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Abstract: We introduce an M−class function in an S−metric space which is a viable, productive, and
powerful technique for finding the existence of a fixed point and fixed circle. Our conclusions unify,
improve, extend, and generalize numerous results to a widespread class of discontinuous maps. Next,
we introduce notions of a fixed ellipse (elliptic disc) in an S−metric space to investigate the geometry
of the collection of fixed points and prove fixed ellipse (elliptic disc) theorems. In the sequel, we
validate these conclusions with illustrative examples. We explore some conditions which eliminate the
possibility of the identity map in the existence of an ellipse (elliptic disc). Some remarks, propositions,
and examples to exhibit the feasibility of the results are presented. The paper is concluded with a
discussion of activation functions that are discontinuous in nature and, consequently, utilized in a
neural network for increasing the storage capacity. Towards the end, we solve the satellite web coupling
problem and propose two open problems.
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1. Introduction

Many real-world problems have a need to find a distance connecting two or more items that may
not be easy to measure accurately. Consequently, to model distinct problems of practical nature, we
require an appropriate metric. There exist several approaches to measure the distance more precisely
which are being utilized to widen the extent of the investigation of fixed point theory. Non-unique
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and unique fixed point conclusions have been widely investigated with a different outlook via distinct
metrics in the theory of fixed points (for instance, [1, 2, 7–10, 24, 36, 42–46] and so on). Recently, the
geometry of the collection of fixed points has been considered in various forms, such as the fixed circle
problem, fixed disc problem, fixed ellipse problem, fixed elliptic disc problem and so on. The most
general form of these problems is the “fixed figure problem.”

In the current work, we introduce an M−class function to establish a unique fixed point and fixed
circle via the S−metric introduced by Sedghi et al. [37]. Further, we investigate the notion of a fixed
ellipse (elliptic disc) in an S−metric space to conclude that the set of fixed points incorporates an
ellipse (elliptic disc) under appropriate conditions and verify this by illustrative examples. In the
sequel, we explore some conditions which eliminate the possibility of the identity map in the
existence of an ellipse (elliptic disc) in an S−metric space. Further, we give propositions for the
existence of a self-map that fixes the given ellipse (elliptic disc) and demonstrate that an ellipse
(elliptic disc) contains all the points of space except its foci. It is fascinating to mention that the
uniqueness of a fixed ellipse, as well as the existence of the greatest fixed elliptic disc, may be
established using celebrated contractive conditions like Banach contraction [4], Ćirić contraction [8],
Quasi contraction [9], Rhoades contraction [35] and so on. These fixed ellipse (elliptic disc)
conclusions encourage further investigations and implementations in S−metric spaces. It is
significant to mention that the collection of fixed points carries out a significant role in the theory of
fixed points and may form some geometrical shapes like circles, discs, ellipses or elliptic discs. In
particular, the ellipse has numerous applications in Physics, Astronomy, Neural Networks, Biology,
Artificial Intelligence, Economics and so on.

2. Preliminaries

Definition 2.1. [37] An S−metric on a non-empty set U is a function S : U×U×U−→ R+ so that

(S1) S(ω,υ ,u)≥ 0;
(S2) S(ω,υ ,u) = 0 iff ω = υ = u;
(S3) S(ω,υ ,u)≤ S(ω,ω,α)+S(υ ,υ ,α)+S(u,u,α), ω,υ ,u,α ∈ U.

Geometrically, we connect three points ω, υ and u to get a triangle, and if α is a point mediating
this triangle, then (S3) holds.

Remark 2.1. [37] In an S−metric space S(ω,ω,υ) = S(υ ,υ ,ω).

Definition 2.2. [37] Let {ωn} be a sequence in an S−metric space (U,S). Then,

(1) {ωn} is convergent to ω ∈ U if limn→∞S(ωn,ωn,ω) = 0;
(2) {ωn} is a Cauchy sequence if limn,m→∞S(ωn,ωn,ωm) = 0, n,m > N;
(3) (S,U) is complete if every Cauchy sequence in U converges to a point in U.

Definition 2.3. [26] Let (S,U) be an S−metric space, and C(ω0,r) = {ω ∈U : S(ω,ω,ω0) = r,r > 0}
is a circle centered on ω0 with a radius r. For a self-map A : U→ U, if Aω = ω,ω ∈ C(ω0,r), then
C(ω0,r) is called a fixed circle of A.
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3. Main results

First, we introduce an M−class function in an S−metric space which may be used as a tool to find a
fixed point of contraction maps as well as explore its geometry. These functions also give the assurance
of a fixed point, fixed circle (disc) and fixed ellipse (elliptic disc), and they unify, improve, extend and
generalize numerous existing conclusions in the literature to S−metric spaces.

We denote a set of continuous functions f :[0,∞)5→ [0,∞) by M, satisfying the following:

(f1) f(1,1,0,3,1) ∈ [0,1);
(f2) f is a linear homogeneous function, that is,

f(λω) = λ f(ω) or f(λω1,λω2,λω3,λω4,λω5) = λ f(ω1,ω2,ω3,ω4,ω5),

where ω = (ω1,ω2,ω3,ω4,ω5) ∈ [0,∞)5, λ ≥ 0;
(f3) f is a non-decreasing function, that is,

ω ≤ ν ⇒ fω ≤ fν or ωi ≤ νi, i = 1,2, . . . ,5⇒ f(ω1,ω2,ω3,ω4,ω5)≤ f(υ1,υ2,υ3,υ4,υ5),

where ω = (ω1,ω2,ω3,ω4,ω5) and υ = (υ1,υ2,υ3,υ4,υ5) ∈ [0,∞)5.

Then, function f is said to be an M-class function.

Example 3.1. Define f1 : [0,∞)5→ [0,∞) by f1(ω1,ω2,ω3,ω4,ω5) = αω1, α ∈ [0,1). Then, f1 ∈M.

Example 3.2. Define f2 : [0,∞)5 → [0,∞) by f2(ω1,ω2,ω3,ω4,ω5) = α(ω2 +ω5), α ∈ [0, 1
3). Then,

f2 ∈M.

Example 3.3. Define f3 : [0,∞)5→ [0,∞) by f3(ω1,ω2,ω3,ω4,ω5) =α max{ω2,ω5}, α ∈ [0, 1
3). Then,

f3 ∈M.

Example 3.4. Define f4 : [0,∞)5→ [0,∞) by f4(ω1,ω2,ω3,ω4,ω5) = αω1 +βω2 + γω5, α +β + γ ∈
[0,1). Then, f4 ∈M.

Example 3.5. Define f5 : [0,∞)5→ [0,∞) by f4(ω1,ω2,ω3,ω4,ω5) = max{ω1,ω2,ω5}. Then, f5 ∈M.

Example 3.6. Define f6 : [0,∞)5 → [0,∞) by f4(ω1,ω2,ω3,ω4,ω5) = α(ω3 +ω4), α ∈ [0, 1
3). Then,

f6 ∈M.

Example 3.7. Define f7 : [0,∞)5→ [0,∞) by f7(ω1,ω2,ω3,ω4,ω5) =α max{ω3,ω4}, α ∈ [0, 1
3). Then,

f7 ∈M.

Example 3.8. Define f8 : [0,∞)5→ [0,∞) by

f8(ω1,ω2,ω3,ω4,ω5) = αω1 +βω2 + γ(ω3 +ω4)+δω5, α +β +3γ +δ ∈ [0,1).

Then, f8 ∈M.

Example 3.9. Define f9 : [0,∞)5→ [0,∞) by

f9(ω1,ω2,ω3,ω4,ω5) = α max{ω1,ω2,ω3,ω4,ω5}, α ∈ [0,
1
3
).

Then, f9 ∈M.
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Lemma 3.10. If f ∈M and ω,υ ∈ [0,∞) are such that

ω ≤max{f(υ ,ω,0,υ +2ω,ω), f(υ +2ω,ω,0,υ ,υ), (3.1)
f(υ ,υ +2ω,0,υ ,ω), f(ω,υ ,0,ω,υ +2ω)},

then ω ≤ ηυ , where η = f(1,1,0,3,1) ∈ [0,1).

Proof. We may presume without loss of generality that ω ≤ f(υ ,ω,0,υ +2ω,ω). If υ < ω,

ω ≤ f(υ ,ω,0,υ +2ω,ω)< f(ω,ω,0,3ω,ω) = ωf(1,1,0,3,1)≤ ω,

a contradiction. Thus, ω ≤ υ . Also,

ω ≤ f(υ ,ω,0,υ +2ω,ω)< f(υ ,υ ,0,3υ ,υ) = υf(1,1,0,3,1) = ηυ .

�

Theorem 3.11. Let (U,S) be a complete S−metric space. For all ω , υ ∈ U, f ∈M and A : U→ U,
if S(Aω,Aω,Aυ)> 0 implies

S(Aω,Aω,Aυ)≤f
(
S(ω,ω,υ),S(Aω,Aω,ω),S(Aω,Aω,υ), (3.2)

S(Aυ ,Aυ ,ω),S(Aυ ,Aυ ,υ)
)
,

then A has a unique fixed point.

Proof. For arbitrary ω0 ∈ U, let ω1 = Aω0. If ω1 = Aω1, ω1 is a fixed point of A, and the proof is
concluded. So, consider ω1 , Aω1 and ω2 = Aω1. Consequently, S(Aω0,Aω0,Aω1) > 0, and then,
using inequality (3.2) for ω = ω0, υ = ω1 and properties of M−class function,

S(ω1,ω1,ω2) = S(Aω0,Aω0,Aω1)

≤ f(S(ω0,ω0,ω1),S(Aω0,Aω0,ω0),S(Aω0,Aω0,ω1),S(Aω1,Aω1,ω0),S(Aω1,Aω1,ω1))

= f(S(ω0,ω0,ω1),S(ω1,ω1,ω0),S(ω1,ω1,ω1),S(ω2,ω2,ω0),S(ω2,ω2,ω1))

= f(S(ω0,ω0,ω1),S(ω0,ω0,ω1),0,S(ω0,ω0,ω2),S(ω1,ω1,ω2))

≤ f(S(ω0,ω0,ω1),S(ω0,ω0,ω1),0,2S(ω0,ω0,ω1)+S(ω1,ω1,ω2),S(ω1,ω1,ω2)).

