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Prospective Hybrid Molecules with Dual Anti-Viral
and Anti-Thrombotic Activity Against the SARS-CoV-2 Infection
and Its Associated Complications Employing in Silico Studies

Covid-19, a SARS-CoV virus-based disease, was identified in Wuhan, China, in December 2019. Initially, it
was considered just an infection of the respiratory system, but due to its transmittable nature, it was declared
a pandemic. A variety of treatment options were implemented, including antivirals like remdesvir, favipiravir
along with vitamins and antioxidants. Further investigations revealed that the Covid-19 infection results in
thrombotic cardiovascular complications, which are the major concern for the increased mortality associated
with this disease. This study investigates the in Silico design of hybrid molecules with antiviral and an-
tithrombotic properties. A docking study was performed using Autodock Vina software, and binding energies
of the designed compounds were determined for papain-like protease (PDB: 3E9S) and 3-chymotrypsin-like
cysteine protease (PDB: 6LU7). The docked poses and amino acids interactions were verified using Biovia
Discovery studio 4.5. The binding energies of all designed compounds were compared with the standards,
Compound RL1 (2-(5-(3-carbamoyl-1H-1,2 4-triazol-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)-
carbonyl)amino)(hydroxy)methyl)carbamoyl)phenyl acetate) and Compound FL2 (8-hydroxy-2-(3-hydroxy-
4-methoxyphenyl)-4-oxochroman-6-yl(2-(6-flouro-3-oxo-3,4-dihydropyrazine-2-carboxamido)-1-hydroxy-3-
phenylpropyl)carbamate) proved to be promising agents with strong binding interactions. Hybrid molecules
that inhibit viral replication, possibly as transition state inhibitors, can be investigated further for use in the
treatment of SARS-Co-V infection and its associated complications.

Keywords: COVID-19; CL-pro, PL-pro, antiviral, antithrombotic, molecular docking, in Silico, hybrid mole-
cule.

Introduction

The Covid-19 pandemic caused by Severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus
has affected majority of population around the globe and has resulted in significant mortality and morbidity.
It has been initially identified as a respiratory illness, but has now demonstrated extreme individual variabil-
ity in its symptoms, and severity of infection [1, 2]. This highly infectious virus has undergone rapid muta-
tions with “the double mutant” strain leading to the second wave in almost all countries worldwide. This
double mutant Covid strain has been found to be more infectious and lethal and has increased the health risk
in patients with high mortality rate [3]. The SARS-CoV-2 belongs to B-coronavirus family and is SS RNA
enveloped protein with 9860 amino acids. SARS-CoV-2 gene fragment consists of structural and nonstruc-
tural proteins encoded from S, E, M and N gene and ORF region, respectively [4, 5]. Spike glycoprotein
(S protein) present on the virus surface is the key component for viral entry into the host cell through recog-
nition and binding with ACE2 (angiotensin-converting enzyme 2) receptor. S1 subunit of S protein recogniz-
es the binding site and binds to the host receptor and S2 subunit forms six-helical bundle with the help of
heptad repeat (HR1 and HR2) and mediates fusion cell membrane. Fusion of host and viral membrane is
achieved by host protease, which cleaves site at the border of S1 and S2. Sixteen nonstructural proteins per-
form different function and carry out processing and replication of RNA [6, 7].

Angiotensin-converting enzyme 2 (ACEZ2) protein, target for coronavirus is found in alveolar epithelial
cells of lungs and in small intestines enterocyctes. Breakdown of ACE2 finally causes systemic inflammation
in the host cell leading to critical illness and multiorgan dysfunction. Covid-19 patients with cardiovascular
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disease have been severely affected and an increase in mortality rate has been observed. Adverse outcomes
have been observed due to systemic inflammation, which destabilizes vascular plaques finally demanding
increased cardiac activity. Increased levels of IL6, D-dimer and troponins (cardiac specific) direct the patient
towards increased risk of pulmonary embolism and thrombosis [8-12].

