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1. Introduction

Ultrahigh-dimensional data are commonly available for a wide range of scientific research and
applications. Feature screening plays an essential role in ultrahigh-dimensional data, where Fan and
Lv [5] first proposed sure independence screening (SIS) in their seminal paper. For linear regressions,
they showed that the approach based on Pearson correlation learning possesses a screening property.
That is, even if the number of predictors P can grow much faster than the number of observations
n with log P = O(nα) for some α ∈ (0, 1

2 ), all relevant predictors can be selected with a probability
tending to one [6].

To address ultrahigh-dimensional feature screening in the classification problem, Mai and Zou [11]
applied a Kolmogorov filter to ultrahigh-dimensional binary classification. Cui et al. [4] proposed a
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screening procedure using empirical conditional distribution functions. The proposed screening
methods assume that the types of data are continuous. Assume that the types of data are continuous.
For categorical covariates, Huang et al. [8] constructed a model-free discrete feature screening
method based on Pearson Chi-square statistics and showed its screening property fulfilling Fan
et al. [6] when all covariates were binary. Ni and Fang [12] proposed a model-free feature screening
procedure based on information entropy theory for multi-class classification. Ni et al. [13] further
proposed a feature screening procedure based on weighting the Adjusted Pearson Chi-square for
multi-class classification. Sheng and Wang [17] proposed a new model-free feature screening method
based on the classification accuracy of marginal classifiers for ultrahigh-dimensional classification.
However, some covariates existed in the groups, especially discrete and categorical covariates that
showed microarrays, genomics, brain images and quantitative measurements. A fair number of
grouped variable selection methods arise from individual variable selection and yield a sparse solution
at the group level, or even at the within-group level. Refer to group LASSO [22], group SCAD [21],
group MCP [2], group hierarchical LASSO [23], group bridge [9] and group exponential LASSO [1].
When the regularization parameter is set for non-sparse estimation, some grouped variable selection
algorithms may fail to converge, causing non-identifiability problems and near-singularity problems.
Even if the algorithm converges in the setting of a large group and small sample n, the estimated
coefficients are not likely to be globally optimal solutions. Therefore, to reduce the number of groups
before selecting important groups and variables within these groups, there is a need for new screening
methods. For ultrahigh-dimensional data with grouping structures, Niu et al. [15] applied working
independence in linear models to propose a group-screening approach. Song and Xie [18] further
used F-test statistics to construct a group screening approach that improved marginal methods by
reducing the burden of multiple testing and aggregating individual effects. With regard to
ultrahigh-dimensional group data in the linear model, Qiu and Ahn [16] proposed group sure
independence screening (gSIS), group high dimensional ordinary least-squares projector (gHOLP)
and group wise adjusted R-squares screening (gAR2). He and Deng [7] applied joint information
entropy to screen for important grouped covariates.

In this study, we propose a model-free group feature screening method for ultrahigh-dimensional
multi-classification of categorical. Our proposed group screening method is based on the Gini impurity
to evaluate the predictive power of grouped covariates. The Gini impurity is a non-purity attribute
splitting index, which was proposed by Breiman et al. [3] and has been widely used in decision tree
algorithms, such as CART and SPRINT. Regarding categorical covariate screening, we can apply the
index of purity gain, which is the same as the information gain [12]. As in Ni and Fang [12], continuous
covariates can be sliced using standard normal quantiles. The proposed grouped feature screening
procedure is based on the purity gain, which is referred to as GP-SIS. Theoretically, the GP-SIS is
rigorously proven to enjoy Fan and Lv [5] proposed a sure screening property that ensures that all
important features can be obtained. Practically, as shown by the simulation results, compared with the
existing group feature screening method and single covariate feature screening, GP-SIS has a better
performance.

The remainder of this paper is organized as follows. Section 2 describes the proposed GP-SIS
method in detail. In Section 3, the screening property is established. In Section 4, numerical
simulations and an example of real data analysis are presented to assess the performance of the
proposed method. Some concluding remarks are given in Section 5, and all proofs are provided in the
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Appendix.

2. Group feature screening procedure

We first introduce the Gini impurity and purity gain and then propose a screening procedure based
on purity gain.

2.1. Gini index and purity gain

Each grouped covariate can be regarded as a whole. Suppose that Y is a categorical response, and
covariate matrix X is a multivariate covariate matrix of n × P dimension with G grouped covariates,
which can be represented in Table 1.

Table 1. Definition of X and Y.

Y X11 · · · X1p1 · · · Xg1 · · · Xgpg · · · XG1 · · · XGpG

Y1 x1,11 · · · x1,1p1 · · · x1,g1 · · · x1,gpg · · · x1,G1 · · · x1,GpG
...

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...

Yn xn,11 · · · xn,1p1 · · · xn,g1 · · · xn,gpg · · · xn,G1 · · · xn,GpG

Here, Xg = (Xg1, Xg2, · · · , Xgpg) represents the g-th group covariate, pg represents the dimension
of the covariates in the g-th group covariates, and P =

∑G
g=1 pg. To introduce the Gini impurity and

purity gain, assume that all the covariate components of the covariate matrix X are classified with J
categorizes {1, · · · , J}. The values of any element in Xg ∈ {1, · · · , J}, Jpg combinations were formed.
Jg represents the last combinations between covariate categories in the g-th group covariate matrix,
Jg = ( jpg , jpg , · · · , jpg). Here, jg = ( j1, · · · , jpg) represents the indicator variable in the combination
between covariate categories in the g-th group covariate matrix, and j1 represents the first covariate
category combination.

Let pr = P(Y = r) represent the probability function of a response variable,
w jg = w( j1,··· , jpg ) = P(Xg1 = j1, · · · , Xgpg = jpg) represent the probability function of group covariate,
and p jgr = p( j1,··· , jpg )r = P(Y = r|Xg1 = j1, · · · , Xgpg = jpg) represent the probability function of
response variables under the condition of group covariates, where
g ∈ {1, · · · ,G}, ( j1, · · · , jpg) ∈ {(1, 1, · · · , 1), (2, 1, · · · , 1) · · · , (J, J, · · · , J)}, r ∈ {1, · · · ,R}. The
marginal Gini impurity of Y is defined as

Gini(Y) = 1 −
R∑

r=1

p2
r . (2.1)

Conditional Gini impurity is defined as

Gini(Y |Xg) =
Jg∑

jg=c(1,1,··· ,1)

w jg(1 −
R∑

r=1

p2
jgr). (2.2)
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Similar to the information gain, the purity gain is defined as

GP(Y |Xg) = Gini(Y) −Gini(Y |Xg)

= 1 −
R∑

r=1

p2
r −

Jg∑
jg=c(1,1,··· ,1)

w jg(1 −
R∑

r=1

p2
jgr).