Now, using Lemma 3.10, we have

S(ω1,ω1,ω2)≤ ηS(ω0,ω0,ω1). (3.3)

Repeatedly, we get S(ω2,ω2,ω3)≤ ηS(ω1,ω1,ω2)≤ η2S(ω0,ω0,ω1).

Continuing like this,

S(ωn,ωn,ωn+1)≤ ηS(ωn−1,ωn−1,ωn)≤ ·· · ≤ η
nS(ω0,ω0,ω1).

Now, define a Picard sequence ωn+1 = Aωn, n ∈ N∪ {0}, with initial point ωo ∈ U. If for some
n ∈ N, ωn = ωn+1 = Aωn, then ωn is a fixed point of A, and the proof is complete. So, presume that
ωn , ωn+1, for all n ∈ N∪{0}. By using (S3),
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S(ωn,ωn,ωn+m)≤ 2S(ωn,ωn,ωn+1)+S(ωn+m,ωn+m,ωn+1)

= 2S(ωn,ωn,ωn+1)+S(ωn+1,ωn+1,ωn+m)

≤ 2S(ωn,ωn,ωn+1)+2S(ωn+1,ωn+1,ωn+2)+S(ωn+m,ωn+m,ωn+2)

≤ 2S(ωn,ωn,ωn+1)+2S(ωn+1,ωn+1,ωn+2)+ · · ·+S(ωn+m,ωn+m,ωn+m−1)

≤ 2[S(ωn,ωn,ωn+1)+S(ωn+1,ωn+1,ωn+2)+ · · ·+S(ωn+m−1,ωn+m−1,ωn+m)]

≤ 2
(
η

n +η
n+1 + · · ·+η

n+m−1)S(ω0,ω0,ω1)

= 2
ηn(1−ηm)

1−η
S(ω0,ω0,ω1)→ 0, as n→ ∞,

and hence {ωn} is a Cauchy sequence. Since (S,U) is complete, {ωn} converges to ω ∈ U, that is,
limn→∞S(ωn,ωn,ω) = 0. We assert that ω is a fixed point of A. If not, ω ,Aω, that is, S(ω,ω,Aω)>
0. Now,

S(ω,ω,Aω)≤ 2S(ω,ω,ωn+1)+S(Aω,Aω,ωn+1)

= 2S(ω,ω,ωn+1)+S(Aω,Aω,Aωn)

≤ 2S(ω,ω,ωn+1)+ f(S(ω,ω,ωn),S(Aω,Aω,ω),S(Aω,Aω,ωn),S(Aωn,Aωn,ω),S(Aωn,Aωn,ωn))

≤ 2S(ω,ω,ωn+1)+ f
(
S(ω,ω,ωn),S(Aω,Aω,ω),S(Aω,Aω,ω)+S(ωn,ωn,ω),S(Aωn,Aωn,ω),

S(Aωn,Aωn,ωn)
)

= 2S(ω,ω,ωn+1)+ f
(
S(ω,ω,ωn),S(ω,ω,Aω),S(ω,ω,Aω)+S(ωn,ωn,ω),S(ωn+1,ωn+1,ω),

S(ωn+1,ωn+1,ωn)
)
.

Since f is continuous, as n→ ∞, using Lemma 3.10, we obtain

S(ω,ω,Aω)≤ f(0,S(ω,ω,Aω),S(ω,ω,Aω)+0,0,0).

Consequently, S(ω,ω,Aω) = 0, that is, Aω = ω.

Now, suppose ω∗ is another fixed point of A, that is, S(Aω,Aω,Aω∗)> 0, and

S(Aω,Aω,Aω
∗)≤ f

(
S(ω,ω,ω∗),S(Aω,Aω,ω),S(Aω,Aω,ω∗),S(Aω

∗,Aω
∗,ω),S(Aω

∗,Aω
∗,ω∗)

)
S(ω,ω,ω∗)≤ f

(
S(ω,ω,ω∗),S(ω,ω,ω),S(ω,ω,ω∗),S(ω∗,ω∗,ω),S(ω∗,ω∗,ω∗)

)
S(ω,ω,ω∗)≤ f

(
S(ω,ω,ω∗),0,S(ω,ω,ω∗),S(ω,ω,ω∗),0

)
.

Again by Lemma 3.10, S(ω,ω,ω∗) = 0, that is, ω = ω∗. Hence, A has a unique fixed point in U. �

Example 3.12. Let U= [0,1] and an S metric S : U×U×U→ R+ be

S(ω,υ ,u) = |ω−υ |+ |ω +υ−2u|,ω,υ ,u ∈ U.

Then, (S,U) is a complete S−metric space. Define maps f :[0,∞)5→ [0,∞) and A : U→ U as

f(ω1,ω2,ω3,ω4,ω5) = α(ω1 +ω2 +ω5), α ∈ [0,
1
3
)
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and Aω = ω

4ω+1 , respectively. Then, f ∈M. Since

S(Aω,Aω,Aυ) = 2|Aω−Aυ |> 0,

S(Aω,Aω,Aυ) = 2
∣∣∣ ω

1+4ω
− υ

1+4υ

∣∣∣
= 2
∣∣∣ ω−υ

(1+4ω)(1+4υ)

∣∣∣
≤ 1

4

(
|ω−υ |+8

ω2

4ω +1
+8

υ2

4υ +1

)
= α(S(ω,ω,υ)+S(Aω,Aω,ω)+S(Aυ ,Aυ ,υ)), α =

1
4
,

that is, A satisfies contraction condition (3.2), and 0 is a unique fixed point of A.

Corollary 3.13. Theorem 3.11 also continues to be true if (3.2) is replaced by

S(Aω,Aω,Aυ)≤ αS(ω,ω,υ).

Proof. Define f : [0,∞)5→ [0,∞) by f(ω1,ω2,ω3,ω4,ω5) =αω1, α ∈ [0,1). Then, f∈M and the proof
complies with Theorem 3.11. �

Remark 3.1. Corollary 3.13 is an enhancement of the Banach contraction theorem [4] in S−metric
space, which is the result of Sedghi et al. [37].

Corollary 3.14. Theorem 3.11 also continues to be true if (3.2) is replaced by

S(Aω,Aω,Aυ)≤ α
(
S(Aω,Aω,ω)+S(Aυ ,Aυ ,υ)

)
, α ∈ [0,

1
3
).

Proof. Define f : [0,∞)5→ [0,∞) by f(ω1,ω2,ω3,ω4,ω5) = α(ω2 +ω5), α ∈ [0, 1
3). Then, f ∈M, and

the proof complies with Theorem 3.11. �

Remark 3.2. Corollary 3.14 is an enhancement of the Kannan contraction theorem [20] in S−metric
space, which is the result of Phaneendra [33].

Corollary 3.15. Theorem 3.11 also continues to be true if (3.2) is replaced by

S(Aω,Aω,Aυ)≤ α
(
S(Aω,Aω,υ)+S(Aυ ,Aυ ,ω)

)
, α ∈ [0,

1
3
).

Proof. Define f : [0,∞)5→ [0,∞) by f(ω1,ω2,ω3,ω4,ω5) = α(ω3 +ω4), α ∈ [0, 1
3). Then, f ∈M, and

the proof complies with Theorem 3.11. �

Remark 3.3. Corollary 3.15 is an enhancement of the Chatterjee contraction theorem [7] in S−metric
space, which is the result of Phaneendra and Swamy [31].

Corollary 3.16. Theorem 3.11 also continues to be true if (3.2) is replaced by

S(Aω,Aω,Aυ)≤α max{S(ω,ω,υ),S(Aω,Aω,ω),S(Aω,Aω,υ),

S(Aυ ,Aυ ,ω),S(Aυ ,Aυ ,υ)}, α ∈ [0,
1
3
).
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Proof. Define f : [0,∞)5 → [0,∞) by f(ω1,ω2,ω3,ω4,ω5) = α{ω1,ω2,ω3,ω4,ω5} α ∈ [0, 1
3). Then,

f ∈M, and the proof complies with Theorem 3.11. �

Remark 3.4. Corollary 3.16 is an enhancement of the Ćirić type contraction theorem [9] in S−metric
space, which is the result of Phaneendra and Swamy [31].

Corollary 3.17. Theorem 3.11 also continues to be true if (3.2) is replaced by

S(Aω,Aω,Aυ)≤αS(ω,ω,υ)+βS(Aω,Aω,ω)+ γ(S(Aω,Aω,υ)

+S(Aυ ,Aυ ,ω)+δS(Aυ ,Aυ ,υ)},

where α +β +3γ +δ ∈ [0,1).

Proof. Define f : [0,∞)5→ [0,∞) by

f(ω1,ω2,ω3,ω4,ω5) = αω1 +βω2 + γ(ω3 +ω4)+δω5, α +β +3γ +δ ∈ [0,1).

Then, f ∈M, and the proof complies with Theorem 3.11. �

Remark 3.5. Corollary 3.17 is an enhancement of the Hardy-Roger type contraction theorem [11] in
S−metric space.

Corollary 3.18. Theorem 3.11 also continues to be true if (3.2) is replaced by

S(Aω,Aω,Aυ)≤ αS(ω,ω,υ)+βS(Aω,Aω,ω)+δS(Aυ ,Aυ ,υ)},where α +β +δ ∈ [0,1).

Proof. Define f : [0,∞)5 → [0,∞) by f(ω1,ω2,ω3,ω4,ω5) = αω1 + βω2 + δω5, α + β + δ ∈ [0,1).
Then, f ∈M, and the proof complies with Theorem 3.11. �

Remark 3.6. Corollary 3.18 is an enhancement of the Reich-type contraction theorem [34] in
S−metric space.

On suitably varying the elements of an M−class function, distinct existing well-known conclusions
in the literature may be deduced. In all the above results, we have generalized, extended, unified and
improved some well-known results wherein the fixed point is always unique. However, there may arise
some situations where the fixed point is not unique, and the collection of fixed points may include
some geometrical shape. So, now we review the geometry of the collection of fixed points in S−metric
space via an M−class function. It is significant to notice that the S−metric is not in general created by
any metric.

Now, define a set

(f4) M∗ = {f ∈M : f(0,1,1,1,1) ∈ [0,1)}.
Clearly, M∗ ⊆M.