Currently the treatment line of SARS-CoV-2 infection involves use of anti-virals like remdesivir, favi-
piravir, ritonavir to address the pulmonary infection phase; while for suppressing the inflammato-
ry/coagulopathy phase, drugs like Tocilizumab, Anakinra, Baricitinib, Eculizumab, Emapalumab and Hepa-
rin, including low molecular weight heparins (e.g enoxaprin) are utilized [13, 14]. Several vaccine candidates
have received approval for emergency use across the globe [15] and mass immunization drives are under
progress [16]. However until a considerable mass of population is vaccinated and herd immunity is achieved,
therapeutic interventions will be required to combat the situation.

Latest developments show that SARS-CoV-2 infection precipitates variety of haematological complica-
tions associated with increase in D-Dimer and blood thickening. Mortality occurs either due to respiratory
failure or thromobotic cardiovascular complications, which requires the management of multiple associated
pathways [17-20].

Development of hybrid molecules is an attractive strategy of drug design to achieve multiple targeting,
enhance biological activity and improve Kinetics [21, 22]. In the past decades, several researchers have uti-
lized this concept to develop agents with antimicrobial [23-25], anti-malarial [26—28] and anti-cancer activi-
ty [29, 30]. Researchers have developed multifunctional drugs comprising of two or more pharmacophores
with benefits in treatment of multi-factorial diseases [31-35].

So an attempt was made to design hybrids with dual action, namely antiviral and anti-coagulant activity,
which would prove advantageous in treatment of the multiple complications occurring during SARS-CoV-2
infection. The strategy involved designing of hybrids of reported anti-viral agents with anti-coagulant mole-
cules through suitable linkers converting them into potentially active molecules, which were studied against
suitable anti-viral targets. The hybrids were generated by linking antiviral molecules [36-38], namely ribavi-
rin, favipiravir, oseltimivir and acyclovir with established anti-platelet drugs [39-43] viz. hesperitin, resvera-
trol and aspirin as test compounds. The selected anti-coagulants are reported to possess dual anti-thrombotic
and antiviral action. The criteria for selection of these agents are summarized in Table 1. The linkers selected
for the design of molecules included hydrolysable and cleavable linkers like 2-amino 2-hydroxy ethyl amide,
malonic acid and succinic acid.

Table 1

Selection of anti-viral and anti-platelet molecules for design of hybrid molecules

Selected Anti-viral molecules

Ribavirin Broad activity toward conventional and novel viruses of DNA and RNA types; Multiple mechanisms
of direct antiviral action; Random mutagenesis of viruses to promote T cell response; Tolerable and
well-characterized side effect profile; Mature clinical experience & comprehensive demographic char-
acterization; Accessibility & affordability

Favipiravir Employed for clinical intervention of COVID-19 treatment; Exhibits faster viral clearance and better
chest CT changes; Adverse events are rare and tolerable

Oseltimivir Clinical study suggests that Remdesivir treatment among all of antivirals such as Ribavirin, Favipiravir
and Oseltamivir proved promising therapeutics in COVID treatment

Acyclovir Similar clinical target as approved drug Remdesivir

Selected Anti-platelet agents

Hesperitin Anti-platelet, anticoagulant, antioxidant, radical scavenging activity and anti-inflammatory activities;
Demonstrated antiviral activity by altering the immune system mainly via regulating interferons in the
influenza A virus

Resveratrol Inhibits platelet aggregation and platelet membrane-bound fibrinogen (Pfig) induced by adenosine di-
phosphate (ADP through decreased activity of PLC beta of platelets; Antioxidant-promote nitric oxide
production, Cardioprotective agent, Antiinflammatory, Neuroprotective, Antiviral properties

Aspirin Proven anticoagulant action, considerable dose-dependent antiviral activity (CA9, HRV1A, HRV2 and
substantial activity against FlIuA H1N1, HRV14 and HRV39); Possible MOA-involvement of the
NF-«B-pathway, Differential regulation of influenza virus RNA synthesis by NF-«kB, iNOS expression
by down regulating the promoter activity, mRNA and protein expression levels involvement of p38
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Experimental

Selection of Protein

COVID-19 papain-like protease (PL-pro) (PDB ID- 3E9S) and 3-chymotrypsin-like cysteine protease
(CL-pro) (PDB ID- 6LU7) were selected as the protein targets for the present study. The crystal structure of
desired proteins was downloaded from RCSB Protein data bank in.pdb format. The native ligand present in
protein 6LU7 is n-[(5-methylisoxazol-3-yl)carbonyl]alanyl-I-valyl-n~1~-((1r,2z)-4-(benzyloxy)-4-0xo-1-
{[(3r)-2-oxopyrrolidin-3-ylJmethyl}but-2-enyl)-I-leucinamide and in 3E9S is 5-amino-2-methyl-N-[(1R)-1-
naphthalen-1-ylethyl]benzamide.