(2.3)

In Eq (2.1), Gini(Y) is non-negative and acquires its maximum 1 − 1
R if and only if p1 = · · · =

pR =
1
R by Jensen’s inequality. The Gini(Y |Xg) in Eq (2.2) is the conditional Gini impurity of Y given

Xg1 = j1, · · · , Xgpg = jpg . Further support can be provided by the following proposition.

Proposition 2.1. When Xg is a categorical covariable, we obtain GP(Y |Xg) ≥ 0, and Xg and Y are
independent if and only if GP(Y |Xg) = 0.

For continuous Xg, the conditional Gini impurity cannot be directly calculated, and the purity gain
by slicing X into several categories. For a fixed integer J ≥ 2, let q( j) be the j/J-th percentile of X,
j = 1, · · · , J − 1, q(0) = −∞ and q(J) = +∞. Replacing w jg and p jgr in Eq (2.3), respectively, by

w jg = w( j1,··· , jpg ) = P(Xg1 ∈ (qg1,( j−1), qg1,( j)], · · · , Xgpg ∈ (qgpg,( j−1), qgpg,( j)]), (2.4)

p jgr = p( j1,··· , jpg )r

= P(Y = r|Xg1 ∈ (qg1,( j−1), qg1,( j)], · · · , Xgpg ∈ (qgpg,( j−1), qgpg,( j)]).
(2.5)

We define conditional Gini impurity based on continuous covariates:

GiniJ(Y |Xg) =
Jg∑

jg=c(1,1,··· ,1)

w jg(1−
R∑

r=1

p2
jgr), (2.6)

GPJ(Y |Xg) = (1 −
R∑

r=1

p2
r ) −GiniJ(Y |Xg). (2.7)

Proposition 2.2. When Xg is a continuous covariable, we obtain GPJ(Y |Xg) ≥ 0, and Xg and Y are
independent if and only if GPJ(Y |Xg) = 0.

2.2. Grouped feature screening procedure based on purity gain

First, we select a medium-scale simplified model that can almost fully contain D, where D ={g :
F(Y |x) functionally depends on Xg for some Y = r}, using an adjusted purity gain index for each pair
(Y, Xg) as follows:

eg =
[(1 −

∑R
r=1 p2

r ) −
∑Jg

jg=c(1,1,··· ,1) w jg(1 −
∑R

r=1 p2
jgr)]

log Ng
. (2.8)

Here, pr = P(Y = r),w jg = w( j1,··· , jpg ) = P(Xg1 = j1, · · · , Xgpg = jpg) when Xg is a categorical group, Ng

represents the number of group categories of Xg, and p jgr = p( j1,··· , jpg )r = P(Y = r|Xg1 = j1, · · · , Xgpg =

jpg).
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When Xg is defined as continuous group covariates,
p jgr = P(Y = r|Xg1 ∈ (qg1,( j−1), qg1,( j)], · · · , Xgpg ∈ (qgpg,( j−1), qgpg,( j)]), where qg1, j represents j/J
percentile of Xg1 · Jg = JPg , and J represents the number of slices applied to Xg. In this case, Ng = JPg .

There may be more categories of group covariates associated with larger purity gain in the original
definition of Eq (2.3), regardless of whether the group covariates are important, especially when the
number of categories involved in each group covariate is different. Therefore, Ni and Fang [12] used
log Jk to construct an information gain ratio to solve this problem, where each category of Xk is the
same. Similarly, when each category of Xg is the same, for Eq (2.8), we apply the log Ng to build an
adjusted purity gain index to address the problem, which is also applied to continuous Xg. However,
when each category of Xg is different, 1−

∑Jg

jg=c(1,1,··· ,1) w2
jg

is defined as an adjustment factor, motivated
by the split of Xg into several categories via the Decision Tree algorithm.

For group sample data {xi,g1, · · · , xi,gpg , y}, i = 1, · · · , n, eg can be easily estimated by

êg =
[(1 −

∑R
r=1 p̂2

r ) −
∑Jg

jg=c(1,1,··· ,1) ŵ jg(1 −
∑R

r=1 p̂2
jgr)]

log Ng
. (2.9)

When Xg is categorical,

ŵ jg =
1
n

n∑
i=1

I{xi,g1 = j1, · · · , xi,gpg = jpg}, (2.10)

p̂ jgr =

∑n
i=1 I{yi = r, xi,g1 = j1, · · · , xi,gpg = jpg}∑n

i=1 I{xi,g1 = j1, · · · , xi,gpg = jpg}
. (2.11)

When Xg is continuous,

ŵ jg =
1
n

n∑
i=1

I{xi,g1 ∈ (qg1,( j−1), qg1,( j)], · · · , xi,gpg ∈ (qgpg,( j−1), qgpg( j)]}, (2.12)

p̂ jgr =

∑n
i=1 I{yi = r, xig1 ∈ (qg1,( j−1), qg1,( j)], · · · , xigpg ∈ (qgpg,( j−1), qgpg( j)]}∑n

i=1 I{xig1 ∈ (qg1,( j−1), qg1,( j)], · · · , xigpg ∈ (qgpg,( j−1), qgpg( j)]}
. (2.13)

Here, qg1, j is the j/Jth sample normal percentile of {x1,g1, · · · , xn,g1}. In either case, p̂r =
1
n

∑n
i=1 I{yi =

r}.
We suggest selecting a sub-model D̂ = {g : êg ≥ cn−τ, 1 ≤ g ≤ G}, where both c and τ are

predetermined thresholds established via condition (C2) in Section 3. In practice, we can choose a
model D̂= { g : êg is among the top of d largest of all }, where d = [n/ log n].