Theorem 3.19. Let (S,U) be an S−metric space, f∈M∗. For self-map A : U→ U, if S(Aω,Aω,ω)>

0 implies

S(Aω,Aω,ω)≤f
(
S(ω,ω,ω0),S(Aω,Aω,ω),S(Aω0,Aω0,ω0), (3.4)

S(Aω,Aω,ω0),S(Aω0,Aω0,ω)
)
,

then, C(ω0,r) is a fixed circle of A centered on ω0 with radius r = inf{S(Aω,Aω,ω) : Aω , ω,ω ∈
U}.
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Proof. Let C(ω0,r) be any circle centered on ω0 with radius r and Aω0 , ω0, that is,
S(Aω0,Aω0,ω0)> 0. So, by using inequality (3.4), (f2) and (f4), we have

S(Aω0,Aω0,ω0)≤f
(
S(ω0,ω0,ω0),S(Aω0,Aω0,ω0),S(Aω0,Aω0,ω0),

S(Aω0,Aω0,ω0),S(Aω0,Aω0,ω0)
)

= f
(
0,S(Aω0,Aω0,ω0),S(Aω0,Aω0,ω0),S(Aω0,Aω0,ω0),S(Aω0,Aω0,ω0)

)
= S(Aω0,Aω0,ω0)f(0,1,1,1,1)
< S(Aω0,Aω0,ω0),

a contradiction, which implies Aω0 = ω0.
Now, consider ω ∈ C(ω0,r) and Aω , ω, that is, S(Aω,Aω,ω) > 0. Also, by definition of r,

S(Aω,Aω,ω)≥ r.
Now, by using inequality (3.4), properties of the M−class function and Lemma 3.10,

S(Aω,Aω,ω)≤ f
(
S(ω,ω,ω0),S(Aω,Aω,ω),S(Aω0,Aω0,ω0),S(Aω,Aω,ω0),S(Aω0,Aω0,ω)

)
= f
(
S(ω,ω,ω0),S(Aω,Aω,ω),S(ω0,ω0,ω0),S(Aω,Aω,ω0),S(ω0,ω0,ω)

)
≤ f
(
S(ω,ω,ω0),S(Aω,Aω,ω),0,2S(Aω,Aω,ω)+S(ω0,ω0,ω),S(ω,ω,ω0)

)
= f(r,S(Aω,Aω,ω),0,2S(Aω,Aω,ω)+ r,r)

≤ f(S(Aω,Aω,ω),S(Aω,Aω,ω),0,3S(Aω,Aω,ω),S(Aω,Aω,ω))

= S(Aω,Aω,ω)f(1,1,0,3,1)
≤ ηS(Aω,Aω,Aω)< S(Aω,Aω,Aω),

a contradiction. Thus, S(Aω,Aω,Aω) = 0, that is, Aω = ω . Hence, C(ω0,r) is a fixed circle of
A. �

Example 3.20. Let an S−metric S : U×U×U−→ R+ be

S(ω,ω,υ) = |w1−u1|+ |w1 +u1−2v1|+ |w2−u2|+ |w2 +u2−2v2|+ |w3−u3|+ |w3 +u3−2v3|,

where ω = (w1,w2,w3),υ = (v1,v2,v3), u = (u1,u2,u3) ∈ U= R3. Then,

C(ω0,8) = {ω ∈ U : S(ω0,ω0,ω) = 8},

where ω0 = (1,2,3) ∈ U and r = 8, that is, a circle centered at (1,2,3) with radius 8 is given by

|1−w1|+ |1+w1−2|+ |2−w2|+ |2+w2−4|+ |3−w3|+ |3+w3−6|= 8
|1−w1|+ |2−w2|+ |3−w3|= 4.

(3.5)

Define A : U−→ U as A(a,b, c) =

{
(a,b, c), (a,b, c) ∈ C(ω0,8)
(1,0,2), otherwise

.

Then, map A validates all the hypotheses of Theorem 3.19 and fixes the unique circle C(ω0,8), that
is, the set of fixed points of a self-map A contains a unique circle C(ω0,8) (see Figure 1).
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Figure 1. Demonstrates that the circle (3.5) is fixed by the function A.

Following Joshi et al. [16, 17], now, we define an ellipse (elliptic disc) in an S−metric space and
discuss their shapes in different S−metric spaces for different lengths of semi-major axes and different
foci. Next, we describe a fixed ellipse (elliptic disc) in an S−metric space and exploit an S−metric
variant of a celebrated Caristi type map [6] to conclude that the collection of fixed points incorporates
an ellipse (elliptic disc). It is well known that an ellipse is the locus of a point for which the sum
of the Euclidean distances from the two foci is uniform, and the circle is the ellipse of diminishing
eccentricity wherein both the focal points are identical. In fact, ellipses emerge naturally in numerous
areas, such as planetary orbits.

Definition 3.1. We define an ellipse having foci at c1 and c2 in an S−metric space (U,S) as

E(c1, c2,a) = {ω ∈ U : S(c1, c1,ω)+S(c2, c2,ω) = 2a, c1, c2 ∈ U, a ∈ [0,∞)}.

If S(c1, c1,ω)+S(c2, c2,ω)≤ 2a, then the above definition reduces to the definition of an elliptic disc,
and we denote it by ED(c1, c2,a). For the formation of ellipse, S(c1, c1, c2)< 2a.

The distance 2 f = S(c1, c1, c2) is the linear eccentricity. It is well known that eccentricity is the
degree of the deflection of the curve from the roundness of a specific shape. The midpoint of line c1c2 is
said to be a center of an ellipse (elliptic disc). The portion of length 2a passing through the foci c1 and
c2 is the major axis, and the line through the center, perpendicular to the major axis, is the minor axis.

Example 3.21. Let an S−metric S : U×U×U−→ R+ be

S(ω,υ ,u) = |ω−u|+ |ω +u−2υ |, ω,υ ,u ∈ U= R,

that is, S(−5,−5,5) = 20. Then,

E(−5,5,11) = {ω ∈ U : S(−5,−5,ω)+S(5,5,ω) = 22}
= {ω ∈ U : |5+ω|+ |−5+ω +10|+ |5−ω|+ |5+ω−10|= 22}
= {ω ∈ U : 2|5+ω|+2|5−ω|= 22}
= {−5.5,5.5},

and
ED(−5,5,11) = {ω ∈ U : S(−5,−5,ω)+S(5,5,ω)≤ 22}

= [−5.5,5.5],
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that is, an ellipse and elliptic disc centered at the origin having foci at −5 and 5 are {−5.5,5.5} and
[−5.5,5.5], respectively.

Example 3.22. Let an S−metric S1 : U×U×U −→ R+ be S1(ω,υ ,u) = Σ2
i=1(|ωi− ui|+ |ωi + ui−

2νi|), where ω = (w1,w2),υ = (v1,v2),u = (u1,u2) ∈U= R2, and S1(c1, c1, c2) = 8, where c1 = (2,0)
and c2 = (0,2). Then,

E(c1, c2,5) ={ω ∈ U : S1(c1, c1,ω)+S1(c2, c2,ω) = 10}
={ω ∈ U : |2−ω1|+ |2+ω1−4|+ |0−ω2|+ |0+ω2−0|+ |0−ω1|
+ |0+ω1−0|+ |2−ω2|+ |2+ω2−4|= 10}

={ω ∈ U : 2|2−ω1|+2|ω2|+2|ω1|+2|2−ω2|= 10}
={ω ∈ U : |2−ω1|+ |2−ω2|+ |ω1|+ |ω2|= 5},

(3.6)

that is, an ellipse centered at (1,1) with foci (2,0) and (0,2) is shown as the blue line in Figure 2.

Figure 2. Ellipses corresponding to an S−metric S1(ω,υ ,u) = Σ2
i=1(|ωi− ui|+ |ωi + ui−

2νi|), centered at (1,1) with foci (2,0) and (0,2) for a= 5,6,7 and 8 are shown by the blue,
the red, the green and the brown lines, respectively, in Example 3.22.

If an S−metric S2 : U×U×U−→ R+ is

S2(ω,υ ,u) =
√

(ω1−υ1)2 +(ω2−υ2)2 +(υ1−u1)2 +(υ2−u2)2 +(u1−ω1)2 +(u2−ω2)2,

ω = (ω1,ω2),υ = (υ1,υ2),u = (u1,u2) ∈ U= R2,

and S2(c1, c1, c2) = 4, then an ellipse having the same center and the same foci as above is√
2(2−ω1)2 +2ω2

2 +
√

2ω2
1 +2(2−ω2)2 = 6 and is shown as the blue line in Figure 3.
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Figure 3. Ellipses corresponding to S2(ω,υ ,u) =√
(ω1−υ1)2 +(ω2−υ2)2 +(υ1−u1)2 +(υ2−u2)2 +(u1−ω1)2 +(u2−ω2)2, centered at

(1,1) with the same foci (2,0) and (0,2), for a = 3, 4, 5 and 6 are shown by the red, the
blue, the green and the brown lines, respectively.

Let S3 : U×U×U−→ R+ be S3(ω,υ ,u) = max{|ω1−υ1| , |ω2−υ2| , |υ1−u1|, |υ2−u2|, |u1−
ω1|, |u2−ω2|}, ω = (ω1,ω2),υ = (υ1,υ2), u= (u1,u2)∈U=R2, and S3(c1, c1, c2) = 2. Then, again,
an ellipse with the same center and the same foci is max{|2−w1| , |w2|}+max{|w1| , |2−w2|}= 2 and
is shown as the blue line in Figure 4.

Figure 4. Ellipses corresponding to S3(ω,υ ,u) = max{|ω1−υ1| , |ω2−υ2| , |υ1 −
u1|, |υ2−u2|, |u1−ω1|, |u2−ω2|}, centered at (1,1) with the same foci (2,0) and (0,2), for
a= 2, 3,4 and 5 are shown by the blue, the red, the green and the violet lines, respectively.

The shapes of ellipses corresponding to an S1 metric, as used in Figure 2, corresponding to different
foci and different values of semi major axes are shown in Figure 5.
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Figure 5. Ellipses corresponding to an S−metric S1(ω,υ ,u) = Σ2
i=1(|ωi− ui|+ |ωi + ui−

2νi|), corresponding foci (2,0),(0,2) (a = 5); (2,4),(4,2) (a = 5); (1,2),(−1,−2) (a =
7); and (−5,5),(−2,2) (a = 7), are shown by the blue, the red, the pink and the green
respectively.

