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Abstract: The Pythagorean fuzzy set is an extension of the intuitionistic fuzzy set and is an effective 
approach of handling uncertain situations. Ring theory is a prominent branch of abstract algebra, 
vibrant in wide areas of current research in mathematics, computer science and 
mathematical/theoretical physics. In the theory of rings, the study of ideals is significant in many ways. 
Keeping in mind the importance of ring theory and Pythagorean fuzzy set, in the present article, we 
characterize the concept of Pythagorean fuzzy ideals in classical rings and study its numerous algebraic 
properties. We define the concept of Pythagorean fuzzy cosets of a Pythagorean fuzzy ideal and prove 
that the set of all Pythagorean fuzzy cosets of a Pythagorean fuzzy ideal forms a ring under certain 
binary operations. Furthermore, we present Pythagorean fuzzy version of the fundamental theorem of 
ring homomorphism. We also introduce the concept of Pythagorean fuzzy semi-prime ideals and give 
a detailed exposition of its different algebraic characteristics. In the end, we characterized regular rings 
by virtue of Pythagorean fuzzy ideals. 
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1. Introduction 

Zadeh [1] introduced the notion of fuzzy sets (FSs) which has numerous applications in different 
branches of science and technology. A fuzzy subset 𝔉  on a universe 𝐾  is denoted as 
𝛼, 𝜇𝔉 𝛼 : 𝛼 ∈ 𝐾  , where 𝜇𝔉  is a function from 𝐾  to 0,1   and is called membership function. 



4281 

AIMS Mathematics  Volume 8, Issue 2, 4280–4303. 

Undoubtedly fuzzy set is a generalization of conventional set. In a conventional set 𝐴, the membership 
function is the characteristic function 𝜒 . The utilization of fuzzy set theory can be observed in almost 
every scientific field, particularly those involving set theory and mathematical logic. After the 
invention of fuzzy sets, many theories were put forward to deal with uncertainty and imprecision. 
Some of those are extensions of fuzzy sets, while others strive to deal with uncertainty in another 
suitable way. Later, it has been found that only the membership function is not sufficient to describe 
certain types of information. In this way, Atanassov [2] extended fuzzy sets to intuitionistic fuzzy sets 
(IFSs) to give a proper illustration of the information and allow a greater degree of freedom and 
flexibility in representing uncertainty. An IFS 𝔉  of a conventional set 𝐾  is an object 

𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾  , where 𝜇𝔉 :𝐾 → 0,1   and 𝜈𝔉 :𝐾 → 0,1   are membership and non-

membership functions respectively under the condition 𝜇ℛ 𝛼 𝜈ℛ 𝛼 1  for all 𝛼 ∈ 𝐾 . As 
compared to FS, the IFS handles uncertainty and vagueness in the field of decision-making [3,4] more 
effectively but even then, there is room for improvement. There exist many cases where IFSs unable 
to perform. For example: If a decision maker proposes 𝜇𝔉 𝛼 0.7 and 𝜈𝔉 𝛼 0.4 for some 𝛼 ∈
𝐾. Then 𝜇ℛ 𝛼 𝜈ℛ 𝛼 1, therefore, such problems are beyond the limitations of IFS theory. To 
cope with these situations, Yager [5] generalized the notion of intuitionistic fuzzy sets by defining the 
Pythagorean fuzzy sets (PFSs). In [6], Zhang and Xu led the foundation of this novel concept. The 

Pythagorean fuzzy subset 𝔉 of 𝐾 is denoted by 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾 , where 𝜇𝔉:𝐾 → 0,1  

and 𝜈𝔉:𝐾 → 0,1  such that 𝜇𝔉 𝛼 𝜈𝔉 𝛼 1 for all 𝛼 ∈ 𝐾. This idea is invented to transform 

vague and uncertain circumstances into mathematical form and to find an efficient solution [7,8]. 

1.1 Background and importance of ring theory 

The theory of rings [9] is one of the important branches of mathematics. The idea of the ring was 
originally conceived to prove Fermat's Last Theorem, starting with Dedekind in the 1880s. After 
commitments from different fields (mainly number theory), the notion of the ring was summarized and 
firmly established in the decade of 1920 to 1930 by Noether and Krull. Present-day ring theory–an 
exceptionally dynamic numerical control–ponders rings in their very own right. To investigate rings, 
mathematicians have concocted different ideas to break rings into littler, better-reasonable pieces, for 
example, ideals, quotient rings and basic rings. In addition to these abstract attributes, ring theorists 
also make different qualifications between the theory of commutative rings and noncommutative rings. 
The commutative rings have a place in algebraic geometry and algebraic number theory. 
Noncommutative ring theory started with endeavors to extend complex numbers. The origins of 
commutative and non-commutative ring theories can be traced back to the early 19th century, while 
their maturity was achieved in the third decade of the 20th century. Over the past decade, ring theory 
has been applied to various branches of science, especially computer science, coding theory, and 
cryptography [10–12]. 

1.2 Literature review 

In 1982, Liu [13] generalized the notion of the subring/ideal of a ring to the fuzzy subring/fuzzy 
ideal of a ring. In [14], different operations between fuzzy ideals of a ring have been defined. 
Mukherjee and Malik [15] published a fundamental paper on fuzzy ideals over Artinian rings. The 
author presented a characterization of Artinian rings with respect to fuzzy ideals. Hur et al. [16] defined 
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the notion of intuitionistic fuzzy ideals of a ring. The notion of 𝜔-fuzzy ideal of a ring is defined in [17]. 
Shabir et al. [18] investigated the approximation of bipolar fuzzy ideals of semirings. In [19], the notion 
of anti-fuzzy multi-ideals of the near ring is discussed. Madeline et al. [20] defined fuzzy multi-ideals 
of near rings and proved some fundamental theorems of this notion. A fuzzy version of Zorn’s lemma 
is present in [21]. The author used it to demonstrate that every proper fuzzy ideal of a ring is contained 
in a maximal fuzzy ideal. Addis et al. [22] proved some important results regarding fuzzy 
homomorphism. The algebraic characteristics of 𝛼, 𝛽 -Pythagorean fuzzy ideals of a ring are discussed 
in [23]. Hakim et al. presented a study [24] related to bipolar soft semiprime ideals over ordered 
semigroups. The concept of fuzzy ideals of LA rings is described in [25]. The authors presented a 
characterization of regular LA-rings with respect to fuzzy ideals. 

1.3 Research gap in the current literature and motivation of the study 

The above literature review highlights some research achievements in classical and intuitionistic 
fuzzy ring theory. Additionally, although certain results about 𝛼, 𝛽 -Pythagorean fuzzy subrings of a 
ring and bipolar Pythagorean fuzzy subring of a ring have been demonstrated but some open questions 
remain to be answered. 
1) In classical ring theory, the interstation of two subrings/ideals of a ring 𝐾 is a subring/ideal of 𝐾. 
Therefore, a question arises, whether the intersection of two Pythagorean fuzzy subrings/ideals is a 
Pythagorean fuzzy subring/ideal of 𝐾? Moreover, if 𝑆 is a subring of a ring 𝐾 and 𝐼 is an ideal of 
𝐾 , then 𝑆 ∩ 𝐼  is an ideal of 𝑆 . The analogous version of this theorem in the Pythagorean fuzzy 
framework needs to be studied. 
2) The characterization of classical/intuitionistic fuzzy subrings/ideals with respect to 
classical/intuitionistic fuzzy level sub-rings/ideals is given in the existing literature. Since a 
Pythagorean fuzzy ring theory is a generalization of intuitionistic fuzzy ring theory, therefore, it is 
important to understand the characterization of Pythagorean fuzzy subrings/ideals in terms of 
Pythagorean fuzzy level fuzzy subrings/ideals. 
3) In classical ring theory, cosets of subring/ideal of a ring 𝐾 is an important notion because it gives 
rise to quotient rings. It is well known that the set of all cosets of an ideal of 𝐾 forms ring under a 
certain binary operation. A natural question comes into mind, does the set of all Pythagorean fuzzy 
cosets of Pythagorean fuzzy ideal of 𝐾, forms a ring under certain binary operations? 
4) The fundamental theorem of ring homomorphism is one of the finest results in classical ring theory. 
Therefore, it is necessary to discuss this remarkable theorem in the context of Pythagorean fuzzy rings. 
5) In the literature, various algebraic properties of fuzzy semi-prime ideals have been discussed. 
Furthermore, the characterization of regular rings by virtue of fuzzy ideals is presented. In the context 
of Pythagorean fuzzy theory, these studies have yet to be examined from a broader perspective. 

Answering the above-mentioned open problems and bridging the knowledge gap in the existing 
literature is the ultimate aim of this research. 

1.4 Comparative study and limitations of the current research 

The results proved in this paper are valid for Pythagorean fuzzy ideals. Since every IFS is a PFS, 
therefore, the same hold for intuitionistic fuzzy ideals as well. Moreover, every fuzzy set is an IFS, so 
the present study can also be applied to fuzzy ideals. However, we cannot apply these results directly 
to q-rung orthopair fuzzy ideals, picture fuzzy ideals, neutrosophic fuzzy ideals, fuzzy soft ideals and 
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fuzzy hypersoft ideals. Therefore, separate studies are recommended for these generalized structures. 
This is the main limitation of our research. 

The rest of the paper is set up in this way: Section 2 contains basic definitions and concepts that 
are required to demonstrate our main results. In Section 3, the internal description of the Pythagorean 
fuzzy ideal along with its fundamental properties are discussed. The notions of Pythagorean fuzzy 
cosets of a Pythagorean fuzzy ideal is defined in Section 4. We prove that the set of all Pythagorean 
fuzzy cosets of a Pythagorean fuzzy ideal forms a ring under certain binary operations. Moreover, the 
Pythagorean fuzzy version of the fundamental theorem of ring homomorphisms has been proved. In 
Section 5, the concept of the Pythagorean fuzzy semi-prime ideal is defined. We investigate some 
important algebraic features of this newly defined notion. Furthermore, the characterization of regular 
rings by virtue of PFI is presented. The conclusion of this paper is presented in Section 6. 