3. Group feature screening property

In this section, we establish the screening properties of the GP-SIS. Based on the sure independent
screening theories proposed by Ni and Fang [12] and He and Deng [7], the following conditions are
assumed:

Condition 1 (C1). There exist two positive constants c1 and c2 such that c1/R ≤ pr ≤ c2/R,c1 +

c2 ≤ R, c1/R ≤ p jgr ≤ c2/R and c1/Ng ≤ w jg ≤ c2/Ng for every 1 ≤ g ≤ G, 1 ≤ r ≤ R and
jg ∈ {(1, 1, · · · , 1), (2, 1, · · · , 1), · · · , (J, J, · · · , J)}.
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Condition 2 (C2). There exists a positive constant c > 0, and 0 ≤ τ < 1/2 such that mingϵD eg ≥ 2cn−τ.

Condition 3 (C3). R = O(nε),J = max1≤g≤G Ng = O(nκ), where ε ≥ 0,κ ≥ 0 and 2τ + 2ε + 2κ < 1.

Condition 4 (C4). There exists a positive constant c3, such that 0 < fg(x|Y = r) < c3 for any 1 ≤ r ≤ R,
and x is in the domain of Xg, where fg(x|Y = r) is the Lebesgue density function of Xg conditional on
Y = r.

Condition 5 (C5). There exists a positive constant c4, and 0 ≤ ρ < 1/2 such that fg(x) ≥ c4n−ρ for any
1 ≤ g ≤ G and x in the domain of Xg, where fg(x) is the Lebesgue density function of Xg. Furthermore,
fg(x) was continuous in the domain of Xg.

Condition 6 (C6). R = O(nε), J = max1≤g≤G Ng = O
(
nk
)
, where 2τ+2ε+2κ+2ρ < 1 and ε ≥ 0, κ ≥ 0.

Condition 7 (C7). lim infp→∞{mingϵD eg −maxgϵI eg} ≥ δ,where δ > 0 is a constant.

Condition (C1) guarantees that the proportion of each class of variables cannot be either extremely
small or extremely large. A similar assumption was made for conditions (C1) in Huang et al. [8] and
Cui et al. [4]. According to Fan and Lv [5] and Cui et al. [4], Condition (C2) allows the minimum true
signal to disappear to zero in the order of n−τ as the sample size goes to infinity. According to Ni and
Fang [12] and He and Deng [7], Condition (C3) provides for the covariates to diverge with a certain
order and number of classes for the response, and Condition (C6) slightly modifies Condition (C3).
To ensure that the sample percentiles are close to the true percentiles, Condition (C4) rules out the
extreme case in which some Xg places a heavy mass in a small range. Condition (C5) requires n−ρ

as the lower bound of the density. Cui et al. [4] and Zhu et al. [24] proposed the ranking consistency
property; assuming the inactive covariate subset I = {1, · · · , P}\D, then Condition (C7) is established;
a similar assumption was also made by Ni and Fang [12] and He and Deng [7].

Theorem 3.1 (Sure screening property). Under conditions (C1) to (C3), if all the covariates are
categorical, we obtain:

P(D ⊆ D̂) ≥ 1 − O(pexp − bn1−(2τ+2ε+2κ) + (ε + k) log n),

where b denotes a positive constant. If log p = O (nα) and α < 1 − (2τ + 2ε + 2κ), GP-SIS exhibits a
sure screening property.

Theorem 3.2 (Sure screening property). Under conditions (C4)–(C6), when the covariates comprise
continuous and categorical variables, we obtain

P(D ⊆ D̂) ≥ 1 − O(pexp − bn1−(2τ+2ε+2κ+2ρ) + (ε + κ) log n),

where b denotes a positive constant. If log p = O(nα) and α < 1− (2τ+ 2ε+ 2κ + 2ρ), GP-SIS exhibits
a sure screening property.

Theorem 3.3 (Ranking consistency property). Under conditions (C1), (C4), (C5) and (C7), if
log RNg

log n = O(1) and max {log p,log n}R4Ng
4

n1−2ρ = O(1), then lim infn→∞{mingϵGêg − maxgϵI êg} > 0, a.s.

Theorem 3.3 testifies that the proposed screening index can effectively separate active and inactive
covariates at the sample level.
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4. Numerical studies

4.1. Simulation results

In this subsection, we conduct four simulation studies to demonstrate the finite sample
performance of the group screen methods described in Section 2. We compared GP-SIS with
IG-SIS [12] and GIG-SIS [7] in terms of performance using the following evaluation criteria: we
ranked the features inside each replication in accordance with each screening criterion and noted the
minimum model size (MMS) required to accommodate all of the active features. The 5, 25, 50, 75,
and 95% quantiles of the MMS over 100 replications were used to determine the screening
performance. Following Shao and Zhang [20], we denote this as CPa. CPa close to 1 is evidence of
sure screening for a procedure. We also consider predictor-specific inclusion proportions, which are
denoted as CP1, CP2, and CP3, respectively. These represent the coverage probability, which is a
given model size of [n/logn], 2[n/logn], and 3[n/logn], including the indicators of all active
covariates. This allows us to further investigate the active predictors that are easier to predict.

Model 1: categorical covariates and binary response

First, we consider the response variables of different categories. According to Ni and Fang [12] and
He and Deng [7], we assume a model in which the response yi is binary, where R = 2, and all covariates
are categorical. We consider two distributions for yi:

(1) Balanced, pr = P(yi = r) = 1/2;

(2) Unbalanced, pr = 2[1 + R−r
R−1 ]/3R with max1≤r≤R pr = 2 min1≤r≤R pr.

The true model was defined as D = {1, · · · , 9} with d0 = 9, and the group size was d0G = 3. Under
the condition of yi, the latent variable is generated as zi = (zi,1, · · · , zi,P), where zi,k N(urk, 1),1 ≤ k ≤ P.
Subsequently, we construct the active covariates:

(1) If k > d0, then urk = 0;

(2) If k ≤ d0 and r = 1, then urk = −0.5;

(3) If k ≤ d0 and r = 2, then urk = 0.5.

Next, we apply the quantile of the standard normal distribution to generate the covariates. The
specific approach is as follows.