Example 3.23. Let an S−metric S1 : U×U×U −→ R+ be S1(ω,υ ,u) = Σ3
i=1(|ωi−υi|+ |ωi− ui|),

where ω = (ω1,ω2,ω3),υ = (υ1,υ2,υ3),u = (u1,u2,u3) ∈ U= R3. Then,

E(c1, c2,2) = {ω ∈ U : S1(c1, c1,ω)+S1(c2, c2,ω) = 12}
= {ω ∈ U : 2|ω1|+2|ω2|+2|ω3|+2|ω1−1|+2|ω2−1|+2|ω3−1|= 12}
= {ω ∈ U : |ω1|+ |ω2|+ |ω3|+ |ω1−1|+ |ω2−1|+ |ω3−1|= 6,

(3.7)

where c1 = (0,0,0) and c2 = (1,1,1), that is, an ellipse centered at (0.5,0.5,0.5) with foci (0,0,0) and
(1,1,1) is shown in Figure 6.

Figure 6. Ellipse corresponding to an S−metric S1(ω,υ ,u) = Σ3
i=1(|ωi−υi|+ |ωi− ui|),

centered at (0.5,0.5,0.5) with foci (0,0,0) and (1,1,1), for a= 6 is shown in Figure 6.
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If an S−metric S2 : U×U×U−→ R+ is

S2(ω,υ ,u) =
√

Σ3
i=1(ωi−υi)2 +

√
Σ3

i=1(ωi−ui)2,

ω = (ω1,ω2,ω3),υ = (υ1,υ2,υ3),u = (u1,u2,u3) ∈ U= R3,

then an ellipse having the same center and the same foci as above is√
ω2

1 +ω2
2 +ω2

3 +
√

(ω1−1)2 +(ω2−1)2 +(ω3−1)2 = 6

and is shown in Figure 7.

Figure 7. Ellipse corresponding to S2(ω,υ ,u) = Σ3
i=1

√
(ωi−υi)2 + Σ3

i=1

√
(ωi−ui)2,

centered at (0.5,0.5,0.5) with the same foci (0,0,0) and (1,1,1), for a = 6, is shown in
Figure 7.

If S3 : U×U×U−→ R+ is

S3(ω,υ ,u) = max{|ω1−u1| , |ω2−u2| , |ω3−u3|}+max{|υ1−u1|, |υ2−u2|, |υ3−u3|},

ω = (ω1,ω2,ω3),υ = (υ1,υ2,υ3),u = (u1,u2,u3) ∈ U= R3,

then again an ellipse with the same center and the same foci is

max{|ω1|, |ω2|, |ω3|}+max{|ω1−1|, |ω2−1|, |ω3−1|}= 6

and is shown in Figure 8.
It is fascinating to see that the shapes of some ellipses may change by changing the length of the

semi-major axis (see Figures 1–3) or foci (see Figure 4), or involved metric (see Figures 2–4 and 6–8).
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Figure 8. Ellipse corresponding to S3(ω,υ ,u) = max{|ω1−u1| , |ω2−u2| , |ω3−u3|}+
max{|υ1− u1|, |υ2− u2|, |υ3− u3|}, centered at (0.5,0.5,0.5) with the same foci (0,0,0)
and (1,1,1) for a= 6 is shown in Figure 8.

Remark 3.7. The interior of Figures 2–8 is the corresponding elliptic disc with the same center, foci
and length of the semi-major axis as those of the ellipse.

Following Caristi [6], we introduce the Caristi map in an S−metric space.

Definition 3.2. A self-map A of an S−metric space (U,S) is a Caristi map on U if ς : U−→ [0,∞) is
a lower semi-continuous function for (U,S) and

S(ω,ω,Aω)≤ ς(ω)− ς(Aω), ω ∈ U.

Following Joshi et al. [16], we introduce fixed ellipse and elliptic disc in S−metric space to explore
the geometry of the collection of non-unique fixed points.

Definition 3.3. Let A : U −→ U be a self-map of an S−metric space (U,S). If
Aω = ω, ω ∈ E(c1, c2,a), c1, c2 ∈ U, a ∈ [0,∞), then E(c1, c2,a) is said to be the fixed ellipse of A.

Definition 3.4. Let A : U −→ U be a self-map of an S−metric space (U,S). If
Aω = ω, ω ∈ ED(c1, c2,a), c1, c2 ∈ U, a ∈ [0,∞), then ED(c1, c2,a) is said to be the fixed elliptic disc
of A.

Theorem 3.24. Let E(c1, c2,a) be an ellipse in an S−metric space (U,S). Define ς : U−→ [0,∞) as

ς(ω) = S(c1, c1,ω)+S(c2, c2,ω), c1, c2,ω ∈ U. (3.8)

If self-map A : U−→ U satisfies the hypotheses

(E1) S(ω,ω,Aω)≤ ς(ω)− ς(Aω),
(E2) S(c1, c1,Aω)+S(c2, c2,Aω)≥ 2a,
(E3) if S(Aω,Aω,Aυ)≤ σS(ω,ω,υ), ω ∈ E(c1,c2,a), υ ∈ U\E(c1, c2,a),σ ∈ [0,1),
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then E(c1, c2,a) is a unique fixed ellipse of A.

Proof. Let ω ∈ E(c1, c2,a) be an arbitrary point. Utilizing (E1) and Eq (3.8),

S(ω,ω,Aω)≤ S(c1, c1,ω)+S(c2, c2,ω)−S(c1, c1,Aω)−S(c2, c2,Aω)

= 2a−S(c1, c1,Aω)−S(c2, c2,Aω)

≤ 2a−2a, (using (E2))

that is,

S(ω,ω,Aω) = 0 =⇒Aω = ω, (3.9)

that is, ω is a fixed point of A, ∀ ω ∈ E(c1, c2,a).
So, a self-map A fixes an ellipse E(c1, c2,a), that is, the set of fixed points of a self-map A contains

an ellipse.
Let E(c1, c2,a) and E(c

′
1, c
′
2,a

′
) be two fixed ellipses of A, that is, A satisfies both conditions (E1)

and (E2) for each of the ellipses E(c1, c2,a) and E(c
′
1, c
′
2,a

′
). Let ω ∈ E(c1, c2,a) and υ ∈ E(c′1, c

′
2,a

′
).

Using (E3), S(ω,ω,υ) = S(Aω,Aω,Aυ) ≤ σS(ω,ω,υ), a contradiction. Hence, E(c1, c2,a) is a
unique fixed ellipse of A. �

The subsequent explanatory example with pictographic validation substantiates Theorem 3.24.

Example 3.25. Let an S−metric S : U×U×U−→ R+ be

S(ω,υ ,u) =
√
(w1− v1)2 +(w2− v2)2 +(υ1−u1)2 +(υ2−u2)2 +(ω1−u1)2 +(ω2−u2)2,

where ω = (w1,w2),υ = (v1,v2), u = (u1,u2) ∈ U= R2. Then,

E(c1, c2,5) = {ω ∈ U : S(c1, c2,ω)+S(c2, c2,ω) = 15},

where c1 = (4,5) and c2 = (−2,−3) ∈ U, that is, the equation of an ellipse centered at (1,1) with foci
at (4,5) and (−2,−3) is

√
2(4−ω1)2 +2(5−ω2)2 +

√
2(2+ω1)2 +2(3+ω2)2 = 15. (3.10)

Define A : U−→ U as A(a,b) =

{
(a,b), (a,b) ∈ E(c1, c2,7.5)
(2.47,0), otherwise

.

Then, map A validates all the hypotheses of Theorem 3.24 and fixes the unique ellipse
E(c1, c2,5), that is, the set of fixed points of a self-map A contains a unique ellipse E(c1, c2,5) (see
Figure 9).
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Figure 9. The blue lines demonstrate the ellipse (3.10), which is fixed by the function A.

Geometrically, condition (E1) states that Aω is in the exterior of an ellipse, and condition (E2)
states that Aω is in the interior of an ellipse.

The following examples depict the importance of hypotheses (E1)–(E3) in the existence of a fixed
ellipse or a unique fixed ellipse in Theorem 3.24.

Example 3.26. Let an S−metric S : U×U×U−→ R+ be

S(ω,υ ,u) = |ω−υ |+ |ω +u−2υ |, ω,υ ,u ∈ U= R.

The ellipse

E(2,4,6) ={ω ∈ U : S(2,2,ω)+S(4,4,ω) = 12}
={ω ∈ U : |2−ω|+ |2+ω−4|+ |4−ω|+ |4+ω−8|= 12}
={ω ∈ U : 2|2−ω|+2|4−ω|= 12}
={ω ∈ U : |2−ω|+ |4−ω|= 6}
={0 , 6}.

Define A : U−→ U as Aω =

{
ω, ω = 0 or ω is an odd number

6, otherwise
.

Then, a self-map A validates all the hypotheses of Theorem 3.24 except (E3). Hence, a self-map A

fixes the ellipse E(2,4,6). However, it is not unique, and there may exist infinitely many ellipses which
are fixed by a self-map A.

Example 3.27. Let an S−metric S : U×U×U−→ R+ be

S(ω,υ ,u) = Σ
2
i=1(|ωi−ui|+ |ωi +ui−2νi|),

where ω = (w1,w2),υ = (v1,v2), u = (u1,u2) ∈ U= R2. Then,

E(c1, c2,6) = {ω ∈ U : S(c1, c1,ω)+S(c2, c2,ω) = 12}, (3.11)
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where c1 = (2,0) and c2 = (0,2) ∈ U, that is, the equation of an ellipse centered at (1,1) with foci at
(2,0) and (0,2) is

|2−ω1|+ |2+ω1−4|+ |0−ω2|+ |0+ω2−0|
+|0−ω1|+ |0+ω2−0|+ |2−ω2|+ |2+ω2−4|= 12,

that is,
2[|2−ω1|+ |ω2|+ |ω1|+ |2−ω2|] = 12,

that is,
|2−ω1|+ |ω2|+ |ω1|+ |2−ω2|= 6.

