not be commented
upon by using the previous results. Our results have been obtained for the general equation which may
cover other particular cases.
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