(1) When k is an odd number, that is, xi,k = I(zi,k > z( j
2 )) + 1;

(2) When k is an even number, that is, xi,k = I(zi,k > z( j
5 )) + 1;

where αth percentile of the standard normal distribution is z(α).

Thus, among all P covariates, the covariates of the two categories and five categories accounted for
half. In this model, we considered P = 1500 and n = 80, 100, 120.

Table 2 shows the evaluation criteria over 100 simulations for Model 1. The results argue that the
proposed GP-SIS works well. When the sample size n increases, GP-SIS is close to d0G = 3 in MMS,
and both increase to 1 in coverage probability. MMS in an unbalanced response is better than in a
balanced response in performance via comparing the responses of different structures. Moreover, GP-
SIS is more robust than the other two methods in performance because the fluctuation range in MMS
is small.
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Table 2. Simulation results for example 1.

MMS CP

Condition 5% 25% 50% 75% 95% CP1 CP2 CP3 CPa

Balanced Y,n=80,p=1500
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 4.0 1.00 1.00 1.00 1.00
IG-SIS 89.8 120.0 162.5 193.0 231.1 0.72 0.79 0.80 0.00

Balanced Y,n=100,p=1500
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 17.0 22.0 26.0 31.0 40.1 0.89 0.97 1.00 1.00

Balanced Y,n=120,p=1500
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 9.0 10.0 11.0 13.0 15.0 1.00 1.00 1.00 1.00

UnBalanced Y,n=80,p=1500
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 4.0 5.0 1.00 1.00 1.00 1.00
IG-SIS 130.9 197.0 226.0 282.5 373.4 0.66 0.79 0.84 0.00

UnBalanced Y,n=100,p=1500
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 4.0 0.89 1.00 1.00 1.00
IG-SIS 11.0 15.0 17.0 20.0 27.0 0.90 0.99 1.00 1.00

UnBalanced Y,n=120,p=1500
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 9.0 9.0 10.0 10.0 12.0 1.00 1.00 1.00 1.00

Model 2: categorical covariates and multi-class response
We consider more covariate classifications, and the response yi is multi-class, where R = 10. We

consider yi of the two distributions:
(1) Balanced, pr = P(yi = r) = 1/R;
(2) Unbalanced, pr = 2[1 + R−r

R−1 ]/3R with max1≤r≤R pr = 2 min1≤r≤R pr.
The true model was defined as D = {1, · · · , 9} with d0 = 9, and the group size was d0G = 3.

Condition on yi, the latent variable is generated as zi = (zi,1, · · · , zi,P), for covariates Xk, xi,k = fk(εi,k +

µi,k), where εi,k ∼ t(4) and fk(·) represents a quantile function of standard normal distribution. We then
construct the active covariates by defining ui,k:

(1) If k > d0, then urk = 0;
(2) If ≤ d0, then urk = 1.5 × (−0.9)r.
Next, we apply the fk(·) to generate covariates and consider P = 2000, n = 100, 150, 200 in this

model. The specific approach is as follows:
(1) For k ≤ 400, fk(εi,k + µi.k) = I(zi,k > z( j

2 )) + 1;
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(2) For 401 ≤ k ≤ 800, fk(εi,k + µi.k) = I(zi,k > z( j
4 )) + 1;

(3) For 801 ≤ k ≤ 1200, fk(εi,k + µi.k) = I(zi,k > z( j
6 )) + 1;

(4) For 1201 ≤ k ≤ 1600, fk(εi,k + µi.k) = I(zi,k > z( j
8 )) + 1;

(5) For 1601 ≤ k, fk(εi,k + µi.k) = I(zi,k > z( j
10 )) + 1.

Thus, among all the P covariates, the covariates of two, four, six, eight, and ten categories accounted
for one-fifth each.

Table 3 shows the evaluation criteria over 100 simulations for Model 2. Two methods in
performance under Model 1 are worse than Model 2. When the model is more intricate, GP-SIS in
performance is better than IG-SIS. Particularly, GP-SIS and GIG-SIS have a slightly small MMS
under a small sample size n. When the sample size n increases, GP-SIS is close to d0G = 3 in MMS,
and both increase to 1 in coverage probability. MMS in an unbalanced response is better than in a
balanced response in performance via comparing the responses of different structures. Furthermore,
GP-SIS is more robust in performance because the fluctuation range in MMS is small.

Table 3. Simulation results for example 2.

MMS CP

Condition 5% 25% 50% 75% 95% CP1 CP2 CP3 CPa

Balanced Y,n=100,p=2000
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 9.0 9.0 9.0 10.0 45.1 0.99 0.99 0.99 0.95

Balanced Y,n=150,p=2000
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 9.0 9.0 9.0 9.0 9.0 1.00 1.00 1.00 1.00

Balanced Y,n=200,p=2000
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 9.0 9.0 9.0 9.0 9.0 1.00 1.00 1.00 1.00

UnBalanced Y,n=100,p=2000
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 9.0 9.0 10.0 10.0 12.0 0.66 0.79 0.84 0.00

UnBalanced Y,n=150,p=2000
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 9.0 9.0 9.0 9.0 9.0 1.00 1.00 1.00 1.00

UnBalanced Y,n=200,p=2000
GP-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
GIG-SIS 3.0 3.0 3.0 3.0 3.0 1.00 1.00 1.00 1.00
IG-SIS 9.0 9.0 9.0 9.0 9.0 1.00 1.00 1.00 1.00
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Model 3: continuous and categorical covariates
Finally, among the covariates that are both continuous and categorical, we assume a more complex

example, where response yi is multi-class with R = 4. We consider yi of the two distributions:
(1) Balanced, pr = P(yi = r) = 1/R;
(2) Unbalanced, pr = 2[1 + R−r

R−1 ]/3R with max1≤r≤R pr = 2 min1≤r≤R pr.
In this model, we consider P = 3000, n = 180, 220, 260. The true model is defined at

D = {1, 2, 3, 751, 752, 753, 1501, 1502, 1503, 1504, 1505, 1506} with d0 = 12, and the group size is 4.
Under condition yi, the latent variable is generated as zi = (zi,1, · · · , zi,p). For covariates
Xk, zi,k N(µi, 1), 1 ≤ k ≤ P, where ui = (ui1, . . . , uip)T with uik = (−1)rθrk when yi = r and k ∈ D.
According to He and Deng [7] and Ni and Fang [12], θrk is listed in Table 4. uik = 0 when k < D. To
generate Xk:

For k ≤ 750, xik = j, i f zik ∈ (z( j−1)/4, z j/4];
For 750 < k ≤ 1500, xik = j, i f zik ∈ (z( j−1)/10, z j/10];
For 1501 ≤ k , xik = zik.