Define A : U−→ U as A(ω,υ) =

{
(ω,υ), ω ∈ {−1,0,1,2,3}
(3,0), otherwise

.

Then, a self-map A validates hypothesis (E2) and does not validate hypotheses (E1) and (E3) of
Theorem 3.24. Hence, A does not fix the ellipse E(c1, c2,6) but fixes the points
(0,−1), (0,3), (2,−1), (2,3), (−1,y) and (3,y) ∈ U, 0≤ y≤ 2 of an ellipse (3.11).

Theorem 3.28. The conclusion of Theorem 3.24 continues to be true even if we replace (E1) and
(E2) by

(E′1) S(ω,ω,Aω)≤ ς(ω)+ ς(Aω)−4a,
(E′2) S(c1, c1,Aω)+S(c2, c2,Aω)≤ 2a.

Proof. Let ω ∈ E(c1, c2,a) be any arbitrary point. Using (E′1) and Equation (3.8),

S(ω,ω,Aω)≤ S(c1, c1,ω)+S(c2, c2,ω)+S(c1, c1,Aω)+S(c2, c2,Aω)−4a
= 2a+S(c1, c1,Aω,)+S(c2, c2,Aω)−4a
= S(c1, c1,Aω,)+S(c2, c2,Aω)−2a

≤ 0 (using (E
′
2)),

a contradiction, that is, S(ω,ω,Aω) = 0 =⇒Aω = ω, ω ∈ E(c1, c2,a).
The uniqueness of a fixed ellipse may be established as in Theorem 3.24. �

It is clear that geometrically the condition (E′1) states that Aω is in the exterior of an ellipse, and
the condition (E′2) states that Aω is in the interior of an ellipse.

The relationships among the “if”s and “then”s in this theorem are unclear. Currently, it appears
that the first “if” (“If self-map . . . ”) does not have a conclusion, that is, a corresponding “then” clause.
Meanwhile, hypothesis (E2D) appears to lack an expected “if” preceding its “then”. Lastly, (E3D)
appears to be its own complete conditional.

Theorem 3.29. Let ED(c1, c2,a) be an elliptic disc in an S−metric space (U,S). Define ς :U−→ [0,∞)
as in (3.8). If self-map A : U−→ U satisfies the hypotheses

(E1D) S(ω,ω,Aω)≤ ς(ω)+ ς(Aω)−4a,
(E2D) S(c1, c1,Aω)+S(c2, c2,Aω)≤ 2a, ω ∈ ED(c1, c2,a).

Then, ED(c1, c2,a) is a fixed elliptic disc of A.
(E3D) In addition to the above hypotheses, if S(Aω,Aω,Aυ) ≤ σS(ω,ω,υ), ω ∈ ED(c1, c2,a),

υ ∈U\ED(c1, c2,a),σ ∈ [0,1), then ED(c1, c2,a) is a fixed elliptic disc of maximum semi-major axis a,
that is, there is no fixed elliptic disc ED(c1, c2,a) of A having a semi-major axis greater than a.
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Proof. The existence of a fixed elliptic disc may be shown as in Theorem 3.28.
Let there exist two fixed elliptic discs ED(c1, c2,a) and ED(c

′
1, c
′
2,a

′
) of A,a< a

′
, that is, A satisfies

both the conditions (E1D) and (E2D) for each of the elliptic discs E(c1, c2,a) and E(c
′
1, c
′
2,a

′
). Let

ω ∈ ED(c1, c2,a) and υ ∈ ED(c
′
1, c
′
2,a

′
). Using (E3D), S(ω,ω,υ) = S(Aω,Aω,Aυ)≤ σS(ω,ω,υ),

a contradiction. Hence, ED(c1, c2,a) is a fixed elliptic disc of maximum semi-major axis a. �

The subsequent explanatory example with pictographic validation substantiates Theorems 3.28
and 3.29.

Example 3.30. Let an S−metric S : U×U×U−→ R+ be

S(ω,υ ,u) = Σ
2
i=1(|eωi− eui|+ |eωi + eui−2eυi|),

ω = (ω1,ω2),υ = (υ1,υ2),u = (u1,u2) ∈ U= R2.

Then,

E(c1, c2,a) = {ω ∈ U : S(c1, c1,ω)+S(c2, c2,ω) = 4},
ED(c1, c2,a) = {ω ∈ U : S(c1, c1,ω)+S(c2, c2,ω)≤ 4},

where c1 = (0,0) and c2 = (ln2,0), that is, the equation of an ellipse centered at (0.35,0) with foci at
(0,0) and (ln2,0) is

|e0− eω1|+ |e0 + eω1−2e0|+ |e0− eω2|+ |e0 + eω2−2e0|+ |eln2− eω1|
+|eln2 + eω1−2eln2|+ |e0− eω2|+ |e0 + eω2−2e0|= 4,

that is,
2|1− eω1|+4|1− eω2|+2|2− eω1|= 4,

that is,
|1− eω1|+2|1− eω2|+ |2− eω1|= 2 (3.12)

is an ellipse, and
|1− eω1|+2|1− eω2|+ |2− eω1| ≤ 2 (3.13)

is an elliptic disc.

Define A : U−→ U as A(a,b) =

{
(a,b), (a,b) ∈ ED(c1, c2, ln2)
(a− ln15, b− ln15), otherwise

.

Then, map A validates all the postulates of Theorem 3.28 except (E3) and all postulates of
Theorem 3.29. Consequently, a self-map A fixes the ellipse E(c1, c2,2) and elliptic disc ED(c1, c2,2)
of maximum semi-major axis 2, that is, the set of fixed points of A contains an ellipse E(c1, c2,2) as
well as an elliptic disc ED(c1, c2,2) of maximum semi-major axis 2 (see Figure 10). Nevertheless, a
fixed ellipse is not unique, as there exist many fixed ellipses. For example, the ellipses having foci at
(0,0) and (ln2,0) with a semi-major axis of less than 2 units are the fixed ellipses of A.

Using Eq (3.8), we give one more result for the existence of a unique fixed ellipse on an S−metric
space.
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Figure 10. The boundary of the blue-shaded region demonstrates the ellipse (3.12), and its
interior region indicates the greatest elliptic disc (3.13), fixed by the function A.

Theorem 3.31. Theorem 3.24 continues to be true even if we replace (E2) by

(E′′2) ηS(ω,ω,Aω)+S(c1, c1,Aω)+S(c2, c2,Aω)≥ 2a.

Proof. Let ω ∈ E(c1, c2,a) be any arbitrary point. Using (E1) and Eq (3.8),

S(ω,ω,Aω)≤ S(c1, c1,ω)+S(c2, c2,ω)−S(c1, c1,Aω)−S(c2, c2,Aω)

= 2a−S(c1, c1,Aω)−S(c2, c2,Aω)

≤ ηS(ω,ω,Aω), (using (E′′2)),

a contradiction, that is, S(ω,ω,Aω) = 0 =⇒Aω = ω, ω ∈ E(c1, c2,a).
Following the pattern of Theorem 3.24, we may establish that E(c1, c2,a) is a unique fixed ellipse

of A. �

Theorem 3.32. The conclusion of Theorem 3.29 continues to be true even if we replace (E1D) and
(E2D) by

(E
′
1D) S(ω,ω,Aω)≤ ς(ω)− ς(Aω);

(E′2D) ηS(ω,ω,Aω)+S(c1, c1,Aω)+S(c2, c2,Aω)≥ 2a.

Proof. Let ω ∈ ED(c1, c2,a) be any arbitrary point. Using (E′1D) and Eq (3.8),

S(ω,ω,Aω)≤ S(c1, c1,ω)+S(c2, c2,ω)−S(c1, c1,Aω)−S(c2, c2,Aω)

≤ 2a−S(c1, c1,Aω)−S(c2, c2,Aω)

≤ ηS(ω,ω,Aω), (using(E
′
2D),

a contradiction, that is,

S(ω,ω,Aω) = 0 =⇒Aω = ω, ω ∈ E(c1, c2,a).

Following Theorem 3.29, we may establish that ED(c1, c2,a) is a fixed elliptic disc of maximum
semi-major axis a. �
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Example 3.33. Let an S−metric S : U×U×U−→ R+ be

S(ω,υ ,u) = Σ
2
i=1(

∣∣tan−1
ωi− tan−1 ui

∣∣2 + ∣∣tan−1
υi− tan−1 ui

∣∣2),

ω = (ω1,ω2),υ = (υ1,υ2),u = (u1,u2) ∈ U= R2.

Then

E(c1, c2,2) = {ω ∈ U : S(c1, c1,ω)+S(c2, c2,ω) = 4},

where c1 = (0,3) and c2 = (0,−3), that is, the equation of an ellipse centered at (0,0) with foci at
(0,3) and (0,−3) is

| tan−1 0− tan−1
ω1|2 + | tan−1 0− tan−1

ω1|2

+| tan−1 3− tan−1
ω2|2 + | tan−1 3− tan−1

ω2|2 + | tan−1 0− tan−1
ω1|2

+| tan−1 0− tan−1
ω1|2 + | tan−1(−3)− tan−1

ω2|2 + | tan−1(−3)− tan−1
ω2|2 = 4,

that is,

| tan−1
ω1|2 + | tan−1 3− tan−1

ω2|2 + | tan−1 3+ tan−1
ω2|2 = 2 (3.14)

is an ellipse, and

| tan−1
ω1|2 + | tan−1 3− tan−1

ω2|2 + | tan−1 3+ tan−1
ω2|2 ≤ 2 (3.15)

is an elliptic disc.

Define A : U−→ U as A(a,b) =

{
(a,b), (a,b) ∈ ED(c1, c2,2)
1
9(tana, tanb), otherwise

.

Then, map A validates all the hypotheses of Theorem 3.31 except (E3) and all hypotheses of
Theorem 3.32. Consequently, a self-map A fixes the ellipse E(c1, c2,2) and elliptic disc ED(c1, c2,2) of
maximum semi-major axis 2, that is, the set of fixed points of A contains an ellipse E(c1, c2,2) as well
as an elliptic disc ED(c1, c2,2) of maximum semi-major axis 2 (see Figure 11). However, a fixed
ellipse is not unique, as there exist many fixed ellipses. For example, the ellipse having foci at (0,3)
and (0,−3) with a semi-major axis less than 2 is also the fixed ellipse of A.
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Figure 11. The boundary of blue lines demonstrates the ellipse (3.14), and its interior region
indicates the greatest elliptic disc (3.15), fixed by the function A.