Selection of Ligands

Hybrid ligands that can exhibit dual action, anti-viral activity against the SARS-CoV-2 along with anti-
thrombotic activity with improved affinity and efficacy in combination were designed. Promising anti-viral
agents that are currently recommended in treatment of the SARS-CoV-2 infection like oseltamavir, ribavirin,
fevipiravir and acyclovir (Figure 1A) with molecules like salicylic acid, resveratrol and hespiritin with potent
anti-viral and well-established anti-thrombosis profile (Figure 1B) were selected to design the hybrid mole-
cules using appropriate linkers (Figure 1C).

The 3D structures of hybrid type ligands were drawn using Chem Draw in.mol file with all possible
combinations and Open Babel (http://openbabel.org/wiki/Main_Page) was used to convert. mol to. pdbgt
files. Drug-like properties of the ligands were computed using ADME Schrodinger software QikProp
(https://www.schrodinger.com/QikProp).
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Figure 1A. Selected Anti-viral agents
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Figure 1B. Selected anti-thrombotic agents
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Figure 1C. 2-D Structure of the selected linkers

Molecular Docking studies

Molecular docking studies were carried out using Autodock Vina software. Optimisation of the ligands
and proteins and grid box creation were carried out using Graphical User Interface program Autodock Tools.
Target proteins were optimised using Autodock Tools by adding polar hydrogen groups, removing water
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molecules, adding kollman and Gasteiger charges and prepared file was saved as.pdbqt file. Ligands were
optimised and converted into.pdbqt file using Open Babel software.

The amino acids making up the active site of the target proteins were established by visualization of the
binding of native ligands using Biovia Discovery Studio 2016. Grid box was generated by arranging the grid
coordinates (X, Y and Z) about the proteins active site. The grid size was set to 40x40x40 xyz points for
both targets with grid centre designated at dimensions (x, y and z): —10.891, 16.159 and 66.647 for CL-pro
and —30.52, 22.402, 30.288 for PL-pro. During the docking procedure, both the proteins and ligands were
considered as rigid structures. The root-mean-square deviation (RMSD) was observed, the pose with the
most favourable free binding energy was considered (RMSD value less than 0.1A). Then with the help of
Biovia discovery studio, the pose with lowest energy of binding was aligned with receptor structure for fur-
ther analysis.

Validation of Target Proteins

Target validation was performed to understand the accuracy and reproducibility of the docking process
and targets selected for the study. The native ligands n-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-
n~1~-((1r,2z)-4-(benzyloxy)-4-oxo-1-{[(3r)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-I-leucinamide and 5-
amino-2-methyl-N-[(1R)-1-naphthalen-1-ylethyl]benzamide present in target proteins 6LU7 and 3E9S, re-
spectively, were removed from the protein structures and were re-docked into the active sites using Auto-
dock Vina software. The procedure was performed on both the target proteins in Biovia Discovery software;
the native ligands were removed from the co-crystallized complexes and saved in PDB file format. Grids
were generated about the active sites of the target proteins and the docked complexes were superimposed on
their respective reference co-crystallized complexes and the root mean square deviation (RMSD) was com-
puted.

Prediction of ADME properties

Along with the biological activity, the pharmacokinetic properties of compounds are critical for selec-
tion of good drug candidates. In our study we used ADME Schrodinger online software to predict ADME
properties i.e. Absorption, Distribution, Metabolism, and Excretion/Elimination using Lipinski Rule of drug-
likeness.

Results and Discussion

Target validation

Target validation studies using the selected targets and native co-crystallized ligands indicated low
RMSD values within runs confirming the accuracy and repeatability of the docking procedure. The docking
results of native ligands with targets are shown in Figure 2.