Table 4. Parameter specification of Model 3.

θrk
K

1 2 3 4 5 6 7 8 9 10 11 12

r=1 0.2 0.8 0.7 0.2 0.2 0.9 0.1 0.1 0.7 0.7 0.3 0.5

r=2 0.9 0.3 0.3 0.7 0.8 0.4 0.7 0.6 0.4 0.4 0.8 0.2

r=3 0.1 0.9 0.9 0.1 0.3 0.1 0.4 0.3 0.6 0.6 0.4 0.7

r=4 0.7 0.2 0.2 0.6 0.7 0.6 0.8 0.9 0.1 0.1 0.8 0.6

Thus, among all the P covariates, the covariates of four categories and ten categories accounted
for one- fifth, and the other covariates were continuous. Similarly, there are three in four categories
and ten in ten categories, and the active covariates are continuous, accounting for half. For continuous
covariates, we applied different slices, J = 4, 8, 10. The corresponding approaches were defined as GP-
SIS-4, IG-SIS-4, GP-SIS-8, IG-SIS-8, GP-SIS-10 and IG-SIS-10. When the numbers of covariates
are grouped, He and Deng [7] proposed a grouped feature screening algorithm by using the joint
information entropy to screen some important grouped covariates. We denote these as GIG-SIS-4,
GIG-SIS-8 and GIG-SIS-10.

Tables 5 and 6 present the simulation results with over 100 simulations for the balanced and
unbalanced cases, respectively. When the sample size n increases, GP-SIS is close to d0G = 3 in
MMS, and both increase to 1 in coverage probability. The coverage probability of GP-SIS is close to
that of GIG-SIS in the five indexes. Therefore, it was proved that GP-SIS has the characteristics of
group feature screening. MMS in an unbalanced response is better than in a balanced response in
terms of performance by comparing the responses of different structures.

Furthermore, GP-SIS and GIG-SIS are robust in performance, because the fluctuation range in
the MMS is small for the two types of responses. When different slices are applied in continuous
covariates, GP-SIS and GIG-SIS are better in terms of the five indices of coverage probability and
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MMS in performance by comparing the responses of different structures. Therefore, three methods are
independent of the number of slices in performance.

Table 5. Simulation results for example 3: balanced Y.

MMS CP

Condition 5% 25% 50% 75% 95% CP1 CP2 CP3 CPa

Balanced Y,n=180,p=3000
GP-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-4 15.0 22.0 32.5 52.8 92.1 0.94 0.98 0.99 0.88
GP-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-8 13.0 16.0 20.0 31.3 79.1 0.97 0.99 0.99 0.93
GP-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-10 14.0 17.0 22.0 39.3 123.1 0.96 0.99 0.99 0.87

Balanced Y,n=220,p=3000
GP-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-4 13.0 14.0 16.0 19.0 26.0 1.00 1.00 1.00 1.00
GP-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-8 13.0 15.0 18.0 21.0 29.0 1.00 1.00 1.00 1.00
GP-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-10 14.0 17.0 22.0 26.0 37.4 0.99 1.00 1.00 1.00

Balanced Y,n=260,p=3000
GP-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-4 12.0 12.0 14.0 15.0 18.1 1.00 1.00 1.00 1.00
GP-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-8 12.0 13.0 14.0 17.0 21.1 1.00 1.00 1.00 1.00
GP-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-10 12.0 14.0 16.0 19.0 28.1 1.00 1.00 1.00 1.00
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Table 6. Simulation results for example 3: unbalanced Y.

MMS CP

Condition 5% 25% 50% 75% 95% CP1 CP2 CP3 CPa

UnBalanced Y,n=180,p=3000
GP-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-4 39.0 43.0 46.0 50.3 55.1 0.84 0.97 1.00 1.00
GP-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-8 22.0 26.0 29.0 32.0 35.1 0.93 1.00 1.00 1.00
GP-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-10 21.0 23.0 26.0 29.0 33.0 0.95 1.00 1.00 1.00

UnBalanced Y,n=220,p=3000
GP-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-4 16.0 18.0 20.0 22.0 25.0 1.00 1.00 1.00 1.00
GP-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-8 13.0 14.0 16.0 17.0 18.0 1.00 1.00 1.00 1.00
GP-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-10 15.0 17.0 19.0 20.0 22.1 1.00 1.00 1.00 1.00

UnBalanced Y,n=260,p=3000
GP-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-4 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-4 12.0 12.0 13.0 13.0 14.0 1.00 1.00 1.00 1.00
GP-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-8 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-8 12.0 12.0 13.0 13.0 14.1 1.00 1.00 1.00 1.00
GP-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
GIG-SIS-10 4.0 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00
IG-SIS-10 12.0 13.0 13.0 14.0 15.0 1.00 1.00 1.00 1.00

Model 4. Computational time complexity analysis
Similar to Model 1. However, for the distribution of yi, we consider balanced data, that is, P(yi =

r) = 1/2. The true model was defined as D = {1, . . . , 9}, with d0 = 9 and d0G = 3, and the group size
was 3. The active and irrelevant covariates were generated in the same way as in Model 1. Similarly,
half of the p-dimensional covariates are two-category, while the other half are five-category covariates.
Model 4 controls for a constant sample size of 150 and considers a dimensional vector of covariates
ranging from 1500 to 10500, with an equal series of 1000 equal differences. The running times of
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the five methods were recorded for each experiment, and the median running time in 100 replicate
experiments was recorded as the running time index of the five methods. The trends of the five methods
will be compared as the dimension of covariates increases to compare the computational complexities
of the methods.

The median run times in Table 7 show a linear trend for the three methods as the sample size
varies linearly. It can be observed that the running time of GP-SIS is not much different from that of
GIG-SIS. In ultrahigh-dimensional feature screening, both GP-SIS and GIG-SIS are robust, but the
computational time of GP-SIS is shorter than that of GIG-SIS. For grouped variable feature screening,
our method was superior to GIG-SIS.