Example 3.34. Let an S−metric S : U×U×U−→ R+ be

S(ω,υ ,u) = |ω−u|+ |ω +u−2υ |, ω,υ ,u ∈ U= R.

The ellipse and elliptic disc centered at 3 with foci at 2 and 4 are

E(2,4,9) = {ω ∈ U : S(2,2,ω)+S(4,4,ω) = 18}
= {ω ∈ U : |2−ω|+ |2+ω−4|+ |4−ω|+ |4+ω−8|= 18}

= {−3
2
,

15
2
},

and
ED(2,4,9) =

[
− 3

2
,
15
2
]
.

Define A : U−→ U as Aω =

{
−3

2 , ω ∈ (−∞,0]
15
2 , ω ∈ (0,∞)

.

Then, map A validates all the hypotheses of Theorem 3.31 and fixes the ellipse E(2,4,9), that is,
the set of fixed points of a self-map A contains unique ellipse E(2,4,9). The next result is proved by
taking a function ζa to be discontinuous.

Theorem 3.35. Let E(c1, c2,a) be an ellipse in an S−metric space (U,S). Define ζa : [0,∞)−→ [0,∞)

as

ζa(ω) =

{
ω +2a, ω > 0
0, ω = 0

, ω ∈ R+∪{0}, a ∈ [0,∞). (3.16)

If there exists A : M−→M satisfying
(E
′′′
1 ) S(ω,ω,Aω)≤ S(c1, c1,Aω)+S(c2, c2,Aω)−ζa(S(ω,ω,Aω)),

(E
′′′
2 ) S(c1, c1Aω)+S(c2, c2,Aω)≤ 2a,
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(E
′′′
3 ) S(Aω,Aω,Aυ) ≤ σS(ω,ω,υ), ω,υ ∈ E(c1, c2,a), υ ∈ U \ E(c1, c2,a), σ ∈ [0,1), then

E(c1, c2,a) is a unique fixed ellipse of A.

Proof. Let ω ∈ E(c1, c2,a) such that Aω , ω, ω ∈ E(c1, c2,a). Using (E
′′′
1 ) and Eq (3.16),

S(ω,ω,Aω)≤ S(c1, c1,Aω)+S(c2, c2Aω)−S(ω,ω,Aω)−2a
≤ 2a−S(ω,ω,Aω)−2a

=⇒ 2S(ω,ω,Aω)≤ 0, a contradiction, that is, Aω = ω, ω ∈ E(c1, c2,a).
Following Theorem 3.24, we may establish that E(c1, c2,a) is a unique fixed ellipse of A. �

The subsequent example depicts the significance of condition (E
′′′
3 ) in the existence of a unique fixed

ellipse in Theorem 3.35.

Example 3.36. Let an S−metric S : U×U×U−→ R+ be

S(ω,υ ,u) = |ω−u|+ |ω +u−2υ | , ω,υ ,u ∈ U= R.

The ellipse

E(2,4,4) = {ω ∈ U : S(2,2,ω)+S(4,4,ω) = 8}
= {ω ∈ U : 2 |2−ω|+2 |4−ω|= 8}
= {ω ∈ U : |2−ω|+ |4−ω|= 4}
= {1, 5}.

Define A : U−→ U as Aω =

{
2ω+1

ω+3 , ω ∈ (−∞,2)
15ω−3

ω+1 , ω ∈ [2,∞)
.

Then, a self-map A validates the hypotheses (E
′′′
1 ) and (E

′′′
2 ) of Theorem 3.35 but does not validate

the hypothesis (E
′′′
3 ). Noticeably, A fixes the two ellipses E(2,4,4) and E(2,5,11). It is clear that

geometrically the condition (E
′′′
1 ) states that Aω is in the exterior of an ellipse, and the condition (E

′′′
2 )

states that Aω is in the interior of an ellipse.
The relationships among the “if”s and “then”s in this theorem are unclear, as in Theorem 3.29.

Theorem 3.37. Let ED(c1, c2,a) be an elliptic disc in an S−metric space (U,S). Define ζa : U −→
[0,∞) as in Eq (3.16). If self-map A : U−→ U satisfies the hypotheses

(E′′1D) S(ω,ω,Aω)≤ S(c1, c1,Aω)+S(c2, c2Aω)−ζa(S(ω,ω,Aω)),

(E2D) S(c1, c1,Aω)+S(c2, c2,Aω)≤ 2a, ω ∈ ED(c1, c2,a).

Then, ED(c1, c2,a) is a fixed elliptic disc of A.

(E3D) In addition to the above hypotheses, if S(Aω,Aω,Aυ) ≤ σS(ω,ω,υ), ω ∈ ED(c1, c2,a),
υ ∈ U\ED(c1, c2,a),σ ∈ [0,1), then ED(c1, c2,a) is a fixed elliptic disc of maximum semi-major axis a,
that is, there is no fixed elliptic disc ED(c1, c2,a) of A having a semi-major axis greater than a.

Proof. The proof is simple and follows Theorem 3.35. �
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Remark 3.8 (Joshi et al. [14, 16] and Joshi and Tomar [17]). (1) Examples 3.21–3.23, 3.26–3.36
(Examples 3.21, 3.22, 3.30–3.33) demonstrate that an ellipse (elliptic disc) in an S−metric space may
not be similar to an ellipse (elliptic disc) in a Euclidean space. Further, Examples 3.22, 3.23, 3.30 and
3.33 demonstrate the significant fact that the shape of the ellipse (elliptic disc) may alter by altering
the center, the semi-major axis, the foci or the S−metric under consideration. Also, the semi-major
axis a of the fixed ellipse (elliptic disc) is not dependent on a center and may not be maximal.

(2) The fixed ellipse and fixed elliptic disc conclusions are comparable to fixed-circle and fixed
disc conclusions if both the focuses coincide. Clearly, if c1 = c2 = u0 (say), E(c1, c2,a) = C(u0,

a
2) and

ED(c1, c2,a) =D(u0,
a
2), with center u0 and radius a2 . Also, AE(c1, c2,a) = E(c1, c2,a) does not imply

that E(c1, c2,a) is a fixed ellipse of A, and AED(c1, c2,a) =ED(c1, c2,a) does not imply that ED(c1, c2,a)
is a fixed elliptic disc of A.

(3) It is clear from Examples 3.30 and 3.33 that if a self-map fixes an elliptic disc, then it also fixes
an ellipse. However, the reverse may not hold (see Examples 3.25–3.27, 3.34, 3.36). The fixed elliptic
disc is not unique, that is, all the elliptic discs inside a fixed elliptic disc of a self map in an S−metric
space are also fixed elliptic discs (see Examples 3.30 and 3.33). An elliptic disc having a maximum
semi-major axis is called the greatest elliptic disc. For details on the collection of non-unique fixed
points containing some geometric figures, one may refer to Aydi et al. [3], Beloul et al. [5], Joshi
et al. [13–18], Joshi and Tomar [17], Mlaiki et al. [22,23], Özgür et al. [27], Özgür and Taş [27–30],
Petwal et al. [32], Taş et al. [38], Tomar and Joshi [39], Tomar et al. [40] and references therein.

Let I : U−→ U be the identity map, that is, Iω = ω ∈U. Clearly, I satisfies the first two hypotheses
of each of the Theorems 3.24, 3.28, 3.31 and 3.35 for an ellipse. Now, we devise conditions that
preclude the possibility of the identity map I from Theorems 3.24, 3.28, 3.31 and 3.35.

Theorem 3.38. Let a self-map A : U−→ U have a fixed ellipse E(c1, c2,a), c1, c2 ∈U, a ∈ [0,∞) in an
S−metric space (U,S). Let map ς be defined as in Theorems 3.24, 3.28, 3.31 and 3.35, and map A

satisfies

(I) λS(ω,ω,Aω)≤ ς(ω)−2ς(Aω), ω ∈ U, and λ > 2⇐⇒A= I.

Proof. Let ω ∈ U and Aω , ω . Then,

λS(ω,ω,Aω)≤ S(c1, c1,ω)+S(c2, c2,ω)−2S(c1, c1,Aω)−2S(c2, c2,Aω)

≤ 2S(c1, c1,Aω)+S(Aω,Aω,ω)+2S(c2, c2,Aω)+S(Aω,Aω,ω)

2S(c1, c1,Aω)−2S(c2, c2,Aω)

= 2S(Aω,Aω,ω)

= 2S(ω,ω,Aω) (using symmetry of S),

(λ −2)S(ω,ω,Aω)≤ 0, a contradiction, since λ > 2. Hence, S(ω,ω,Aω) = 0, that is, Aω = ω =

Iω, ω ∈ U.

Conversely, it is straightforward to validate that I satisfies inequality (I). �

Theorem 3.39. The conclusion of Theorem 3.38 continues to be true if (I) is replaced by

(I′) S(ω,ω,Aω)≤ λ1
(
ς(ω)−2ς(Aω)

)
, ω ∈ U, and λ1 <

1
2 ⇐⇒A= I.
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Proof. Let ω ∈ U and Aω , ω. Then,

S(ω,ω,Aω)≤ λ1
(
S(c1, c1,ω)+S(c2, c2,ω)−2S(c1, c1,Aω)−2S(c2, c2,Aω)

)
≤ λ1(2S(c1, c1,Aω)+S(Aω,Aω,ω)+2S(c2, c2,Aω)+S(Aω,Aω,ω)

−2S(c1, c1,Aω)−2S(c2, c2,Aω))

= 2λ1S(Aω,Aω,ω)

= 2λ1S(ω,ω,Aω) (using symmetry of S),

that is, (1− 2λ1)S(ω,ω,Aω) ≤ 0, a contradiction, since λ1 < 1
2 . Hence, S(ω,ω,Aω) = 0, that

is, Aω = ω = Iω, ω ∈ U.
Conversely, it is straightforward to validate that I satisfies inequality (I′). �

Theorem 3.40. The conclusion of Theorem 3.38 continues to be true if (I) is replaced by

(I′′) S(ω,ω,Aω)≤ ζa(S(ω,ω,Aω))+2a.