Figure 2. a — Papain-like protease with native ligand;
b — 3-chymotrypsin-like cysteine protease with native ligand

Molecular Docking studies

For the docking studies, 24 hybrid ligands were designed using suitable combinations of the anti-viral
and anti-thrombosis agents with selected linkers. Among these hybrids, six ligands demonstrated favourable
affinity for the selected target proteins (PL-pro and CL-pro) with low binding energy comparable to the se-
lected standards (Remdesivir, Acyclovir, Ribavirin, Oseltamavir and Fevipiravir). The results of the docking
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studies of standards and with interacting amino acid residues and type of interactions are summarized in Ta-
ble 2.

Table 2
Docking analysis of Standards with target proteins
Compound Name | Binding Energy (kcal/mol) | Interacting Amino acids | Bond type
Target: Papain-like protease (PDB ID- 3E9S)
H- bond

Tyr 269, Tyr 265

Remdesivir -6.0 Ala 250, Tyr 269 Tyr 274 -7 stack%ng
©-7 stacking
GIn 270, Glyl64 - 7 stacking
. Tyr269 H-bond
Acyclovir -6.3 Tyr274 H-bond
Aspl65 H-bond
Tyr 265 n-1 stacking
S Asp 165 n-1 stacking
Ribavirin —6.8 Tyr274 H-bond
Gly164, Gly267 H-bond
Tyr 269 H-bond
. Aspl65 H-bond
Oseltamavir -8 Tyr 265 n-alkyl stacking
Tyr274 n-alkyl stacking
Tyr 265 n-n stacking
Asp 165 n-n stacking
Fevipiravir -5.7 Tyr274 H-bond
Thr 302, Arg 167 H-bond
Tyr 274 H-bond
Target: 3-chymotrypsin-like cysteine protease (PDB ID- 6LU7)
His 163, Phe 140 Gly 143 :Eggg
Remdesivir -8.2 His 41, .
Met49,165 n-n stacking
n-7 stacking
Leu 141 H-bond
. Ser 144 H-bond
Acyclovir 58 Cys 145, Glu 166 H-bond
His 163 n- stacking
Cys 145 H-bond,n-7t stacking
L His 163 H-bond
Ribavirin -6.3 Thr 26 H-bond
Gly 143 H-bond
Glu 166 H-bond
Oseltamavir -6.0 Met 49, Met165 n-alkyl stacking
His 41 n-alkyl stacking
Asp 187, Tyr 54 H-bond
Fevipiravir -6.3 His 41 H-bond
Met 165 n- stacking
Arg 188 Halogen interaction

The best six hybrid ligands with low binding energies were selected for further docking interaction
analysis. Figure 3 displays the 2-D structure of these hybrid ligands. The best-docked complexes of these
ligands with their interacting amino acid residues are shown in Figures 4 and 5, respectively.

Based on the docking results, among the six hybrid ligands, compound RL1 exhibited high binding af-
finity with both the target proteins (PDB:3E9S and PDB: 6LU7) with dock score of —8.1 and —8.0, respec-
tively. In the interaction study with PL-pro, the hydrogen bonds were observed with Tyr 269, Gln 270, Tyr
274 and Asp 165, n—n interactions with Gly 164, Leu 163 (Figure 4A). With 3CL-pro, compound RL1
formed hydrogen bonds with Thr 24, 25, 26, Thr 45, Ser 46, Ser 144, Gly 143 and n—n interactions with Met
165, 49, His 41(Figure 5A).
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Compound FL2 exhibited the highest binding affinity with both the target proteins (PDB:3E9S and
PDB: 6LU7) with dock score of —9.1 and -9.0, respectively. With PL-pro, compound FL2 formed hydrogen
bonds with Arg 167, Asp 165 and n—r interactions with Tyr 264 and Lys 158 (Figure 4B). In interaction with
3CL-pro, the hydrogen bonds were observed with Thr 24,25,45, Asn 14 and His 164, n—x interactions with
His 41, Met 49, Thr 24 (Figure 5B).