2. Preliminaries 

This section contains some notions and concepts which are needed to prove our main theorems. 
Definition 2.1. [13] A FS 𝔉 𝛼, 𝜇𝔉 𝛼 : 𝛼 ∈ 𝐾  of a ring 𝐾 is called a fuzzy subring (FSR) of 
𝐾 if for all 𝛼 , 𝛼 ∈ 𝐾, the following properties are satisfied: 

i. 𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 , 

ii. 𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 . 

The fuzzy ideal (FI) of 𝐾 has the same definition with the only difference that in condition (ii) “min” 
is replaced by “max”. 

Definition 2.2. [16] An IFS 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾  of 𝐾 is called an intuitionistic fuzzy 

subring (IFSR) of 𝐾 if for all 𝛼 , 𝛼 ∈ 𝐾, the following requirements are fulfilled: 

i. 𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  and 𝜈𝔉 𝛼 𝛼 𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 , 

ii. 𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  and 𝜈𝔉 𝛼 𝛼 𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

By interchanging “min” and “max” by “max” and “min” respectively, in condition (ii), we obtain the 
definition of intuitionistic fuzzy ideal (IFI) of 𝐾. 

Next, we define Pythagorean fuzzy subrings (PFSRs) and Pythagorean fuzzy ideals (PFIs) of a 
ring 𝐾. 

Definition 2.3 A PFS 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾   of 𝐾  is called a PFSR of 𝐾  if for all 

𝛼 , 𝛼 ∈ 𝐾, the following requirements are fulfilled: 

i. 𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼   and 𝜈𝔉 𝛼 𝛼

𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 , 

ii. 𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼   and 𝜈𝔉 𝛼 𝛼

𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

The PFS 𝔉  is known to be PFI of 𝐾 , if condition (ii) is replaced with 𝜇𝔉 𝛼 𝛼
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𝑚𝑎𝑥 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  and 𝜈𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

It is evident from Definitions 2.2 and 2.3 that every IFR/IFI is a PFR/PFI. The following example 
demonstrates that the converse is not true. 
Example 2.1. We know 𝑍 0,1,2,3  is a ring with respect to addition and multiplication modulo 4. 
It is easy to verify that 𝔉 0,0.9,0.3 , 3,0.7,0.5 , 2,0.8,0.4 , 4,0.7,0.5  is a PFSR/PFI of 𝑍
0,1,2,3 . Since the sum of membership and non-membership values is not less than or equal to one 

for all elements in 𝑍 , therefore, 𝔉 is not an IFS and hence not an IFR/IFI. 
Definition 2.4. Let 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾   be a PFS of 𝐾.  Then the set 𝔉 ,

𝛼 ∈ 𝐾: 𝜇𝔉 𝛼 𝜎, 𝜈𝔉 𝛼 𝜌  is known as Pythagorean fuzzy level set (PFLS) of 𝔉. 

Definition 2.5. Let 𝔉 and 𝔄 be two PFS of 𝐾. The product 𝔉 ∘ 𝔄 of 𝔉 and 𝔄 is defined by 

𝔉 ∘ 𝔄 𝛼, 𝜇𝔉∘𝔄 𝛼 , 𝜈𝔉∘𝔄 𝛼 : 𝛼 ∈ 𝐾 , 

where 𝜇𝔉∘𝔄 𝛼 max min 𝜇𝔉 𝛼 , 𝜇𝔄 𝛼 : 𝛼 , 𝛼 ∈ 𝐾, 𝛼 𝛼 𝛼   and 

𝜈𝔉∘𝔄 𝛼 min max 𝜈𝔉 𝛼 , 𝜈𝔄 𝛼 : 𝛼 , 𝛼 ∈ 𝐾, 𝛼 𝛼 𝛼 . 

3. Some fundamental results 

This section contains some internal description of the Pythagorean fuzzy ideal and its fundamental 
properties. 
Remark. 3.1. Every PFI of 𝐾 is a PFSR of 𝐾. 

In the following example, we see a PFSR of 𝐾 which is not a PFI of 𝐾. 
Example. 3.1. Consider 𝑆 1,2,3 , then 2  is the power set of 𝑆, that is, 

2 𝜙, 𝑆, 1 , 2 , 3 , 1,2 , 1,3 , 2,3  

forms ring under symmetric difference ∆  and intersection ∩ . Now, it is just a matter of simple 
calculation to conclude that 

𝔉
𝜙, 0.90,0.20 , 𝑆, 0.90,0.20 , 1 , 0.60,0.70 , 2 , 0.60,0.70 ,

3 ,0.90,0.20 , 1,2 , 0.90,0.20 , 1,3 ,0.60,0.70 , 2,3 ,0.60,0.70
 

is a PFSR of 2 . But 

𝜇𝔉 1,2 ∩ 1 𝜇𝔉 1 0.60  

and 

𝑚𝑎𝑥 𝜇𝔉 1,2 , 𝜇𝔉 1 0.90  

together imply that 𝔉 is not a PFI of 𝑅. 
Theorem 3.1. Let 𝔉 be a PFI of a ring 𝐾, then, 
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i. 𝜇𝔉 0 𝜇𝔉 𝛼  and 𝜈𝔉 0 𝜈𝔉 𝛼  for all 𝛼 ∈ 𝐾. 

ii. 𝜇𝔉 𝛼 𝜇𝔉 𝛼   and 𝜈𝔉 𝛼 𝜈𝔉 𝛼   for some 𝛼 , 𝛼 ∈ 𝐾  inplies that 

𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼   and 𝜈𝔉 𝛼 𝛼

𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

Proof. i. Let 𝛼 ∈ 𝐾 , then 𝜇𝔉 0 𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 𝜇𝔉 𝛼  . 

Similarly, we can prove 𝜈𝔉 0 𝜈𝔉 𝛼  for all 𝛼 ∈ 𝐾. 

ii. Assume that 𝛼 ,𝛼 ∈ 𝐾 such that 𝜇𝔉 𝛼 𝜇𝔉 𝛼 , then obviously 𝜇𝔉 𝛼 𝜇𝔉 𝛼 . 

Consider 

𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 𝛼 .  (3.1) 

Since 𝜇𝔉 𝛼 𝜇𝔉 𝛼 , therefore, Eq (3.1) yields 

𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝛼 .       (3.2) 

Furthermore, 

𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 𝜇𝔉 𝛼 .    (3.3) 

The Eqs (3.2) and (3.3) together imply that 

𝜇𝔉 𝛼 𝛼 𝜇𝔉 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 . 

In the identical way, it can be shown that 

𝜈𝔉 𝛼 𝛼 𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

Theorem 3.2. The intersection of two PFIs of 𝐾 is a PFI of 𝐾. 
Proof. Suppose that 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼  and 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼  are PFIs of 𝐾. Then 
for all 𝛼 , 𝛼 ∈ 𝐾, we have 

𝜇𝔉 ∩𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 𝛼 , 𝜇𝔉 𝛼 𝛼  

𝑚𝑖𝑛 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 , 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  

𝑚𝑖𝑛 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 , 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  

𝑚𝑖𝑛 𝜇𝔉 ∩𝔉 𝛼 , 𝜇𝔉 ∩𝔉 𝛼 . 
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Therefore, 𝜇𝔉 ∩𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 ∩𝔉 𝛼 , 𝜇𝔉 ∩𝔉 𝛼  . Similarly, 𝜈𝔉 ∩𝔉 𝛼

𝛼 𝑚𝑎𝑥 𝜈𝔉 ∩𝔉 𝛼 , 𝜈𝔉 ∩𝔉 𝛼 . Next, 

𝜇𝔉 ∩𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 𝛼 , 𝜇𝔉 𝛼 𝛼  

𝑚𝑖𝑛 𝑚ax 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 , 𝑚ax 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  

𝑚ax 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 , 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  

𝑚ax 𝜇𝔉 ∩𝔉 𝛼 , 𝜇𝔉 ∩𝔉 𝛼 . 

That is, 𝜇𝔉 ∩𝔉 𝛼 𝛼 𝑚ax 𝜇𝔉 ∩𝔉 𝛼 , 𝜇𝔉 ∩𝔉 𝛼  . The utilization of the same 

arguments gives 𝜈𝔉 ∩𝔉 𝛼 𝛼 𝑚in 𝜈𝔉 ∩𝔉 𝛼 , 𝜈𝔉 ∩𝔉 𝛼 . Thus, 𝔉 ∩ 𝔉  is a PFI 

of 𝐾. 
Theorem 3.3. Let 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼  be a PFI of 𝐾. Then, 

i. 𝔉∗ 𝛼 ∈ 𝐾: 𝜇𝔉 𝛼 𝜇𝔉 0  is an ideal of 𝐾. 

ii. 𝔉∗ 𝛼 ∈ 𝐾: 𝜈𝔉 𝛼 𝜈𝔉 0  is an ideal of 𝐾. 

iii. 𝔉∗ 𝛼 ∈ 𝐾: 𝜇𝔉 𝛼 𝜇𝔉 0  and 𝜈𝔉 𝛼 𝜈𝔉 0  is an ideal of 𝐾. 

Proof. i. By definition of 𝔉∗ , we have 0 ∈ 𝔉∗ . Therefore, 𝔉∗  is non-empty subset of 𝐾. 

Let 𝛼 , 𝛼 ∈ 𝔉∗ , then 𝜇𝔉 𝛼 𝜇𝔉 0 𝜇𝔉 𝛼 . Consider 

𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  

𝑚𝑖𝑛 𝜇𝔉 0 , 𝜇𝔉 0 𝜇𝔉 0 . 

Moreover, from Theorem 3.1, it can be obtained 𝜇𝔉 0 𝜇𝔉 𝛼 𝛼  . Therefore, 

𝜇𝔉 𝛼 𝛼 𝜇𝔉 0  implying that 𝛼 𝛼 ∈ 𝔉∗ . 

Now, suppose that 𝛼 ∈ 𝔉∗  and 𝛽 ∈ 𝐾. Then, 

𝜇𝔉 𝛼𝛽 𝑚ax 𝜇𝔉 𝛼 , 𝜇𝔉 𝛽 𝜇𝔉 0 . 