Proof. Let ω ∈ U and Aω , ω, and then S(ω,ω,Aω) ≤ S(ω,ω,Aω)− 2a+ 2a = S(ω,ω,Aω), a
contradiction. Hence, Aω = ω = Iω, ω ∈ U.

Conversely, it is straightforward to validate that I satisfies inequality (I)′′. �

Remark 3.9. Conclusions of Theorems 3.38–3.40 are also true for fixed elliptic disc ED(c1, c2,a).

It is interesting to see that the fixed ellipse E(c1, c2,a) may not be unique (see Examples 3.26, 3.30
and 3.36) except if a supplementary contraction condition is presumed. In Theorems 3.24, 3.28, 3.31,
and 3.35, we have utilized the Banach contraction [4] to prove the uniqueness of a fixed ellipse. In the
subsequent result, we determine the uniqueness utilizing quasi-contractive condition [9]. In the same
way, we may utilize other classical contractions present in the literature to demonstrate the uniqueness
of the fixed ellipse.

Theorem 3.41. Let E(c1, c2,a) be a fixed ellipse of a self-map A : U→ U of an S−metric space (U,S).
If A satisfies the first two conditions of Theorems 3.24, 3.28, 3.31 and 3.35, along with the contraction
condition

S(Aω,Aω,Aυ)≤η max
{
S(ω,ω,υ), S(ω,ω,Aυ), S(υ ,υ ,Aω), (3.17)

S(ω,ω,Aω), S(υ ,υ ,Aυ))
}
,

ω ∈ E(c1, c2,a),υ ∈ U\E(c1, c2,a), where η ∈ [0,1), then E(c1, c2,a) is a unique fixed ellipse of A.

Proof. Let E(c1, c2,a) and E(c′1, c
′
2,a
′) be two fixed ellipses of A, that is, A satisfies the first two

postulates of Theorems 3.24, 3.28, 3.31 and 3.35 for both the ellipses E(c1, c2,a) and E(c′1, c
′
2,a
′). Let

ω ∈ E(c1, c2,a) and υ ∈ E(c′1, c
′
2,a
′). Using inequality (3.17),

S(ω,ω,υ) = S(Aω,Aω,Aυ)≤ η max
{
S(ω,ω,υ),S(ω,ω,υ),S(υ ,υ ,ω),S(ω,ω,ω),S(υ ,υ ,υ)

}
= ηS(ω,ω,υ)

< S(ω,ω,υ),

a contradiction. Hence, E(c1, c2,a) is a unique fixed ellipse of A. �
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Remark 3.10. A conclusion almost identical to Theorem 3.41 may also be established for the existence
of the greatest fixed elliptic disc using a quasi-contractive condition [9].

Next, we give propositions for the existence of a self-map that fixes the given ellipses.

Proposition 3.1 Let E(c1, c2,a) and E(c′1, c
′
2,a
′) be any two ellipses in an S−metric space (U,S).

Then, we have more than one self-map A on U such that a self-map A fixes the ellipses E(c1, c2,a)
and E(c′1, c

′
2,a
′).

Proof. Define A : U−→ U as Aω =

{
ω, ω ∈ E(c1, c2,a)∪E(c′1, c′2,a′)
µ, otherwise

,ω ∈ U,

where µ is some constant such that S(c1, c1,µ)+S(c2, c2,µ) , 2a and S(c′1, c
′
1,µ)+S(c′2, c

′
2,µ) , 2a′.

Now, define ς1,ς2 : U −→ [0,∞) as ς1(ω) = S(c1, c1,ω)+S(c2, c2,ω) and ς2(ω) = S(c′1, c
′
1,ω)+

S(c′2, c
′
2,ω), ω ∈ U. Then, a self-map A validates all the hypotheses of Theorems 3.24 and 3.28

(except (E3)) for the ellipses E(c1, c2,a) and E(c′1, c
′
2,a
′). Hence, E(c1, c2,a) and E(c′1, c

′
2,a
′) are fixed

ellipses of A. �

Following an almost identical pattern, Proposition 3.1 may be extended for n ellipses.

Proposition 3.2 If E(c1, c2,a1), E(c′1, c
′
2,a
′
1), . . . ,E(cn1, c

n
2,a

n
1) are any n ellipses in an S−metric

space (U,S), then we have more than one self-map A on U so that a self-map A fixes ellipses
E(c1, c2,a1), E(c

′
1, c
′
2,a
′
1), . . . ,E(c

n
1, c

n
2,a

n
1).

One may observe that the ellipses E(c1, c2,a1), E(c′1, c′2,a′1), . . . ,E(cn1, c
n
2,a

n
1) need not be disjoint.

Remark 3.11. Propositions similar to Propositions 3.1 and 3.2 are also true for two and n elliptic
discs ED(c1, c2,a1), ED(c

′
1, c
′
2,a
′
1), . . . , ED(c

n
1, c

n
2,a

n
1), respectively.

Next, we give a proposition on an S−metric space in which an ellipse (elliptic disc) includes all the
points of space except its foci and validate it by giving an example.

Proposition 3.3 For a ∈ R+, define the map Sa : U×U×U−→ [0,∞) as

Sa(ω,υ ,u) =

{
0, ω = υ = u

a, otherwise
, ω, υ , u ∈ U.

Then, the ellipse E(c1, c2,a)
(
elliptic disc ED(c1, c2,a)

)
includes all the points of space U except the

foci c1, c2 ∈ U.

Proof. Obviously, the function Sa is an S−metric on U, and consequently, (U,Sa) is an S−metric space.
Let the ellipse E(c1, c2,a) = {ω ∈ U : Sa(c1, c1,ω)+ Sa(c2, c2,ω) = 2a} (elliptic disc ED(c1, c2,a) =
{ω ∈ U : Sa(c1, c1,ω) + Sa(c2, c2,ω) ≤ 2a}). Clearly, ellipse E(c1, c2,a) (elliptic disc ED(c1, c2,a) )
consists of all of the points ω ∈ U so that ω < {c1, c2}. �

Example 3.42. Let (U,Sa) be an S−metric space so that the S−metric Sa be as in Proposition 3.3.
Consider a set J = {ωi : 1≤ i ≤ n}, n ∈ N. Obviously, there exists an ellipse E(c1, c2,a) (elliptic disc
ED(c1, c2,a) ) consisting of the elements of J as follows:

{ω ∈ U : Sa(c1, c1,ω)+Sa(c2, c2,ω) = 2a}= {ω1,ω2, . . . ,ωn}, c1, c2 ∈ U\J
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({ω ∈ U : Sa(c1, c1,ω)+Sa(c2, c2,ω)≤ 2a}= {ω1,ω2, . . . ,ωn}, c1, c2 ∈ U\J),

that is, E(c1, c2,a) = ED(c1, c2,a).

4. Discontinuous maps as activation functions in neural networks

First, we discuss the continuity of a self-map on a fixed ellipse in S−metric spaces. This
discussion will also be beneficial for providing the answer to the query of continuity of contractive
maps (Rhoades [35]) at the fixed ellipse (elliptic disc).

Theorem 4.1. Let E(c1, c2,a), c1, c2 ∈ U, a ∈ [0,∞), be a fixed ellipse of a self-map A in an S−metric
space (U,S) satisfying

(i) S(Aω,Aω,Aυ)≤ ηM(ω,ω,υ), where

M(ω,ω,υ) = max{S(ω,ω,υ),S(ω,ω,Aυ),S(υ ,υ ,Aω),S(ω,ω,Aω),S(υ ,υ ,Aυ)},

η ∈ [0,1), ω,υ ∈ U;
(ii) for ε > 0, there exists a δ > 0 so that ε < M(ω,ω,υ)< ε +δ =⇒ d(Aω,Aω,Aυ)< ε .

Then, a self-map A is continuous at u∈ E(c1, c2,a) iff limωn−→u M(ωn,ωn,u) = 0, or in other words,
A is discontinuous at u ∈ E(c1, c2,a) iff limωn−→u M(ωn,ωn,u) , 0.

Proof. Let A be continuous at u ∈ E(c1, c2,a) and ωn −→ u. So, Aωn −→Au = u.

lim
ωn−→u

M(ωn,ωn,u) = lim
ωn−→u

max{S(ωn,ωn,u),S(ωn,ωn,Aωn),

S(u,u,Au),S(ωn,ωn,Aωn),S(u,u,Au))}
=max{S(u,u,u),S(u,u,Au),S(u,u,Au),S(u,u,Au),S(u,u,Au))}
=0.

Conversely, if limωn−→u M(ωn,ωn,u) = 0, that is, limωn−→uS(Aωn,Aωn,Au) = 0 as ωn −→ u, hence
Aωn −→Au, that is, A is continuous at u ∈ E(c1, c2,a). �

Remark 4.1. Following similar steps, we may determine continuity and discontinuity at the fixed
elliptic disc.

Continuity at a fixed ellipse (elliptic disc) may be decided by making use of function M(ω,ω,υ)
in S−metric spaces. Inspired by the reality that the majority of the phenomena appearing in the
physical world are discontinuous, now, we discuss Mexican-hat-type [41] and
Gaussian-wavelet-type [25] activation functions, which are utilized to examine non-linear properties,
local stability and coexistence of several equilibrium points to the neural network.

Example 4.2. Let an S−metric S : U×U×U→R+ be S(ω,υ ,u)= |ω−u|+ |ω+u−2υ |,ω,υ ,u∈U.
The ellipse

E(−3,4,9) = {ω ∈ U : S(−3,−3,ω)+S(4,4,ω) = 18}
= {ω ∈ U : 2 |3+ω|+2 |4−ω|= 18}
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= {ω ∈ U : |3+ω|+ |4−ω|= 9}
= {−4, 5}.

The Mexican-hat-type activation function is

Aω =


−4, −∞ < ω <−1
2ω−2, −1≤ ω < 1
−ω +1, 1≤ ω < 5
5, 5≤ ω < ∞

. (4.1)

Clearly, A validates all the hypotheses of Theorems 3.24, 3.28, 3.31 and 3.35. Function A has two
fixed points,−4 and 5, which are also the elements of the ellipse E(−3,4,9). Hence, A fixes the ellipse
E(−3,4,9).