Table 7. Simulation results for Model 4 (Note: Running time in seconds).

Screening
Methods

P

1500 2500 3500 4500 5500 6500 7500 8500 9500 10500

GP-SIS 2.636 4.202 6.173 6.617 8.124 9.275 10.705 12.135 17.139 15.757
IG-SIS 3.145 5.127 7.512 7.923 9.696 10.967 12.629 14.296 19.841 18.478
GIG-SIS 3.677 6.283 8.933 9.393 11.532 13.085 15.079 17.103 24.702 22.291

4.2. Real data

In this subsection, we analyze a real data-set from the feature selection database at Arizona State
University (http://featureselection.asu.edu/). The lung biological data included 203 samples and 3312
features, which were unbalanced owing the response variable. Every class is 139, 17, 21, 20, and 6,
and the covariates are not only continuous but also have group correlations. We randomly divided the
data into two parts, where 90% of the data represented training data and 10% of the data represented
the test data. The sample sizes of training data and test data respectively are n = 182 and n = 21. The
dimensions of both the training data and test data were P = 3312.

We utilized a ten-fold cross-validation method to assess the performances of various classification
algorithms to eliminate the model accuracy issues caused by various training data. Active covariates
were chosen by GP-SIS-10, IG-SIS-10 and GIG-SIS-10 based on the training data. We classified
them using a variety of techniques, including Support Vector Machine [19], Random Forest (RF), and
Decision Tree (DT) [10], using the active covariates chosen based on GP-SIS, IG-SIS and GIG-SIS.
G-mean and F-measure are the evaluation indices employed. The performance of feature screening for
unbalanced high-dimensional data improves with higher G-means and F-measures [7]. Table 8 shows
the G-mean and F-measure for the training data and test data using the three classification techniques
GP-SIS-10, IG-SIS-10 and GIG-SIS-10. Among all classification methods, GP-SIS exhibited the best
performance, where F-measure of GP-SIS is closer to 1 than those of the other two methods. However,
the F-measure (test) of some response’s class is a little small, which is close to 0 in all classification
methods. In other words, the proposed GP-SIS method performed better.
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Table 8. Analysis results for real data example.

screening method
response

1 2 3 4 5

classification method SVM

G-mean(train data)
GP-SIS 0.9986 0.7995 0.8108 0.8131 0.7801
GIG-SIS 0.9979 0.7903 0.8095 0.8111 0.7768
IG-SIS 0.9992 0.7914 0.7865 0.8084 0.7738

G-mean(test data)
GP-SIS 0.9941 0.9790 0.9825 0.9973 0.9888
GIG-SIS 0.9954 0.9773 0.9937 1.0000 0.9947
IG-SIS 0.9959 0.9841 0.9758 1.0000 0.9943

F-measure(train data)
GP-SIS 0.9762 0.8080 0.8518 0.8576 0.6432
GIG-SIS 0.9635 0.6843 0.7873 0.7942 0.5259
IG-SIS 0.9480 0.6295 0.5900 0.7255 0.4425

F-measure(test data)
GP-SIS 0.8946 0.3352 0.4203 0.4828 0.0900
GIG-SIS 0.9208 0.3433 0.5683 0.5446 0.2000
IG-SIS 0.9116 0.3555 0.3422 0.5502 0.2400

classification method DT

G-mean(train data)
GP-SIS 0.9944 0.7861 0.7976 0.7988 0.7511
GIG-SIS 0.9931 0.7715 0.7829 0.7914 0.7449
IG-SIS 0.9952 0.7821 0.7777 0.8013 0.7471

G-mean(test data)
GP-SIS 0.9907 0.9896 0.9849 0.9949 0.9829
GIG-SIS 0.9927 0.9646 0.9831 0.9891 0.9816
IG-SIS 0.9917 0.9840 0.9751 1.0000 0.9829

F-measure(train data)
GP-SIS 0.9190 0.5290 0.5988 0.6085 0.0000
GIG-SIS 0.89029 0.3551 0.4698 0.5202 0.0343
IG-SIS 0.9057 0.4776 0.4432 0.5929 0.0000

F-measure(test data)
GP-SIS 0.8836 0.4005 0.4233 0.4779 0.0000
GIG-SIS 0.8459 0.1708 0.3441 0.3847 0.0000
IG-SIS 0.8745 0.3195 0.2819 0.4683 0.0000

classification method RF

G-mean(train data)
GP-SIS 1.0000 0.8099 0.8188 0.8166 0.7848
GIG-SIS 1.0000 0.8099 0.8187 0.8166 0.7847
IG-SIS 1.0000 0.8045 0.8098 0.8143 0.7818

G-mean(test data)
GP-SIS 0.9963 0.9819 0.9884 0.9975 0.9834
GIG-SIS 0.9978 0.9598 0.9819 0.9913 0.9859
IG-SIS 0.9958 0.9816 0.9761 1.0000 0.9975

F-measure(train data)
GP-SIS 1.0000 1.0000 1.0000 1.0000 1.0000
GIG-SIS 1.0000 1.0000 1.0000 1.0000 1.0000
IG-SIS 0.9846 0.8772 0.8925 0.9025 0.7340

F-measure(test data)
GP-SIS 0.9036 0.3533 0.5067 0.5138 0.0000
GIG-SIS 0.8856 0.1300 0.3968 0.4885 0.0286
IG-SIS 0.9137 0.3605 0.3722 0.5303 0.2567
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5. Conclusions

In the data, there were continuous and categorical grouping covariates, and the response was
categorical, which is common in practice, but the applicable screening methods are limited. We
propose a GP-SIS procedure based on the Gini impurity to effectively screen grouping covariates.
GP-SIS has a sure screening property and ranking consistency property, theoretically, and is
model-free. When the numbers of categories of all grouping covariates are the same and different,
GP-SIS is quite similar to GIG-SIS in performance, which can be shown in the simulation.
Practically, as shown by the simulation results, compared with the existing group feature screening
method and single covariate feature screening, GP-SIS has a better performance.