In view of Theorem 3.1, 𝜇𝔉 0 𝜇𝔉 𝛼𝛽  . So, 𝜇𝔉 𝛼𝛽 𝜇𝔉 0 ⇒ 𝛼𝛽 ∈ 𝔉∗  . 

Similarly, it can be proved that 𝛽𝛼 ∈ 𝔉∗ . Thus, 𝔉∗  is an ideal of 𝐾. 
ii. The proof is similar to that of (i). 
iii. The proof is straightforward by using (i) and (ii). 
Theorem 3.4. The intersection of a PFSR 𝔉 and a PFI 𝔄 of a ring 𝐾 is a PFI of 𝔉∗. 
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Proof. Let 𝛼 , 𝛼 ∈ 𝔉∗, then, 

𝜇𝔉∩𝔄 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 𝛼 , 𝜇𝔄 𝛼 𝛼  

𝑚𝑖𝑛 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 , 𝑚𝑖𝑛 𝜇𝔄 𝛼 , 𝜇𝔄 𝛼  

𝑚𝑖𝑛 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔄 𝛼 , 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔄 𝛼  

𝑚𝑖𝑛 𝜇𝔉∩𝔄 𝛼 , 𝜇𝔉∩𝔄 𝛼 . 

Therefore, 𝜇𝔉∩𝔄 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉∩𝔄 𝛼 , 𝜇𝔉∩𝔄 𝛼  . Similarly, 𝜈𝔉∩𝔄 𝛼

𝛼 𝑚𝑎𝑥 𝜈𝔉∩𝔄 𝛼 , 𝜈𝔉∩𝔄 𝛼 . Next, 

𝜇𝔉∩𝔄 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 𝛼 , 𝜇𝔄 𝛼 𝛼  

𝑚𝑖𝑛 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 , 𝑚𝑎𝑥 𝜇𝔄 𝛼 , 𝜇𝔄 𝛼  

𝑚𝑖𝑛
𝑚𝑎𝑥 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 ,

𝑚𝑎𝑥 𝜇𝔄 𝛼 , 𝜇𝔄 𝛼
, as 𝜇𝔉 𝛼 0 𝜇𝔉 𝛼  

𝑚𝑎𝑥 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔄 𝛼 , 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔄 𝛼  

𝑚𝑎𝑥 𝜇𝔉∩𝔄 𝛼 , 𝜇𝔉∩𝔄 𝛼 . 

That is, 𝜇𝔉∩𝔄 𝛼 𝛼 𝑚𝑎𝑥 𝜇𝔉∩𝔄 𝛼 , 𝜇𝔉∩𝔄 𝛼 . By using the same arguments, it can 

be obtainable that 𝜈𝔉∩𝔄 𝛼 𝛼 min 𝜈𝔉∩𝔄 𝛼 , 𝜈𝔉∩𝔄 𝛼 . Thus, 𝔉 ∩ 𝔄 is a PFI of 𝔉∗. 

We present the following example to explain Theorem 3.4. 

Example 3.2. Consider a PFSR 𝔉 𝑎, 𝜇𝔉 𝑎
0.80, 𝑖𝑓 𝑎 ∈ ℤ,

0.70, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝜈𝔉 𝑎

0.30, 𝑖𝑓 𝑎 ∈ ℤ,
0.40, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

: 𝑎 ∈ ℝ   and a PFI 𝔄 𝑎, 𝜇𝔄 𝑎
0.90, 𝑖𝑓 𝑎 0,

0.75, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝜈𝔄 𝑎

0.25, 𝑖𝑓 𝑎 0,
0.50, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

: 𝑎 ∈ ℝ   of the ring of real numbers ℝ . Then, 𝔉∗ ℤ  and 𝔉 ∩ 𝔄

𝑎, 𝜇𝔉∩𝔄 𝑎
0.80, 𝑖𝑓 𝑎 0,

0.75, 𝑖𝑓 𝑎 ∈ ℤ 0
0.70, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,  𝜈𝔉∩𝔄 𝑎
0.30, 𝑖𝑓 𝑎 0,

0.50, 𝑖𝑓 𝑎 ∈ ℤ 0
0.50, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

: 𝑎 ∈ ℝ . It can be easily 

validated that 𝔉 ∩ 𝔄 is a PFI of 𝔉∗ ℤ. 
Theorem 3.5. A PFS 𝔉 of a ring 𝐾 is PFI of 𝐾 if and only if 𝔉 ,  is an ideal of 𝐾 for all 𝜎 ∈

0, 𝜇𝔉 0  and 𝜌 ∈ 𝜈𝔉 0 , 1 . 

Proof. Suppose that 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾  is PFI of 𝐾. We want to prove that 𝔉 ,  is an 
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ideal of 𝐾 for all 𝜎 ∈ 0, 𝜇𝔉 0  and 𝜌 ∈ 𝜈𝔉 0 , 1 . 

For all such 𝜎  and 𝜌 , clearly 𝜇𝔉 0 𝜎 and 𝜈𝔉 0 𝜌 . Therefore, 0 ∈ 𝔉 ,  

implying that 𝔉 ,  is a non-empty set. 

Suppose 𝛼 , 𝛼 ∈ 𝔉 ,  , which means that 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 𝜎  and 

𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 𝜌. Since 𝔉 is PFI of 𝐾, therefore, 

𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 𝑚𝑖𝑛 𝜎, 𝜎 𝜎 

and 

𝜈𝔉 𝛼 𝛼 𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 𝑚𝑎𝑥 𝜌, 𝜌 𝜌 

together imply that 𝛼 𝛼 ∈ 𝔉 , . 

Again, assume that 𝛼 ∈ 𝔉 ,   and 𝛽 ∈ 𝐾 , then 𝜇𝔉 𝛼 𝜎  and 𝜈𝔉 𝛼 𝜌 . Since 𝔉 

is PFI of 𝐾, therefore, 

𝜇𝔉 𝛼𝛽 𝑚𝑎𝑥 𝜇𝔉 𝛼 , 𝜇𝔉 𝛽 𝑚𝑎𝑥 𝜎, 𝜇𝔉 𝛽 𝜎 

and 

𝜈𝔉 𝛼𝛽 𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛽 𝑚𝑖𝑛 𝜌, 𝜈𝔉 𝛽 𝜌 

together imply that 𝛼𝛽 ∈ 𝔉 , . In a similar way, we can prove that 𝛽𝛼 ∈ 𝔉 , . Thus, 𝔉 ,  is an 

ideal of 𝐾. 

Conversely, let 𝔉 ,  be an ideal of 𝐾 for all 𝜎 ∈ 0, 𝜇𝔉 0  and 𝜌 ∈ 𝜈𝔉 0 , 1 . To 

show 𝔉  is a PFI of 𝐾 , firstly suppose that 𝛼 , 𝛼 ∈ 𝐾  and let 𝜇𝔉 𝛼 𝜎 , 𝜇𝔉 𝛼

𝜎 ,  𝜈𝔉 𝛼 𝜌  and 𝜈𝔉 𝛼 𝜌 . Then, 

i. 𝛼 , 𝛼 ∈ 𝔉 , , ,  , since 𝔉 , , ,   is an ideal of 𝐾 , therefore 

𝛼 𝛼 ∈ 𝔉 , , ,  , which yields 𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜎 , 𝜎

𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼   and 𝜈𝔉 𝛼 𝛼 𝑚𝑎𝑥 𝜌 , 𝜌

𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

ii. Either 𝛼 ∈ 𝔉 , , ,   or 𝛼 ∈ 𝔉 , , ,  . In both the case, we 

yield 𝛼 𝛼 ∈ 𝔉 , , ,  , since 𝔉 , , ,   is an ideal of 𝐾 , which 

further implies that 𝜇𝔉 𝛼 𝛼 max 𝜎 , 𝜎 𝑚𝑎𝑥 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼   and 

𝜈𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜌 , 𝜌 min 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

Thus, 𝔉 is a PFSR of 𝐾. 
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Theorem 3.6. Suppose that 𝐾  is a division ring. Then, a PFS 𝔉  is a PFI of 𝐾  if and only if 

𝜇𝔉 𝛼 𝜇𝔉 1 𝜇𝔉 0  and 𝜈𝔉 𝛼 𝜈𝔉 1 𝜈𝔉 0  for all 𝛼 ∈ 𝑅 ∖ 0 . 

Proof. Let 𝔉 be a PFI of 𝐾. Then, 

𝜇𝔉 𝛼 𝜇𝔉 𝛼. 1 𝑚𝑎𝑥 𝜇𝔉 𝛼 , 𝜇𝔉 1 𝜇𝔉 1 𝜇𝔉 𝛼𝛼  

𝑚𝑎𝑥 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 𝜇𝔉 𝛼 , 

⇒ 𝜇𝔉 𝛼 𝜇𝔉 1  . Similarly, we can obtain that 𝜈𝔉 𝛼 𝜈𝔉 1  . Finally, the 

application of Theorem 3.1 (i) gives the desired result. 

Conversely, let 𝜇𝔉 𝛼 𝜇𝔉 1 𝜇𝔉 0   and 𝜈𝔉 𝛼 𝜈𝔉 1 𝜈𝔉 0  

for all 𝛼 ∈ 𝑅 ∖ 0 : 

(i) For all 𝛼 , 𝛼 ∈ 𝐾,  if 𝛼 𝛼  , then, 𝜇𝔉 𝛼 𝛼 𝜇𝔉 1

𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼   and 𝜈𝔉 𝛼 𝛼 𝜈𝔉 1 𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼  , 

and if 𝛼 𝛼 , then, 𝜇𝔉 𝛼 𝛼 𝜇𝔉 0 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  and 𝜈𝔉 𝛼

𝛼 𝜈𝔉 0 𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

(ii) For all 𝛼 , 𝛼 ∈ 𝐾,  if 𝛼 0  or 𝛼 0 , then 𝜇𝔉 𝛼 𝛼 𝑚ax 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  

and 𝜈𝔉 𝛼 𝛼 𝑚in 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼   is obvious, and if 𝛼 0  and 𝛼 0 , then 

𝜇𝔉 𝛼 𝛼 𝜇𝔉 1 𝑚ax 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼   and 𝜈𝔉 𝛼 𝛼 𝜇𝔉 1

𝑚in 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

Thus, 𝔉 is a PFI of 𝐾. 