Since we have limωn−→−4 M(ωn,ωn,−4) = 0, and limωn−→5 M(ωn,ωn,5) does not exist, hence A

is continuous at the fixed point u = −4 ∈ E(−3,4,9) and discontinuous at u = 5 ∈ E(−3,4,9). As a
result, A is discontinuous at the fixed ellipse E(−3,4,9) (see Figure 12). Noticeably, A does not fix
any elliptic disc.

-10 -5 5 10

-4

-2

2

4

Figure 12. Mexican-hat-type discontinuous non-monotonic activation function (4.1).

Example 4.3. Let an S−metric S : U×U×U→R+ be S(ω,υ ,u)= |ω−u|+ |ω+u−2υ |,ω,υ ,u∈U.
The ellipse

E(2,4,16) = {ω ∈ U : S(2,2,ω)+S(4,4,ω) = 32}
= {ω ∈ U : 2 |2−ω|+2 |4−ω|= 32}
= {ω ∈ U : |2−ω|+ |4−ω|= 16}
= {−5,11}.
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The Gaussian-wavelet-type activation function is

Aω =



−5, −∞ < ω <−3
2ω +4, −3≤ ω ≤ 3
−ω +1, 3 < ω < 6
3ω +6, 6≤ ω ≤ 10
11, 10 < ω < ∞

. (4.2)

Clearly, A validates all the hypotheses of Theorems 3.24, 3.28, 3.31 and 3.35. The function A has
two fixed points, −5 and 11, which are also the elements of the ellipse E(2,4,16), hence A fixes the
ellipse E(2,4,16). Since we have limωn−→−5 M(ωn,ωn,−5) = 0, and limωn−→11 M(ωn,ωn,11) = 0, A
is continuous at the ellipse E(2,4,16) (see Figure 13). Noticeably, A does not fix any elliptic disc.

-15 -10 -5 5 10 15

10

20

30

Figure 13. Gaussian-wavelet-type discontinuous non-monotonic activation function (4.2).

Example 4.4. Let an S−metric S : U×U×U→ R+ be S(ω,υ ,u) = |ω−u|+ |ω +u−2υ |,ω,υ ,u ∈
U.

The ellipse

E(−5,15,30) = {ω ∈ U : S(−5,−5,ω)+S(15,15,ω) = 60}
{ω ∈ U : 2 |5+ω|+2 |15−ω|= 60}
= {ω ∈ U : |5+ω|+ |15−ω|= 30}
= {−10,20}.

The elliptic disc

ED(−8,−4,8) = {ω ∈ U : S(−8,−8,ω)+S(−4,−4,ω)≤ 16}
{ω ∈ U : 2 |8+ω|+2 |4+ω| ≤ 16}
{ω ∈ U : |8+ω|+ |4+ω| ≤ 8}
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= [−10,−2].

The Mexican-hat-type activation function is

Aω =


−10, −∞ < ω ≤−10
ω, −10 < ω ≤−2
−2ω−6, −2 < ω < 2
20, 2≤ ω < ∞

. (4.3)

Clearly, A validates all the hypotheses of Theorems 3.29, 3.32 and 3.37. The function A has
infinitely many fixed points in the set [−10,−2] and at 20. Hence, A fixes the ellipse E(−5,15,30)
and the elliptic disc ED(−8,−4,8). Since we have limωn−→ω M(ωn,ωn,ω) = 0,ω ∈ [−10,−2], and
limωn−→20 M(ωn,ωn,20) does not exist, hence A is discontinuous at the ellipse E(−5,15,30) and
continuous at the elliptic disc ED(−8,−4,8) (see Figure 14).

-20 -10 10 20

-10

-5

5

10

15

20

Figure 14. Mexican-hat-type discontinuous non-monotonic activation function (4.3).

Remark 4.2. Utilizing the number M(ω,ω,υ), we may decide on the fixed point/ fixed ellipse/ elliptic
disc at which the activation function is continuous. The motivation behind using the discontinuous
activation function is the fact that its storage capacity is higher than the continuous activation function,
and consequently, it can handle diverse spans of input data as diverse segments.

It is worth mentioning that a neural network is a network of neurons that is either biological, made
up of real biological neurons or artificial. An artificial neural network is useful in medical diagnosis,
non-linear system identification and control, sequence recognition, pattern recognition,
decision-making, game-playing, financial applications, e-mail spam filtering, data mining and
visualization.
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5. Application to a satellite web coupling problem

Motivated by the applications of fixed point techniques in diverse real-world problems, we utilize
Corollary 3.13 to solve a satellite web coupling boundary value problem [19]. A satellite web coupling
may be idealized as a thin sheet connecting two cylindrical satellites. The problem of radiation from
the web coupling between two satellites leads to the following non-linear boundary value problem:

− d2ω

dt2 = µω
4, 0 < t < 1, ω(0) = ω(1) = 0, (5.1)

where ω(t) denotes the temperature of radiation at any point t ∈ [0,1], µ = 2al2K3

ζh
> 0 is a

non-dimensional positive constant, K is the constant absolute temperature of both satellites, while
heat is radiated from the surface of the web into space at 0 absolute temperature, l is the distance
between two satellites, a is a positive constant describing the radiation properties of the surface of the
web, factor 2 is required because there is radiation from both the top and bottom surfaces, ζ is
thermal conductivity, and h is the thickness.

The Green function

G(t,ξ ) =

{
t(1−ξ ), 0 < t < ξ

ξ (1− t), ξ < t < 1
.

Problem (5.1) is equivalent to

ω(t) = 1−µ

∫ 1

0
G(t,ξ )ω4(ξ )dξ .

Let U= R[0,1] be a set of Riemann integrable functions on [0,1]. Define an S−metric S : U×U×U→
R+ by S(ω,υ ,u) = |ω − u|+ |υ − u|. Clearly, (U,S) is a complete S−metric space, and ‖ω‖∞ =

supt∈[0,1] |ω(t)|.

Theorem 5.1. Let A : U→ U be a self map in a complete S−metric space (U,S), satisfying

‖ω(t)−υ(t)‖∞ > 0 =⇒‖(ω2(ξ )+υ
2(ξ ))(ω(ξ )+υ(ξ ))‖∞ ≤

κ

µ
, κ ∈ (0,8). (5.2)

Then, the satellite web coupling boundary value problem (5.1) has a unique solution.

Proof. Define a self-map A : U→ U by

Aω(t) = 1−µ

∫ 1

0
G(t,ξ )ω4(ξ )dξ , ξ ∈ [0,1]. (5.3)

Clearly, a solution to the satellite web coupling problem (5.1) is a fixed point of a self map A.
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However, ‖Aω(t)−Aυ(t)‖∞ > 0, so S(Aω(t),Aω(t),Aυ(t))> 0. Now,

S(Aω(t),Aω(t),Aυ(t)) = 2|Aω(t)−A(υ)|

= 2
∣∣∣1−µ

∫ 1

0
G(t,ξ )ω4(ξ )dξ −1+µ

∫ 1

0
G(t,ξ )υ4(ξ )dξ

∣∣∣
= 2µ

∣∣∣∫ 1

0
(υ4(ξ )−ω

4(ξ ))G(t,ξ )dξ

∣∣∣
= 2µ

∣∣∣∫ 1

0
(υ2(ξ )+ω

2(ξ ))(υ(ξ )+ω(ξ ))(υ(ξ )−ω(ξ ))G(t,ξ )dξ

∣∣∣
= 2µ‖ω(t)−υ(t)‖∞‖(ω2(t)+υ

2(t))(ω(t)+υ(t))‖∞

∫ 1

0
G(t,ξ )dξ

≤ 2κ‖ω(t)−υ(t)‖∞

[∫ t

0
ξ (1− t)dξ +

∫ 1

t
t(1−ξ )dξ

]
≤ κ

8
‖ω(t)−υ(t)‖∞

= αS(ω,ω,υ), α ∈ [0,1) (since, κ ∈ (0,8)).

Hence, all the postulates of Corollary 3.13 are validated. As a result, A has a unique fixed point, and a
satellite web coupling problem (5.1) has a unique solution. �

6. Open problem

Let A : U→ U be a self-map in a complete S−metric space (U,S) and ζ be the simulation
function [21].

(1) If A is a JS-contraction [12], does A have a unique fixed point / fixed ellipse/ fixed elliptic disc in
U? Does the Picard sequence {un} converge to the unique fixed point u or any point u of a fixed
ellipse (elliptic disc)? If not, what additional postulate(s) do we have to include?

(2) If A is a surjective JS-expanding map, does A have a unique fixed point/ fixed ellipse/ fixed elliptic
disc in U? Does the Picard sequence {un} converge to the unique fixed point u or any point u of
a fixed ellipse or elliptic disc? If not, what additional postulate(s) do we have to include?

7. Conclusions

We have established a unique fixed point, fixed circle, fixed ellipse and greatest fixed elliptic disc
via an M−class function while extending, generalizing, unifying and improving some popular results
existing in the literature. Motivated by the reflecting property of an ellipse (elliptic disc), which is
useful in Medical science, Optics, Astronomy, Whispering Galleries, and so on, we have explored a
new direction to the geometry of the collection of fixed points in an S−metric space. Furthermore, we
have discussed continuity at fixed ellipses (elliptic discs) on S−metric spaces to establish the
significance of novel fixed ellipse (elliptic disc) conclusions in a neural network, which permits
choosing the appropriate activation function according to the underlying problem of a neural network.
In the sequel, we have presented some interesting prepositions and remarks. In this paper,
investigations of fixed point and fixed figure problems in metric fixed point theory have been enriched

AIMS Mathematics Volume 8, Issue 2, 4407–4441.



4438

to problems formulated in terms of M−class contractive conditions on an S−metric space.
Consequently, more general conclusions have been established than those existing in the literature. It
has been demonstrated by illustrative examples that these extensions, improvements and
generalizations are genuine. Towards the end, the obtained conclusions have been applied to solve the
satellite web coupling problem, which is a very significant and relevant field on its own. Our results
provide a specific procedure and directions for further investigation in this recently developed space.
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3. H. Aydi, N. Taş, N. Y. Özgür, N. Mlaiki, Fixed-discs in rectangular metric spaces, Symmetry, 11
(2019), 294. https://doi.org/10.3390/sym11020294

4. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équation
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