Also, ligand FL3 (Figure 4C) showed greater binding affinity (dock score -8.1) to PL-pro compared to
the standards, which exhibited dock score between —5.7 to —6.3. However, it exhibited lower affinity (Dock
score —7.9) with 3-CLpro protease compared to the other docked ligands, but with greater affinity when
compared to the standards (Dock score —5.7 to —6.3) with the exception of Remdisivir, which showed im-
proved affinity with dock score of —8.2. With PL-pro (PDB:3E9S), ligand FL3 formed hydrogen bond inter-
action with Thr 266 and n—= interactions of phenyl rings with Tyr 265, Thr 302, Tyr 269, Arg 167 and Pro
249. In interaction with 3-CLpro, the hydrogen bonds were observed with Gly 143, Ser 144, Thr 26, Cys
145, Thr 190 and n—r interactions with Met 165, Met 49 (Figure 5C).
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Figure 3. 2-D structures of selected hybrid ligands

Compound RM1 showed the interaction with PL-pro (PDB:3E9S) and formed hydrogen bond interac-
tion with Tyr 269, Asn 268, Gly 267, Tyr 274 and n—r interactions of triazole rings with Asp 165, Tyr 265
(Figure 4D). Figure 5D shows interaction of RM1 with 3-CLpro, the hydrogen bonds were observed with
Gly 189, Glu 166, Met 49, Asp 187, Ser 144, Cys 145 and n—n interactions with His 41, Met 49 and Glu 166.

Figure 4E shows the interaction of RM2 with PL-pro (PDB:3E9S) and hydrogen bond interaction with
Tyr 274, Gly 164, Tyr 269, Asn 268, Gly 267 and m—r interactions with Asp 165, Tyr 265. In interaction
with 3-CLpro, the hydrogen bonds were observed with Gln 189, Met 49, Gly 143, Ser 144, Cys 145 and n—n
interactions with Met 49, His 41, Glu 166 (Figure 5E). Among the docked ligands, RM2 showed good affini-
ty to CL-Pro with dock score of —8.6 when compared to the standard and other ligands.

In Figure 4F, compound RM3 showed the interaction with PL-pro (PDB:3E9S) and formed hydrogen
bond interaction with Tyr 274, Glu 251 and m—r interactions with Asp 165, Lys 158, Pro 249. Figure 5F
shows interaction of RM3 with 3-CLpro, the hydrogen bonds were observed with Thr 24,25,45, Ser 46, Cys
145 and n—= interactions of triazole ring with Met 49 and phenyl ring with Pro 168 AND Met 165.

Some of the common interacting amino acid residues involved in hydrogen bond formation, which play
a vital role in binding to the target, identified through our docking studies include residues Tyr 265, 269,
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274, Thr 266, Asn 268 with the papain-like protease and residues Thr 24,25,26, Cys 145, Ser 144 with the

3-chymotrypsin-like cysteine protease receptor.
The ADME prediction study of the best six molecules evaluated on QikProp ADME Schrodinger online

software, demonstrated relatively satisfactory drug like properties.
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Figure 4. Docked poses in 3E9S receptor binding pocket A) Compound RL1 B) Compound FL2
C) Compound FL3 D) Compound RM1 E) Compound RM2 F) Compound RM3
(The figure shows the ligands docking within the active site. The hydrogen bonds are represented
by green dotted lines, m—= interactions with yellow/pink dotted lines
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Figure 5. Docked poses in 6LU7 receptor binding pocket A) Compound RL1 B) Compound FL2
C) Compound FL3 D) Compound RM1 E) Compound RM2. F) Compound RM3.
(The figure shows the ligands docking within the active site. The hydrogen bonds are represented
by green dotted lines, n—r interactions with yellow/pink dotted lines

Based on the docking and ADME prediction studies on papain-like protease (PL-pro) (PDB ID- 3E9S)
and 3-chymotrypsin-like cysteine protease (CL-pro), two cysteine proteases of the SARS-CoV-2 virus that
are vital for the replication and transcription of the viral genome, there was observed that FL2, which was a
hybrid of favipiravir and hesperitin through 2-amino 2-hydroxy ethyl amide linker seemed to be the most
promising hybrid designed to act with almost similar affinity to both the targets.

Also, RL1, a hybrid of ribavarin and salicyclic acid linked with the 2-amino 2-hydroxy ethyl amide
chain showed comparable efficacy against both the protease targets. Figure 6 represents the docking poses of
the most promising hybrids obtained through this in silico study. Both the identified hybrids contain the
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hydoxyethylamine linker that is an important structural component of currently clinically employed HIV pro-
tease inhibitors like Nelfinavir, Indinavir and other protease inhibitors used in the treatment of HIV infection.
The incorporation of this hydroxyethlyamine linker may help to mimic the transition state of the reactions
catalysed by the PL-pro and CL-pro enzymes in the viral replication cycle. These designed inhibitors may
serve as transition state inhibitors that may bind with greater affinity to the active site and may be less prone
to hydrolysis. Hence these hybrid molecules may represent a new class of anti-viral agents with improved
affinity than the individual substrates.