4. Pythagorean fuzzy cosets of a Pythagorean fuzzy ideal 

In this section, we define the notion of Pythagorean fuzzy cosets of a Pythagorean fuzzy ideal and 
prove that the set of all Pythagorean fuzzy cosets of a Pythagorean fuzzy ideal forms ring under certain 
binary operations. Furthermore, we prove Pythagorean fuzzy version of fundamental theorem of ring 
homomorphism. 

We start this section with following theorem which provides basis to define Pythagorean fuzzy 
cosets (PFCs) of PFI in a ring 𝐾. 

Theorem 4.1. Assume that 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾  is a PFI of a ring 𝐾 and 𝜇
𝔉

: 𝐾
𝔉∗

⟶

0,1   and 𝜈
𝔉
 : 𝐾

𝔉∗
⟶ 0,1   are defined by 𝜇

𝔉
𝛼 𝔉∗ 𝜇𝔉 𝛼   and 𝜇

𝔉
𝛼 𝔉∗ 𝜈𝔉 𝛼  

respectively. Then Γ𝔉 𝛼 𝔉∗, 𝜇
𝔉

𝛼 𝔉∗ , 𝜈
𝔉

𝛼 𝔉∗ : 𝛼 𝔉∗ ∈ 𝐾
𝔉∗

 is a PFI of 𝐾
𝔉∗

. 

Proof. Since 𝔉 is a PFI of 𝐾, therefore, 𝔉∗ is an ideal of 𝐾. Firstly, we show that 𝜇
𝔉
 and 𝜈

𝔉
, 

used to define PFS Γ𝔉, are well-defined. For this, let 
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𝛼 𝔉∗  𝛼 𝔉∗, where 𝛼 , 𝛼 ∈ 𝐾, 
⇒ 𝛼 𝛼 ∈ 𝔉∗ ⇒ 𝛼 , 𝛼 ∈ 𝔉∗ 

⇒ 𝜇𝔉 𝛼 𝜇𝔉 𝛼  and 𝜈𝔉 𝛼 𝜈𝔉 𝛼  

⇒ 𝜇
𝔉

𝛼 𝔉∗ 𝜇
𝔉

𝛼 𝔉∗  and 𝜈
𝔉

𝛼 𝔉∗ 𝜈
𝔉

𝛼 𝔉∗ . 

Next, we prove that Γ𝔉 is a PFI of 𝐾
𝔉∗

, so let 𝛼 𝔉∗, 𝛼 𝔉∗ ∈ 𝐾
𝔉∗

. Then, 

𝜇
𝔉

𝛼 𝔉∗ 𝛼 𝔉∗  

𝜇
𝔉

𝛼 𝛼 𝔉∗ 𝜇
𝔉

𝛼 𝛼  

𝑚𝑖𝑛 𝜇
𝔉

𝛼 , 𝜇
𝔉

𝛼  

𝑚𝑖𝑛 𝜇
𝔉

𝛼 𝔉∗ , 𝜇
𝔉

𝛼 𝔉∗ . 

Similarly, 

𝜈
𝔉

𝛼 𝔉∗ 𝛼 𝔉∗ 𝑚𝑎𝑥 𝜈
𝔉

𝛼 𝔉∗ , 𝜈
𝔉

𝛼 𝔉∗ . 

Moreover, 

𝜇
𝔉

𝛼 𝔉∗ 𝛼 𝔉∗  

𝜇
𝔉

𝛼 𝛼 𝔉∗ 𝜇𝔉 𝛼 𝛼  

𝑚𝑎𝑥 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼  

𝑚𝑎𝑥 𝜇
𝔉

𝛼 𝔉∗ , 𝜇
𝔉

𝛼 𝔉∗ . 

Similarly, 

𝜈
𝔉

𝛼 𝔉∗ 𝛼 𝔉∗ 𝑚𝑖𝑛 𝜈
𝔉

𝛼 𝔉∗ , 𝜈
𝔉

𝛼 𝔉∗ . 

Thus, we conclude that Γ𝔉 is a PFI of 𝐾
𝔉∗

. 

The Example 4.1 describes the result proved in Theorem 4.1. 
Example 4.1. Consider a PFI 𝔉 of 𝑍 , a ring of integers modulo 6, that is, 

𝔉
0,0.95,0.15 , 1,0.70,0.40 , 2,0.95,0.15 ,
3,0.70,0.40 , 4,0.95,0.15 , 5,0.70,0.40

. 

Then, we have 𝔉∗ 0,2,4  and the quotient ring 𝑍
𝔉∗

0,2,4 , 1,3,5 . Now, following the 

technique described in Theorem 4.1, we construct a PFS Γ𝔉 of 𝑍
𝔉∗

 as follows: 

Γ𝔉 0,2,4 , 0.95,0.15 , 1,3,5 , 0.70,0.40 . 

As can be seen, the constructed PFS Γ𝔉 is a PFI of 𝑍
𝔉∗

. 
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Theorem 4.2. Suppose that 𝐼  and 𝔒  are ideal and PFI of a ring 𝐾  and 𝐾
𝐼  respectively. If 

𝜇𝔒 𝛼 𝐼 𝜇𝔒 𝐼   and 𝜈𝔒 𝛼 𝐼 𝜈𝔒 𝐼 ⇔ 𝛼 ∈ 𝐼 , then there exists a PFI 𝔉  of 𝐾  such that 
𝔉∗ 𝐼. 
Proof. Let us define a PFS 𝔉 of 𝐾 in the following way: 

𝜇𝔉 𝛼 𝜇𝔒 𝛼 𝐼  and 𝜈𝔉 𝛼 𝜈𝔒 𝛼 𝐼 , for all 𝛼 ∈ 𝐾, 

𝜇𝔉 𝛼 𝛼 𝜇𝔒 𝛼 𝛼 𝐼  

𝜇𝔒 𝛼 𝐼 𝛼 𝐼  

𝑚𝑖𝑛 𝜇𝔒 𝛼 𝐼 , 𝜇𝔒 𝛼 𝐼  

𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 . 

Similarly, 

𝜇𝔉 𝛼 𝛼 𝑚𝑎𝑥 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

Also, 

𝜇𝔉 𝛼 𝛼 𝜇𝔒 𝛼 𝛼 𝐼 𝜇𝔒 𝛼 𝐼 𝛼 𝐼  

𝑚𝑎𝑥 𝜇𝔒 𝛼 𝐼 , 𝜇𝔒 𝛼 𝐼  

𝑚𝑎𝑥 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 . 

Similarly, 

𝜇𝔉 𝛼 𝛼 𝑚𝑖𝑛 𝜈𝔉 𝛼 , 𝜈𝔉 𝛼 . 

This implies that 𝔉 is a PFI of 𝐾. 

Next, 𝛼 ∈ 𝔉∗ ⇔ 𝜇𝔉 𝛼 𝜇𝔉 0   and 𝜈𝔉 𝛼 𝜈𝔉 0 ⇔ 𝜇𝔒 𝛼 𝐼

𝜇𝔉 𝜇𝔒 𝐼  and 𝜈𝔉 𝜇𝔒 𝛼 𝐼 𝜈𝔉 𝜇𝔒 𝐼 ⇔ 𝛼 ∈ 𝐼. Thus, 𝔉∗ 𝐼. 

We verify the result proved in Theorem 4.2 in the following example. 
Example 4.2. Consider an ideal 4ℤ of ℤ. Then, ℤ

4ℤ 4ℤ, 1 4ℤ, 2 4ℤ, 3 4ℤ . Keeping in 

mind the condition given in Theorem 4.2, we design a PFI 𝔒 of ℤ
4ℤ as follows: 

𝔒 4ℤ, 0.90,0.20 , 1 4ℤ, 0.70,0.40 , 2 4ℤ, 0.80,0.35 , 3 4ℤ, 0.70,0.40 . 

Again, we obtain a PFI 𝔉 𝑛, 𝜇𝔉 𝑛
0.90, 𝑖𝑓 𝑛 ∈ 4ℤ,

0.80, 𝑖𝑓 𝑛 ∈ 2 4ℤ
0.70, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

, 𝜈𝔉 𝑛
0.20, 𝑖𝑓 𝑛 ∈ 4ℤ,

0.35, 𝑖𝑓 𝑛 ∈ 2 4ℤ,
0.40, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 of 

ℤ by using the membership and non-membership functions defined in Theorem 4.2. It is easy to find 
𝔉∗ 4ℤ, which affirms Theorem 4.2. 
Definition 4.1. Let 𝔉  be a PFI of a ring 𝐾  and 𝛽 ∈ 𝐾 . Then, the PFS 𝔉
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𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾   of 𝐾 , where 𝜇𝔉  𝛼 𝜇𝔉 𝛼 𝛽   and 𝜈𝔉  𝛼

𝜈𝔉 𝛼 𝛽 , is called Pythagorean fuzzy coset (PFC) of PFI 𝔉 in a ring 𝐾 associated with 𝛽. 

The concept of PFC of a PFI 𝔉 in a ring 𝐾 is explained in the example below. 
Example 4.3. Consider a PFI 𝔉 of 𝑍  as follows: 

𝔉
0,0.80,0.40 , 1,0.70,0.50 , 2,0.70,0.50 ,
3,0.80,0.40 , 4,0.70,0.50 , 5,0.70,0.50

. 

Next, we find PFCs 𝔉  of 𝔉 associated with all 𝛽∈𝑍 . 
(i) The PFC of 𝐽 with respect to 0 is 

𝔉
0, 𝜇𝔉 0 0 , 𝜈𝔉 0 0 , 1, 𝜇𝔉 1 0 , 𝜈𝔉 1 0 , 2, 𝜇𝔉 2 0 , 𝜈𝔉 2 0 ,

3, 𝜇𝔉 3 0 , 𝜈𝔉 3 0 , 4, 𝜇𝔉 4 0 , 𝜈𝔉 4 0 , 5, 𝜇𝔉 5 0 , 𝜈𝔉 5 0
 

0,0.80,0.40 , 1,0.70,0.50 , 2,0.70,0.50 ,
3,0.80,0.40 , 4,0.70,0.50 , 5,0.70,0.50

. 