Group feature screening reports difficulties based on missing data. In the future, based on the
classification model, we intend to propose a new group feature screening method for either the missing
variable or response variable.
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Appendix

Proof of Proposition 2.1. To prove Proposition 2.1, we need to define f (x) = x2, proved to be close Ni
and Fang [12]. By Jensen’s inequality,

pg∑
i=1

J∑
ji=1

w( j1,··· , jpg )

R∑
r=1

p2
( j1,··· , jpg )r =

R∑
r=1

[
pg∑

i=1

J∑
ji=1

w( j1,··· , jpg ) f (p( j1,··· , jpg )r)]

≥

R∑
r=1

f (
pg∑

i=1

J∑
ji=1

w( j1,··· , jpg ) p( j1,··· , jpg )r)

=

R∑
r=1

f (
pg∑

i=1

J∑
ji=1

P(Xgi = ji)P(Y = r|Xgi = ji))

=

R∑
r=1

p2
r ,

and then

GP = (1 −
R∑

r=1

p2
r ) −

Jg∑
jg

w jg(1 −
R∑

r=1

p2
jgr)

= 1 −
R∑

r=1

p2
r −

Jg∑
jg

w jg +

Jg∑
jg

w jg

R∑
r=1

p2
jgr

=

Jg∑
jg

w jg

R∑
r=1

p2
jgr −

R∑
r=1

p2
r

≥ 0.

The above equation holds if and only if p( j1,··· , jpg )r = p( j1,··· , jpg )′r, for any 1 ≤ r ≤ R, 1 ≤ i ≤ pg and
1 ≤ jpg ≤ j′pg

≤ J. That is, Xg and Y are independent. □

Proof of Proposition 2.2. From the same proof as Proposition 2.1, we can get that GPJ(Y |Xg) ≥ 0 holds
if and only if p( j1,··· , jpg )r = p( j1,··· , jpg )′r. So, when Xg and Y are independent, GPJ(Y |Xg) = 0.

P(Xg1 ∈ (qg1,( j−1), qg1,( j)], · · · , Xgpg ∈ (qgpg,( j−1), qgpg,( j)]|Y = r)

=
P(Y = r|Xg1 ∈ (qg1,( j−1), qg1,( j)], · · · , Xgpg ∈ (qgpg,( j−1), qgpg,( j)])/J

P(Y = r)

=
P(Y = r|Xg1 ∈ (qg1,( j′−1), qg1,( j′)], · · · , Xgpg ∈ (qgpg,( j′−1), qgpg,( j′)])/J

P(Y = r)
= P(Xg1 ∈ (qg1,( j′−1), qg1,( j′)], · · · , Xgpg ∈ (qgpg,( j′−1), qgpg,( j′)]|Y = r).
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By
∑J

j=1 P(Xg1 ∈ (qg1,( j−1), qg1,( j)], · · · , Xgpg ∈ (qgpg,( j−1), qgpg,( j)]) = 1, we have
P(Xg1 ∈ (qg1,( j−1), qg1,( j)], · · · , Xgpg ∈ (qgpg,( j−1), qgpg,( j)]) = (1/J)pg and
P(Xg1 ≤ qg1, j, · · · , Xgpg ≤ qgpg, j|Y = r) = ( j/J)pg if covariates have a similar distribution. □

Lemma 1 (Bernstein inequality). If Z1, · · · ,Zn is an independent random variable with a mean value
of 0, and bounded supporter is [−M,M], then we have the inequality: P(|

∑n
i=1 Zi| > t) ≤ 2exp{− t2

2(v+ Mt
3 )
}

where v ≥ Var(
∑n

i=1 Zi).

Lemma 2. For discrete group covariates Xg and discrete response Y, we have the following three
inequalities:

(a)P(| p̂r − pr| > t) ≤ 2 exp {− 6nt2
3+4t };

(b)P(|ŵ jg − w jg | > t) ≤ 2 exp{− 6nt2
3+4t };

(c)P(|p̂ jgr − p jgr| > t) ≤ 2 exp{− 6nt2
3+4t }.

Proof of Lemma 2. Three inequalities are similar in the proofs, where inequality (a) and
inequality (b), respectively, have been given at Ni [14] and He and Deng [7]. The following is the
proof of inequality (c).

p̂ jgr =

∑n
i=1 I{yi = r, xi,g1 = j1, · · · , xi,gpg = jpg}∑n

i=1 I{xi,g1 = j1, · · · , xi,gpg = jpg}
.

The expectation of p̂ jgr is

E(p̂ jgr) = E(
∑n

i=1 I{yi = r, xi,g1 = j1, · · · , xi,gpg = jpg}∑n
i=1 I{xi,g1 = j1, · · · , xi,gpg = jpg}

)

= E(
I{yi = r, xi,g1 = j1, · · · , xi,gpg = jpg}

I{xi,g1 = j1, · · · , xi,gpg = jpg}
) = p jgr.

Let Zi = I{yi = r|Xig1 = j1, · · · , Xigpg = jpg} − p jgr,Var(
∑n

i=1 Zi) = nVar(Zi) = np jgr(1 − p jgr) ≤ n
4 be

known, and then

P(| p̂ jgr − p jgr| > t) = P(|n−1
n∑

i=1

Zi| > t) = P(|
n∑

i=1

Zi| > nt)

≤ 2 exp {−
n2t2

2
(

n
4 +

nt
3

) } ≤ 2 exp {−
6nt2

3 + 4t
}.

According to the Bernstein inequality, the formula is held. □

Lemma 3. With regard to discrete group covariates Xg and discrete response Y, for any 0 < ε < 1,
under condition (C1), we have P(|êg − eg| > 2ε) ≤ O(RJ3) exp{−c5

nε2

R2 J6 }, where c5 represents a positive
constant.
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Proof of Lemma 3. By eg and êg in Section 2.2, we have

log Ng(êg − eg)

= [(1 −
R∑

r=1

p̂2
r ) −

Jg∑
jg

ŵ jg(1 −
R∑

r=1

p̂2
jgr)] − [(1 −

R∑
r=1

p2
r ) −

Jg∑
jg

w jg(1 −
R∑

r=1

p2
jgr)]

= (
R∑

r=1

p2
r −

R∑
r=1

p̂2
r ) + (

Jg∑
jg

w jg −

Jg∑
jg

ŵ jg) + (
Jg∑
jg

ŵ jg

R∑
r=1

p̂2
jgr −

Jg∑
jg

w jg

R∑
r=1

p2
jgr)

=

R∑
r=1

(p2
r − p̂2

r ) +
Jg∑
jg

(w jg − ŵ jg) +
Jg∑
jg

R∑
r=1

(ŵ jg p̂2
jgr − w jg p2

jgr)

=

R∑
r=1

(pr − p̂r)(pr + p̂r) +
Jg∑
jg

(w jg − ŵ jg)

+

Jg∑
jg

R∑
r=1

[(ŵ jg p̂ jgr + w jg p jgr)( p̂ jgr − p jgr) + p̂ jgr p jgr(ŵ jg − w jg)]

= I1 + I2 + I3.

Since log J ≥ log 2 ≥ 0.5, we have

P(|êg − eg| > ε) ≤ P(|I1| >
ε

3
) + P(|I2| >

ε

3
) + P(|I3| >

ε

3
).

For I1, we have

P(|I1| >
ε

3
) ≤

R∑
r=1

P(|(pr − p̂r)(pr + p̂r)| >
ε

3
)

≤

R∑
r=1

P(|(pr − p̂r)| >
c1ε

3RJ3 )

≤ RJ32exp{−
6n( c1ε

3RJ3 )2

3 + 4( c1ε
3RJ3 )
}.

For I2, we have

P(|I2| >
ε

3
) ≤

Jg∑
jg

P(|ŵ jg − w jg | >
c1ε

3J3 )

≤ J32exp{−
6n( c1ε

3J3 )2

3 + 4( c1ε
3J3 )
}.
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For I3, we have

I3 =

Jg∑
jg

R∑
r=1

[(ŵ jg p̂ jgr + w jg p jgr)(p̂ jgr − p jgr) + p̂ jgr p jgr(ŵ jg − w jg)]

=

Jg∑
jg

R∑
r=1

[(ŵ jg p̂ jgr + w jg p jgr)( p̂ jgr − p jgr)] +
Jg∑
jg

R∑
r=1

p̂ jgr p jgr(ŵ jg − w jg)

:= I31 + I32.

For I31 and I32, we have
P(|I3| >

ε

3
) ≤ P(|I31| >

ε

6
) + P(|I32| >

ε

6
)

P(|I31| >
ε

6
) ≤

Jg∑
jg

R∑
r=1

P(|(ŵ jg p̂ jgr + w jg p jgr)(p̂ jgr − p jgr)| >
ε

6
)

≤

Jg∑
jg

R∑
r=1

p(| p̂ jgr − p jgr| >
c1ε

6RJ3 )

≤ RJ32 exp{−
6n( c1ε

6RJ3 )2

3 + 4( c1ε
6RJ3 )
}

P(|I32| >
ε

6
) ≤

Jg∑
jg

R∑
r=1

P(| p̂ jgr p jgr(ŵ jg − w jg)| >
ε

6
)

≤

Jg∑
jg

R∑
r=1

P(|ŵ jg − w jg | >
c1ε

6RJ3 )

≤ RJ32exp{−
6n( c1ε

6RJ3 )2

3 + 4( c1ε
6RJ3 )
}.

In a word, we have the inequality

P(|êg − eg| > 2ε) ≤ O(RJ3) exp{−c5
nε2

R2J6 },

where c5 represents a positive constant. □

Proof of Theorem 3.1. By Conditions (C1) to (C3) and Lemma 3, we can get

P(D ⊆ D̂) ≥ P(|êg − eg| ≤ cn−τ,∀gϵD)

≥ P( max
1≤g≤G

|êg − eg| ≤ cn−τ)

≥ 1 −
G∑

g=1

P( max
1≤g≤G

|êg − eg| > cn−τ)

≥ 1 − O(RJ3)p exp−c5
c2n1−2τ

R2J6

≥ 1 − O(pexp − bn1−2τ−2ε−2κ + (ε + κ) log n),
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where b is a positive constant. □

Lemma 4 (Lemma A.5 [7]). Under (C1), (C4) and (C5),mfor any 0 < ε < 1, so for continuous Xg, we
have P(|êg − eg| > 2ε) ≤ O(RNg) exp{−c6

n1−2pε2

R4N4
g
}, there exists a positive constant c6.

Proof of Theorem 3.2. According to Lemma 4, the proof of Theorem 3.2 is the same as Theorem 3.1
and hence is omitted. □

Proof of Theorem 3.3. According to Lemma 3 and 4 and under Conditions (C1), (C4), (C5) and (C7),
we get

P(ming∈Dêg − maxg∈I êg <
δ

2
)

≤ P((ming∈Dêg − maxg∈I êg) − (ming∈Deg − maxg∈Ieg) < −
δ

2
)

≤ P(|(ming∈Dêg − maxg∈I êg) − (ming∈Deg − maxg∈Ieg)| >
δ

2
)

≤ P(max1≤g≤G|êg − eg| >
δ

4
) ≤ O(RJg)p exp{−c7

n1−2ρ

R4J4
g
}

= O(exp{log RNg + log p − c7
n1−2ρ

R4N4
g
}),

where c7 = min{c5, c6}( δ
2

4 ). Since log(RNg)
log n = O(1), there exists a positive constant c8 such that

log(RNg) ≤ c8 log n. Also, max {log p,log n}R4Ng
4

n1−2ρ = O(1) implies that log p ≤ 1
2c7

n1−2ρ

R4N4
g

and
1
2c7

n1−2ρ

R4N4
g
≥ (c8 + 2) log n for large n. Next, there exists a constant n0, and we can get∑∞

n=n0
exp{log RNg + log p − c7

n1−2ρ

R4N4
g
} ≤

∑∞
n=n0

exp{c8 log n − 1
2c7

n1−2ρ

R4N4
g
} ≤∑∞

n=n0
exp{c8 log n − (c8 + 2) log n} =

∑∞
n=n0

n−2 < ∞. According to Ni and Fang [12] and by the Borel
Cantelli Lemma, we can get lim in f n→∞{mingϵGêg − maxgϵI êg} ≥

δ
2 > 0, a.s. □
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