(ii) The PFC of 𝐽 with respect to 1 is 

𝔉
0, 𝜇𝔉 0 1 , 𝜈𝔉 0 1 , 1, 𝜇𝔉 1 1 , 𝜈𝔉 1 1 , 2, 𝜇𝔉 2 1 , 𝜈𝔉 2 1 ,

3, 𝜇𝔉 3 1 , 𝜈𝔉 3 1 , 4, 𝜇𝔉 4 1 , 𝜈𝔉 4 1 , 5, 𝜇𝔉 5 1 , 𝜈𝔉 5 1
 

0, 𝜇𝔉 5 , 𝜈𝔉 5 , 1, 𝜇𝔉 0 , 𝜈𝔉 0 , 2, 𝜇𝔉 1 , 𝜈𝔉 1 ,

3, 𝜇𝔉 2 , 𝜈𝔉 2 , 4, 𝜇𝔉 3 , 𝜈𝔉 3 , 5, 𝜇𝔉 4 , 𝜈𝔉 4
 

0,0.70,0.50 , 1,0.80,0.40 , 2,0.70,0.50 ,
3,0.70,0.50 , 4,0.80,0.40 , 5,0.70,0.50

. 

(iii) The PFC of 𝐽 with respect to 2 is 

𝔉
0, 𝜇𝔉 0 2 , 𝜈𝔉 0 2 , 1, 𝜇𝔉 1 2 , 𝜈𝔉 1 2 , 2, 𝜇𝔉 2 2 , 𝜈𝔉 2 2 ,

3, 𝜇𝔉 3 2 , 𝜈𝔉 3 2 , 4, 𝜇𝔉 4 2 , 𝜈𝔉 4 2 , 5, 𝜇𝔉 5 2 , 𝜈𝔉 5 2
 

0, 𝜇𝔉 4 , 𝜈𝔉 4 , 1, 𝜇𝔉 5 , 𝜈𝔉 5 , 2, 𝜇𝔉 0 , 𝜈𝔉 0 ,

3, 𝜇𝔉 1 , 𝜈𝔉 1 , 4, 𝜇𝔉 2 , 𝜈𝔉 2 , 5, 𝜇𝔉 3 , 𝜈𝔉 3
 

0,0.70,0.50 , 1,0.70,0.50 , 2,0.80,0.40 ,
3,0.70,0.50 , 4,0.70,0.50 , 5,0.80,0.40

. 

(iv) The PFC of 𝐽 with respect to 3 is 

𝔉
0, 𝜇𝔉 0 3 , 𝜈𝔉 0 3 , 1, 𝜇𝔉 1 3 , 𝜈𝔉 1 3 , 2, 𝜇𝔉 2 3 , 𝜈𝔉 2 3 ,

3, 𝜇𝔉 3 3 , 𝜈𝔉 3 3 , 4, 𝜇𝔉 4 3 , 𝜈𝔉 4 3 , 5, 𝜇𝔉 5 3 , 𝜈𝔉 5 3
 

0, 𝜇𝔉 3 , 𝜈𝔉 3 , 1, 𝜇𝔉 4 , 𝜈𝔉 4 , 2, 𝜇𝔉 5 , 𝜈𝔉 5 ,

3, 𝜇𝔉 0 , 𝜈𝔉 0 , 4, 𝜇𝔉 1 , 𝜈𝔉 1 , 5, 𝜇𝔉 2 , 𝜈𝔉 2
 

0,0.80,0.40 , 1,0.70,0.50 , 2,0.70,0.50 ,
3,0.80,0.40 , 4,0.70,0.50 , 5,0.70,0.50

. 
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(v) The PFC of 𝐽 with respect to 4 is 

𝔉
0, 𝜇𝔉 0 4 , 𝜈𝔉 0 4 , 1, 𝜇𝔉 1 4 , 𝜈𝔉 1 4 , 2, 𝜇𝔉 2 4 , 𝜈𝔉 2 4 ,

3, 𝜇𝔉 3 4 , 𝜈𝔉 3 4 , 4, 𝜇𝔉 4 4 , 𝜈𝔉 4 4 , 5, 𝜇𝔉 5 4 , 𝜈𝔉 5 4
 

0, 𝜇𝔉 2 , 𝜈𝔉 2 , 1, 𝜇𝔉 3 , 𝜈𝔉 3 , 2, 𝜇𝔉 4 , 𝜈𝔉 4 ,

3, 𝜇𝔉 5 , 𝜈𝔉 5 , 4, 𝜇𝔉 0 , 𝜈𝔉 0 , 5, 𝜇𝔉 1 , 𝜈𝔉 1
 

0,0.70,0.50 , 1,0.80,0.40 , 2,0.70,0.50 ,
3,0.70,0.50 , 4,0.80,0.40 , 5,0.70,0.50

. 

(vi) The PFC of 𝐽 with respect to 5 is 

𝔉
0, 𝜇𝔉 0 5 , 𝜈𝔉 0 5 , 1, 𝜇𝔉 1 5 , 𝜈𝔉 1 5 , 2, 𝜇𝔉 2 5 , 𝜈𝔉 2 5 ,

3, 𝜇𝔉 3 5 , 𝜈𝔉 3 5 , 4, 𝜇𝔉 4 5 , 𝜈𝔉 4 5 , 5, 𝜇𝔉 5 5 , 𝜈𝔉 5 5
 

0, 𝜇𝔉 1 , 𝜈𝔉 1 , 1, 𝜇𝔉 2 , 𝜈𝔉 2 , 2, 𝜇𝔉 3 , 𝜈𝔉 3 ,

3, 𝜇𝔉 4 , 𝜈𝔉 4 , 4, 𝜇𝔉 5 , 𝜈𝔉 5 , 5, 𝜇𝔉 0 , 𝜈𝔉 0
 

0,0.70,0.50 , 1,0.70,0.50 , 2,0.80,0.40 ,
3,0.70,0.50 , 4,0.70,0.50 , 5,0.80,0.40

. 

Thus, there are three distinct PFCs of 𝐽 in terms of all elements of 𝑍 , namely 𝔉 𝔉 , 𝔉 𝔉  
and 𝔉 𝔉 . 
Theorem 4.3. Let 𝔉 be a PFI of 𝐾. Then ℜ𝔉, the set of all PFCs of 𝔉 in 𝐾, forms ring with the 
following binary operations: 

𝔉 𝔉 𝔉  and 𝔉 𝔉 𝔉  for all 𝛽, 𝛾 ∈ 𝐾. 

Proof. Firstly, we will prove that both the binary operations defined on ℜ𝔉 are well-defined. 

Suppose that 𝛽, 𝛾, 𝜁, 𝜂 ∈ 𝐾 and 𝔉 𝔉  and 𝔉 𝔉 . Then for all 𝛼 ∈ 𝐾, 

𝜇𝔉 𝛼 𝜇𝔉 𝛼  and 𝜈𝔉 𝛼 𝜈𝔉 𝛼 ,      (4.1) 

𝜇𝔉 𝛼 𝜇𝔉 𝛼  and 𝜈𝔉 𝛼 𝜈𝔉 𝛼 .      (4.2) 

So, 

𝜇𝔉 𝛼 𝛽 𝜇𝔉 𝛼 𝛾  and 𝜈𝔉 𝛼 𝛽 𝜈𝔉 𝛼 𝛾 ,     (4.3) 

𝜇𝔉 𝛼 𝜁 𝜇𝔉 𝛼 𝜂  and 𝜈𝔉 𝛼 𝜁 𝜈𝔉 𝛼 𝜂 .     (4.4) 

Putting 𝛼 𝛽 𝜁 𝜂 in (4.3), 𝛼 𝜁 in (4.4) and 𝛼 𝛽 in (4.3), we have 

𝜇𝔉 𝜁 𝜂 𝜇𝔉 𝛽 𝜁 𝜂 𝛾  and 𝜈𝔉 𝜁 𝜂 𝜈𝔉 𝛽 𝜁 𝜂 𝛾 ,   (4.5) 

𝜇𝔉 0 𝜇𝔉 𝜁 𝜂  and 𝜈𝔉 0 𝜈𝔉 𝜁 𝜂 ,      (4.6) 

𝜇𝔉 0 𝜇𝔉 𝛽 𝛾  and 𝜈𝔉 0 𝜈𝔉 𝛽 𝛾 .      (4.7) 
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Now, 

𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝛽 𝜁  

𝜇𝔉 𝛼 𝛾 𝜂 𝛽 𝛾 𝜁 𝜂  

𝑚𝑖𝑛 𝜇𝔉 𝛼 𝛾 𝜂 , 𝜇𝔉 𝛽 𝛾 𝜁 𝜂  

𝑚𝑖𝑛 𝜇𝔉 𝛼 𝛾 𝜂 , 𝜇𝔉 0  (by using (4.6) and (4.7)) 

𝜇𝔉 𝛼 𝛾 𝜂 𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 . 

So, 

𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 .    (4.8) 

Similarly, we can prove that 

𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 .    (4.9) 

The inequalities (4.8) and (4.9) yields 

𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 .    (4.10) 

By using (4.1) and (4.2), we obtain 

𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 .       (4.11) 

The similar reasoning leads us to 

𝜈𝔉 𝛼 𝜈𝔉 𝛼 𝜈𝔉 𝛼 𝜈𝔉 𝛼 .       (4.12) 

Again, the utilization of the same method gives us 

𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 𝜇𝔉 𝛼 ,       (4.13) 

and 

𝜈𝔉 𝛼 𝜈𝔉 𝛼 𝜈𝔉 𝛼 𝜈𝔉 𝛼 .       (4.14) 

The Eqs (4.11)–(4.14) yield that 

𝔉 𝔉 𝔉 𝔉  and 𝔉 𝔉 𝔉 𝔉 . 
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Hence, both addition and multiplication defined on ℜ𝔉 are well-defined. Next, it is easy to verify 
that 𝔉 𝔉 serves as additive identity of ℜ𝔉, and for each 𝔉 ∈ ℜ𝔉 there exists 𝔉 ∈ ℜ𝔉 such 
that 𝔉 𝔉 𝔉 𝔉 𝔉 . The remaining properties are routine computations. 

The following example illustrates the fact mentioned in Theorem 4.3. 
Example 4.4. In Example 4.3, we find that the set of all PFCs of 𝔉

0,0.80,0.40 , 1,0.70,0.50 , 2,0.70,0.50 ,
3,0.80,0.40 , 4,0.70,0.50 , 5,0.70,0.50

  in 𝑍   is ℜ𝔉 𝔉 , 𝔉 , 𝔉  . Consider the Cayley's 

tables (see Tables 1 and 2) of ℜ𝔉 obtained by employing the operations defined in Theorem 4.3 as 
follows: 

Table 1. Cayley's table of ℜ𝔉, . 

+ 𝕱𝟎 𝕱𝟏 𝕱𝟐 
𝕱𝟎 𝔉  𝔉  𝔉  
𝕱𝟏 𝔉  𝔉  𝔉  
𝕱𝟐 𝔉  𝔉  𝔉  

Table 2. Cayley's table of ℜ𝔉, . . 

. 𝕱𝟎 𝕱𝟏 𝕱𝟐 
𝕱𝟎 𝔉  𝔉  𝔉  
𝕱𝟏 𝔉  𝔉  𝔉  
𝕱𝟐 𝔉  𝔉  𝔉  

From Tables 1 and 2, we see that ℜ𝔉 is a ring under defined binary operations. 
Remark 4.1. If 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾   is a PFI of a ring 𝐾  such that 𝜇𝔉  and 𝜈𝔉  are 
constant functions, then ℜ𝔉 𝔉 . 
Definition 4.2. Let 𝔉 be a PFI of a ring 𝐾, then the PFI 𝔉  of ℜ𝔉 defined by 𝜇𝔉 𝔉 𝜇𝔉 𝛽  

and 𝜈𝔉 𝔉 𝜈𝔉 𝛽 , for all 𝛽 ∈ 𝐾, is called Pythagorean fuzzy quotient ideal (PFQI) associated 

with 𝔉. 
Theorem 4.4. If 𝔉 𝛼, 𝜇𝔉 𝛼 , 𝜈𝔉 𝛼 : 𝛼 ∈ 𝐾  is a PFI of a ring 𝐾, then a mapping 𝜃: 𝐾 → ℜ𝔉 
defined by 𝜃 𝛽 𝔉  for 𝛽 ∈ 𝐾 is a ring homomorphism with kernel 𝔉∗. 
Proof. Assume that 𝛽, 𝛾 ∈ 𝐾, then, 

𝜃 𝛽 𝛾 𝔉 𝔉 𝔉 𝜃 𝛽 𝜃 𝛾  

and 

𝜃 𝛽𝛾 𝔉 𝔉 𝔉 𝜃 𝛽 𝜃 𝛾 . 

First, we prove that if 𝜇𝔉 𝛽 𝜇𝔉 0  and 𝜈𝔉 𝛽 𝜈𝔉 0  if and only if 𝔉 𝔉 . 

Suppose that 𝜇𝔉 𝛽 𝜇𝔉 0   and 𝜈𝔉 𝛽 𝜈𝔉 0  . Then for all 𝛼 ∈ 𝐾 , we 

have 𝜇𝔉 𝛼 𝜇𝔉 𝛽 𝜇𝔉 0   and 𝜈𝔉 𝛼 𝜈𝔉 𝛽 𝜈𝔉 0 .  If 𝜇𝔉 𝛼

𝜇𝔉 𝛽 ⇒ 𝜇𝔉 𝛼 𝛽 𝜇𝔉 𝛼   by Theorem 3.1 (ii). On the other hand, if 𝜇𝔉 𝛼
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𝜇𝔉 𝛽 , then, 

𝛼, 𝛽 ∈ 𝛾 ∈ 𝐾: 𝜇𝔉 𝛾 𝜇𝔉 0 ⇒ 𝜇𝔉 𝛼 𝛽 𝜇𝔉 𝛼 𝜇𝔉 0 . 

So, in either case, we have 

𝜇𝔉 𝛼 𝛽 𝜇𝔉 𝛼  for all 𝛼 ∈ 𝐾. 

In a similar way, we can prove 

𝜈𝔉 𝛼 𝛽 𝜈𝔉 𝛼  for all 𝛼 ∈ 𝐾. 

Thus, 𝔉 𝔉 . 

Conversely, suppose that 𝔉 𝔉  , so for all 𝛼 ∈ 𝐾 , 𝜇𝔉 𝛼 𝛽 𝜇𝔉 𝛼 0   and 

𝜈𝔉 𝛼 𝛽 𝜈𝔉 𝛼 0 . Then, 

𝜇𝔉 𝛽 𝜇𝔉 𝛼 𝛼 𝛽 𝑚𝑖𝑛 𝜇𝔉 𝛼 , 𝜇𝔉 𝛼 𝛽 𝜇𝔉 𝛼 . 

Thus, for all 𝛼 ∈ 𝐾, we obtain 𝜇𝔉 𝛽 𝜇𝔉 𝛼 , hence, 𝜇𝔉 𝛽 𝜇𝔉 0 . 

The similar reasoning yields that 𝜈𝔉 𝛽 𝜈𝔉 0 . Now, 

Ker 𝜃 𝛽 ∈ 𝐾: 𝜃 𝛽 𝔉 𝛽 ∈ 𝐾: 𝔉 𝔉  

𝛽 ∈ 𝐾: 𝜇𝔉 𝛽 𝜇𝔉 0  and 𝜈𝔉 𝛽 𝜈𝔉 0 𝔉∗. 

The following example explains the fact given in Theorem 4.4. 
Example 4.5. In Example 4.2, we computed ℜ𝔉 𝔉 , 𝔉 , 𝔉   for PFI 𝔉

0,0.80,0.40 , 1,0.70,0.50 , 2,0.70,0.50 ,
3,0.80,0.40 , 4,0.70,0.50 , 5,0.70,0.50

 of 𝑍 . By using the approach defined in Theorem 4.4, 

we define 𝜃: 𝑍 → ℜ𝔉 as follows: 

𝜃 0 𝜃 3 𝔉 , 𝜃 1 𝜃 4 𝔉  and 𝜃 2 𝜃 5 𝔉 . 

Now, 𝜃 1 2 𝜃 3 𝔉   and 𝜃 1 𝜃 2 𝔉 𝔉 𝔉 𝔉   show that 𝜃 1 2
𝜃 1 𝜃 2  . Furthermore, 𝜃 1 2 𝜃 2 𝔉   and 𝜃 1 𝜃 2 𝔉 𝔉 𝔉   together imply 
that 𝜃 1 2 𝜃 1 . 𝜃 2  . Similarly, it is easy to verify that 𝜃 𝑛 𝑚 𝜃 𝑛 𝜃 𝑚   and 

𝑛 𝑚 𝜃 𝑛 . 𝜃 𝑚  for all 𝑛, 𝑚 ∈ 𝑍 . It means that 𝜃 is a ring homomorphism. Also, since 𝔉  
is zero of ℜ𝔉, therefore, Ker 𝜃 0,3 𝔉∗ satisfying Theorem 4.4. 

Next, we present an analogue of Fundamental theorem of homomorphism. 
Theorem 4.5. Let 𝔉 be a PFI of a ring 𝐾, then every PFI of ℜ𝔉 corresponds in a natural way to a 
PFI of 𝐾. 
Proof. Let 𝔉  be a PFI of ℜ𝔉. Define PFS 𝔓 of 𝐾 in the following way: 

𝜇𝔓 𝛽 𝜇𝔉 𝔉  and 𝜈𝔓 𝛽 𝜈𝔉 𝔉 . 
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It is simple to verify that 𝔓 is a PFI of 𝐾. 

5. Pythagorean fuzzy semi-prime ideals and characterization of regularity 

In this section, the concept of Pythagorean fuzzy semi-prime ideals is defined. We investigate 
some important algebraic features of this newly defined notion. Furthermore, the characterization of 
regular rings by virtue of PFI is presented. 
Definition 5.1. A PFI 𝔉 of a ring 𝐾 is called Pythagorean fuzzy semi-prime ideal (PFSPI) of 𝐾 if 
for any PFI 𝔓 of 𝐾, 𝔓 ⊆ 𝔉 ⇒ 𝔓 ⊆ 𝔉 for all 𝑛 ∈ ℕ. 
Theorem 5.1. A PFI 𝔉 of a ring 𝐾 is PFSPI if and only if 𝔉 ,  is a semi-prime ideal of 𝐾 for all 

𝜎 ∈ 0, 𝜇𝔉 0  and 𝜌 ∈ 𝜈𝔉 0 , 1 . 

Proof. Suppose that 𝔉 is a PFSPI of 𝐾 and 𝛽 ∈ 𝐾 such that 𝛽 ∈ 𝔉 , . Let us define a PFI 𝔓 of 

𝐾 in the following way: 

𝜇𝔓 𝛾
𝜎, if 𝛾 ∈ 〈𝛽〉,
0, otherwise,

 and 𝜈𝔓 𝛾
𝜌, if 𝛾 ∈ 〈𝛽〉,
1, otherwise.

 

Suppose that 𝜇 𝔓 𝛾 0, then 𝛾 𝛾 𝛾 , … , 𝛾  such that 𝜇𝔓 𝛾 0, for all 𝑖 1,2, … , 𝑛, 

because otherwise, there exists 𝛾  in each representation 𝛾 𝛾 , … , 𝛾  of 𝛾 such that 𝜇𝔓 𝛾

0, therefore, 

𝜇 𝔓 𝛾 𝜇𝔓 𝜇 𝔓
𝛾 𝛾 𝛾 , … , 𝛾 𝛾 , 𝛾 , … , 𝛾 0, 

which is a contradiction. 

Similarly, we can prove that 𝜈 𝔓 𝛾 1 implies 𝛾 𝛾 𝛾 , … , 𝛾  such that 𝜈𝔓 𝛾 1, 

for all 𝑖 1,2, … , 𝑛. Thus, 

𝜇𝔓 𝛾 𝜎 𝜇 𝔓 𝛾  and 𝜈𝔓 𝛾 𝜌 𝜈 𝔓 𝛾  

⇒ 𝛾 ∈ 〈𝛽〉, by definition of 𝔓 

⇒ 𝛾 𝛾 , 𝛾 , … , 𝛾 ∈ 〈𝛽 〉 ⊆ 𝔉 , , since 𝛽 ∈ 𝔉 ,  

⇒ 𝛾 ∈ 𝔉 , ⇒ 𝜇𝔉 𝛾 𝜎 and 𝜈𝔉 𝛾 𝜌 

⇒ 𝜇𝔉 𝛾 𝜇 𝔓 𝛾  and 𝜈𝔉 𝛾 𝜈 𝔓 𝛾  

⇒ 𝔓 ⊆ 𝔉 
⇒ 𝔓 ⊆ 𝔉, since 𝔉 is a PFSPI of 𝐾 

⇒ 𝜇𝔉 𝛽 𝜇𝔓 𝛽 𝜎 and 𝜈𝔉 𝛽 𝜈𝔓 𝛽 𝜌 

⇒ 𝛽 ∈ 𝔉 , . 

Thus, 𝔉 ,  is a semi-prime ideal of 𝐾. 
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Conversely, suppose that 𝔉 ,  is a semi-prime ideal of 𝐾 for all 𝜎 ∈ 0, 𝜇𝔉 0  and 𝜌 ∈

𝜈𝔉 0 , 1 . Assume that 𝔉 is not a PFSPI of 𝐾. It means that there exists a PFI 𝔓 of 𝐾 such 

that 𝔓 ⊆ 𝔉 but 𝔓 ⊈ 𝔉. Therefore, for some 𝛽 ∈ 𝐾, we have 

𝜇𝔓 𝛽 𝜇𝔉 𝛽  or 𝜈𝔓 𝛽 𝜈𝔉 𝛽 .     (5.1) 

Let 𝜇𝔉 𝛽 𝜎  and 𝜈𝔉 𝛽 𝜌 , then 𝛽 ∈ 𝔉 ,  , so 𝛽 ∈ 𝔉 ,  . Moreover 𝛽 ∉ 𝔉 ,  

for all 𝜎 𝜎 and 𝜌 𝜌. Since 𝔉 ,  is a semi-prime ideal of 𝐾, therefore, 𝛽 ∉ 𝔉 , . Thus, 

𝜇𝔉 𝛽 𝜎 and 𝜈𝔉 𝛽 𝜌. Therefore, 

𝜇𝔉 𝛽 𝜇𝔉 𝛽  and 𝜈𝔉 𝛽 𝜈𝔉 𝛽 .    (5.2) 

Next, it can be easily verified that 

𝜇 𝔓 𝛽 𝜇𝔓 𝛽  and 𝜈 𝔓 𝛽 𝜈𝔓 𝛽 .    (5.3) 

Then, (5.1)–(5.3) imply that, either 𝜇 𝔓 𝛽 𝜇𝔉 𝛽   or 𝜈 𝔓 𝛽 𝜈𝔉 𝛽  . This 

means that 𝔓 ⊈ 𝔉, thus we reach at a contradiction. 

Example 5.1. Consider a PFI 𝔉
0,0.90,0.35 , 1,0.80,0.60 , 2,0.80,0.60 , 3,0.80,0.60 ,
4,0.90,0.35 , 5,0.80,0.60 , 6,0.80,0.60 , 7,0.80,0.60 ,

8,0.90,0.35 , 9,0.80,0.60 , 10,0.80,0.60 , 11,0.80,0.60
 

of 𝑍 . The Pythagorean fuzzy level ideal 𝔉 . , . 0,4,8  is not a semi-prime ideal of 𝑍  

since 0,2,4,6,8,10 0,4,8 ⊆ 𝔉 . , .  but 0,2,4,6,8,10 ⊈ 𝔉 . , . . 

Also, 𝔉  is not a PFSPI ideal of 𝑍   because there exists a PFI 𝔓
0,0.90,0.35 , 1,0.80,0.60 , 2,0.90,0.35 , 3,0.80,0.60 ,
4,0.90,0.35 , 5,0.80,0.60 , 6,0.90,0.35 , 7,0.80,0.60 ,

8,0.90,0.35 , 9,0.80,0.60 , 10,0.90,0.35 , 11,0.80,0.60
  of 𝑍   such that 𝔓 𝔓 ∘ 𝔓

𝔉 ⊆ 𝔉 but 𝔓 ⊈ 𝔉. This satisfies the conditional statement “if 𝔉 is PFSPI of 𝐾, then 𝔉 ,  is a 

semi-prime ideal of 𝐾 for all 𝜎 ∈ 0, 𝜇𝔉 0  and 𝜌 ∈ 𝜈𝔉 0 , 1 ” expressed in Theorem 5.1. 

Example 5.2. Consider a PFI 𝔉
0,0.90,0.30 , 1,0.60,0.50 , 2,0.60,0.50 , 3,0.60,0.50 ,
4,0.80,0.40 , 5,0.60,0.50 , 6,0.60,0.50 , 7,0.60,0.50

  of 

𝑍  . It is not a PFSPI ideal of 𝑍   because there exists a PFI 𝔓
0,0.90,0.30 , 1,0.60,0.50 , 2,0.80,0.40 , 3,0.60,0.50 ,
4,0.80,0.40 , 5,0.60,0.50 , 6,0.80,0.40 , 7,0.60,0.50

 of 𝑍  such that 𝔓 𝔓 ∘ 𝔓 𝔉 ⊆ 𝔉 

but 𝔓 ⊈ 𝔉. 

Furthermore, for all 𝜎 ∈ 0, 𝜇𝔉 0   and 𝜌 ∈ 𝜈𝔉 0 , 1  , we have the following three 

Pythagorean fuzzy level ideals 𝔉 , : 

i. 𝔉 , 0 𝐼  where 0.80 𝜎 0.90 and 0.30 𝜌 0.40, 

ii. 𝔉 , 0,4 𝐼  where 0.60 𝜎 0.80 and 0.40 𝜌 0.50, 
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iii. 𝔉 , 𝑍 𝐼  where 0 𝜎 0.60 and 0.50 𝜌 1. 

The Pythagorean fuzzy level ideal 𝐼 0,4   is not a semi-prime ideal of 𝑍   as 0,2,4,6
0,4 ⊆ 𝐼  but 0,2,4,6 ⊈ 𝐼 . Thus, the conditional statement “if 𝔉 ,  is a semi-prime ideal of 𝐾 

for all 𝜎 ∈ 0, 𝜇𝔉 0  and 𝜌 ∈ 𝜈𝔉 0 , 1 , then 𝔉 is PFSPI of 𝐾” revealed in Theorem 5.1, 

is satisfied. 
Theorem 5.2. If 𝔉  is a PFSPI of 𝐾 , then ℜ𝔉 , the set of all PFCs of 𝔉  in 𝐾 , has no non-zero 
nilpotent elements. 
Proof. Suppose that 𝔉 is a PFSPI of a ring 𝐾, then by Theorem 5.1, it follows that 𝔉 ,  is a semi-

prime ideal of 𝐾 , where 𝜎 𝜇𝔉 0   and 𝜌 𝜈𝔉 0  . Moreover, in view of Theorem 4.3 it 

follows that ℜ𝔉 ≅ 𝐾
𝔉 ,

. 

Let 𝛼 𝔉 ,  be non-zero nilpotent element of 𝐾
𝔉 ,

. Therefore, 

𝛼 𝔉 , 𝔉 ,  

⇒ 𝛼 𝔉 , 𝔉 ,  

⇒ 𝛼 ∈ 𝔉 , ⇒ 𝛼 ∈ 𝔉 ,  
⇒ 𝛼 𝔉 , 𝔉 , . 

Thus, we have a contradiction, thus, 𝐾
𝔉 ,

 has no non-zero nilpotent element. This together with 

ℜ𝔉 ≅ 𝐾
𝔉 ,

 leads to the desired result. 

Example 5.3. Consider a PFI 𝔉 of 𝑍  as follows: 

𝔉
0,0.80,0.40 , 1,0.70,0.50 , 2,0.70,0.50 ,
3,0.80,0.40 , 4,0.70,0.50 , 5,0.70,0.50

. 

Clearly, it has two non-empty Pythagorean fuzzy level subsets namely {0,3} and 𝑍  which are semi-
prime ideals of 𝑍 . Therefore, by Theorem 5.1, 𝔉 is PFSPI of 𝑍 . 

Also, the set of all PFCs of 𝔉  in 𝑍   is ℜ𝔉 𝔉 , 𝔉  , 𝔉  . One can see that both non-zero 
elements 𝔉  and 𝔉  are not nilpotent. Thus, Theorem 5.2 is satisfied. 
Definition 5.2. Let 𝐾 be a ring and 𝑈 ⊆ 𝐾. Suppose that 𝜒 : 𝐾 → 0,1  and 𝜒 : 𝐾 → 0,1  are 
defined by 

𝜒 𝛼
1, if 𝛼 ∈ 𝑈,
0, if 𝛼 ∉ 𝑈, and 𝜒 𝛼

0, if 𝛼 ∈ 𝑈,
1, if 𝛼 ∉ 𝑈. 

Then, 

𝛹 𝑈 𝛼, 𝜒 𝛼 , 𝜒 𝛼 : 𝛼 ∈ 𝐾  

is a PFS of 𝐾. 
Lemma 5.1. 𝛹 𝑈  is PFI of 𝐾 if 𝑈 is an ideal of 𝐾. 

The proof involves simple computation. 
Theorem 5.3. A ring 𝐾 is regular if and only if 𝔉 ∘ 𝔒 𝔉 ∩ 𝔒, where 𝔉 and 𝔒 are PFIs of 𝐾. 
Proof. Suppose that 𝐾  is a regular ring. We want to show that 𝔉 ∘ 𝔒 𝔉 ∩ 𝔒 . From routine 
computations, we get 𝔉 ∘ 𝔒 ⊆ 𝔉 ∩ 𝔒 . Let 𝛽 ∈ 𝐾 , the regularity of 𝐾  ensures the existence of 𝜁 
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and 𝜂 in 𝐾 such that 𝛽 𝜁𝜂. Now, 

𝜇𝔉∘𝔒 𝛽 𝑚𝑎𝑥 𝑚𝑖𝑛 𝜇𝔉 𝜁 , 𝜇𝔒 𝜂 . 

Since 𝛽 𝛽𝛾𝛽 for some 𝛾 ∈ 𝐾. Then, 

𝜇𝔉 𝛽 𝜇𝔉 𝛽𝛾𝛽 𝑚𝑎𝑥 𝜇𝔉 𝛽𝛾 , 𝜇𝔉 𝛽 𝜇𝔉 𝛽𝛾  

𝑚𝑎𝑥 𝜇𝔉 𝛽 , 𝜇𝔉 𝛾 𝜇𝔉 𝛽 . 

In short, 𝜇𝔉 𝛽 𝜇𝔉 𝛽𝛾 𝜇𝔉 𝛽 , therefore, 𝜇𝔉 𝛽𝛾 𝜇𝔉 𝛽 . Then, 

𝜇𝔉∘𝔒 𝛽 𝑚𝑎𝑥 𝑚𝑖𝑛 𝜇𝔉 𝜁 , 𝜇𝔒 𝜂  

𝑚𝑖𝑛 𝜇𝔉 𝛽𝛾 , 𝜇𝔒 𝛽 , taking 𝜁 𝛽𝛾 and 𝜂 𝛽 

𝑚𝑖𝑛 𝜇𝔉 𝛽 , 𝜇𝔒 𝛽 𝜇𝔉∩𝔒 𝛽 . 

Similarly, we obtain 𝜂𝔉∘𝔒 𝛽 𝜂𝔉∩𝔒 𝛽 , which gives 𝔉 ∩ 𝔒 ⊆ 𝔉 ∘ 𝔒. 

Conversely, suppose that 𝔉 ∘ 𝔒 𝔉 ∩ 𝔒. Let 𝑌 and 𝑍 be two ideals of 𝐾. In view of Lemma 5.1, 
𝛹 𝑌 𝛼, 𝜒 𝛼 , 𝜒 𝛼 : 𝛼 ∈ 𝐾   and 𝛹 𝑍 𝛼, 𝜒 𝛼 , 𝜒 𝛼 : 𝛼 ∈ 𝐾   are PFIs of 𝐾 . 

Assume that 𝛽 ∈ 𝑌 ∩ 𝑍 , then 𝜒 𝛽 ∩ 𝜒 𝛽 1  and 𝜒 𝛽 ∩ 𝜒 𝛽 0 . Since 

𝛹 𝑌 ∩ 𝛹 𝑍 𝛹 𝑍 ∘ 𝛹 𝑍  , therefore, 𝜒 𝛽 ∩ 𝜒 𝛽 𝜒 𝛽 ∘ 𝜒 𝛽 1  and  

𝜒 𝛽 ∩ 𝜒 𝛽 𝜒 𝛽 ∘ 𝜒 𝛽 0, therefore, 

𝑚𝑎𝑥 𝑚𝑖𝑛 𝜒 𝛽 , 𝜒 𝛽 : 𝛽 𝛽 𝛽, 𝛽 , 𝛽 ∈ 𝐾 1 and 

𝑚𝑖𝑛 𝑚𝑎𝑥 𝜒 𝛽 , 𝜒 𝛽 : 𝛽 𝛽 𝛽, 𝛽 , 𝛽 ∈ 𝐾 0. 

It means that there exists 𝛾 , 𝛾 ∈ 𝐾 such that 

𝜒 𝛾 1 𝜒 𝛾  and 𝜒 𝛾 0 𝜒 𝛾 , 

with 𝛽 𝛾 𝛾  . Thus, 𝛽 𝛾 𝛾 ∈ 𝑌𝑍 , which gives 𝑌 ∩ 𝑍 ⊆ 𝑌. 𝑍 . Furthermore, 𝑌. 𝑍 ⊆ 𝑌 ∩ 𝑍  is 
obvious. So, 𝑌 ∩ 𝑍 𝑌. 𝑍, then the regularity of 𝐾 is directly followed by using the theorem on page 184 
of [26]. 
Theorem 5.4. A ring 𝐾 is regular if and only if every PFI of 𝐾 is idempotent. 
Proof. Let 𝐾  be a regular ring and 𝔉  be a PFI of 𝐾 . Then, in view of Theorem 5.3, it is 
straightforward to show that 𝔉 𝔉. 

Conversely, let every PFI of 𝐾. Assume that 𝔉 and 𝔒 are PFIs of 𝐾. In view of Theorem 5.3, 
we require 𝔉 ∘ 𝔒 𝔉 ∩ 𝔒  to prove the regularity of 𝐾 . For this, we proceed as follows: be 
idempotent 

𝜇𝔉∩𝔒 𝛽 𝜇𝔉∩𝔒 𝛽  𝑚𝑎𝑥 𝑚𝑖𝑛 𝜇𝔉∩𝔒 𝜁 , 𝜇𝔉∩𝔒 𝜂 : 𝛽 𝜁𝜂  

 𝑚𝑎𝑥 𝑚𝑖𝑛 𝜇𝔉 𝜁 , 𝜇𝔒 𝜂 : 𝛽 𝜁𝜂 𝜇𝔉∘𝔒 𝛽 . 
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The same reasoning leads us to 𝜈𝔉∩𝔒 𝛽 𝜈𝔉∘𝔒 𝛽 . So, 𝔉 ∩ 𝔒 ⊆ 𝔉 ∘ 𝔒. Furthermore 𝔉 ∘

𝔒 ⊆ 𝔉 ∩ 𝔒 is obvious. Thus, 𝔉 ∘ 𝔒 𝔉 ∩ 𝔒. 

Lemma 5.2. 𝛹 〈𝛽〉 𝛹 〈𝛽 〉  for all 𝛽 ∈ 𝐾. 
The proof is simple. 

Theorem 5.5. A commutative ring 𝐾 is regular if and only if every PFI of 𝐾 is PFSPI. 
Proof. Suppose that 𝐾 is a regular ring and 𝔉 is a PFI of 𝐾. Let 𝔓 be any PFI of 𝐾 such that 
𝔓 ⊆ 𝔉 . Since 𝐾  is regular, therefore by Theorem 5.4, we obtain 𝔓 𝔓 . Thus, 𝔓 ⊆ 𝔉 . This 
shows that 𝔉 is a PFSPI of 𝐾. 

Conversely, suppose that every PFI of 𝐾  is PFSPI. In view of Lemma 5.2, we have 

𝛹 〈𝛽〉 𝛹 〈𝛽 〉  for all 𝛽 ∈ 𝐾. Since 𝛹 〈𝛽 〉  is PFSPI of 𝐾, therefore, 𝛹 〈𝛽〉 ⊆ 𝛹 〈𝛽 〉 . 
Also, 𝛹 〈𝛽 〉 ⊆ 𝛹 〈𝛽〉   is obvious. Hence, 𝛹 〈𝛽〉 ⊆ 𝛹 〈𝛽 〉  . It means that 𝛽 ∈ 𝛹 〈𝛽 〉  , 
therefore, 𝛽 𝛼𝛽 𝛽𝛼𝛽 for some 𝛼 ∈ 𝐾. Thus, 𝐾 is a regular ring. 
Example 5.4. We know ℤ

5ℤ is a regular ring. We design a PFI 𝔉 of ℤ
5ℤ as follows: 

𝔉
0 5ℤ, 0.80,0.40 , 1 5ℤ, 0.70,0.50 , 2 5ℤ, 0.70,0.50 ,

3 5ℤ, 0.70,0.50 , 4 5ℤ, 0.70,0.50
. 

It is easy to find that 𝔉 has two non-empty Pythagorean fuzzy level subsets namely {0 5ℤ} and 
ℤ

5ℤ. Both of them are semi-prime ideals of ℤ
5ℤ. Therefore, by Theorem 5.1, 𝔉 is PFSPI of ℤ

5ℤ 

satisfying the conditional statement “if a commutative ring 𝐾  is regular then every PFI of 𝐾  is 
PFSPI” expressed in Theorem 5.5. 

Example 5.5. Consider a PFI 𝔉
0,0.90,0.35 , 1,0.80,0.60 , 2,0.80,0.60 , 3,0.80,0.60 ,
4,0.90,0.35 , 5,0.80,0.60 , 6,0.80,0.60 , 7,0.80,0.60 ,

8,0.90,0.35 , 9,0.80,0.60 , 10,0.80,0.60 , 11,0.80,0.60
 

of 𝑍 . Since 𝑍  contains zero divisors, therefore it not a regular ring. Moreover, in Example 4.6, 
we see that 𝔉 is not a PFSPI of 𝑍 . Thus, the conditional statement “if every PFI of a commutative 
ring 𝐾 is PFSPI then 𝐾 is regular” revealed in Theorem 5.5 is verified. 

6. Conclusions 

The basic purpose of this paper is to study the notion of the ideal of a classical ring under 
Pythagorean fuzzy environment. For this purpose, several notions of ring theory like cosets of an ideal, 
quotient ideal and semiprime ideal are converted into Pythagorean fuzzy format. We have proved that 
the intersection of two PFIs of a ring 𝐾 is a PFI. We also show that the intersection of a PFSR 𝔉 and 
PFI 𝔄 of 𝐾 is PFI of 𝔉∗. We define the concept of Pythagorean fuzzy cosets of a Pythagorean fuzzy 
ideal and prove that the set of all Pythagorean fuzzy cosets of a Pythagorean fuzzy ideal forms a ring 
under certain binary operations. Furthermore, we present a Pythagorean fuzzy version of the 
fundamental theorem of ring homomorphism. Next, we give the definition and related properties of 
Pythagorean fuzzy semi-prime ideals. Lastly, the characterization of regular rings by virtue of 
Pythagorean fuzzy ideals is presented. 

By using the outcomes of present study, our future intention is to investigate the algebraic 
properties of prime, maximal and irreducible ideals in Pythagorean fuzzy context. Moreover, in future 
work, we will extend the present concepts under different extensions of the fuzzy sets such as q-rung 
orthopair fuzzy sets, fuzzy soft sets and fuzzy hypersoft sets etc. 
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