However it is anticipated that the likely hydrolysis of these hybrids may release the individual sub-
strates that may also separately bind to the anti-viral targets and provide synergistic activity. Also as herperi-
tin and salicyclic acid are well established anti-thrombotic agents, they may also elucidate this response,
thereby proving to be of great potential in treatment of the rising associated complications of the viral infec-
tion.

Figure 6. Docking Poses of RL1 in A) CL-pro and B) PL-pro; Docking Poses of FL2 in C) CL-pro and D) PL-pro

Conclusions

The present study focuses on the design of novel hybrids of antiviral and antithrombotic agents for syn-
ergistic use in the treatment of infections caused by the SARS-CoV-2 virus. Among the 24 compounds
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screened using Autodock vina software, Compound FL2 i.e., 8-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-
oxochroman-6-yl(2-(6-flouro-3-ox0-3,4-dihydropyrazine-2 carboxamido)-1-hydroxy-3-phenylpropyl)carba-
mate and Compound RL1 i.e., 2-((((((5-(3-carbamoyl-1H-1,2,4-triazol-1-yl)-3,4-dihydroxytetrahydrofuran-
2-yl)methoxy)carbonyl)amino)(hydroxy)methyl)carbamoyl)phenyl acetate prove to be promising agents with
good affinity and strong binding interactions with both target proteins, papain-like protease (PDB:3E9S) and
3-chymotrypsin-like cysteine protease (PDB: 6LU7). The results of this study can prove to be useful to me-
dicinal chemists involved in design of newer agents to fight the COVID pandemic. This novel class of hybrid
agents may help to address the coronavirus infection and its associated complications and may be further
explored for design of novel molecules in this field.
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Prospective Hybrid Molecules with Dual Anti-Viral ...

P. bxumansap, A. Tomac, JI. Korxanamisl, A. I'onace,
C. I'anau, C. Yannpansl, I'. Mop, I'. [Ixxanxas, C. Yoyaxapu

SARS-CoV-2 undexuusiapbiHa xIHe OHbIMeH 0ailJIaHbICTBI ACKbIHYJIapFa
Kapchbl KOC AHTUBUHPYCTBIK KIHE AHTUTPOMOOTHKAJIBIK MOTEHIHAJIbI 0ap
dseyeTTi rudpuaTi MoJiekyaaaap in silico 3eprreysepin Koaxany

COVID, SARS-CoV BupycsiHa HeriznenreH aypy 2019 XpUinblH skenToKcaH aibpiHAa KertalnbiH YxaHb
KaJIaChIH/Ia aHBIKTaJABL. bacramkeina Oyt kail FaHa THIHBIC aly >KYHeciHiH MH(EKIMsICH OOJBIN CaHAIIbI,
Oipak KeiiH OHBIH Tapaly CHIAThIHA OAaMIaHBICTHI NMAHJEMUs >KaprsuIaHIbsl. EmMueynmiH opTypii HycKamapsl
JKY3€ere achIPBUIIbIL, COHBIH iIIiHIE pEMAECBUD, (haBUMHPABHP CUSKTHI BUPYCKAaKapChl MpenapaTTap, COHbIMEH
KaTap BUTaMHHAEp MEH aHTHOKcunmantrap na Oap. Keiiinri seprreynmep COVID-19 unbeKunsiChIHBIE
TPOMOO3ABIK  KYPEK-KAHTAMBIPJIBIK ~ACKbIHYJAapFa OKEJETIHIH aHbIKTalbl, Oyl OChl HMH(EKUUSIMEeH
OalIaHBICTBI OJIM-XKITIMHIH apTyblHa OacThl aJaHAAyIIBUIBIK TyAblpansl. OCBl 3epTTeyle BHUPYCKAKapChl
JKOHE aHTHTPOMOOTHKAIBIK KacueTTepi 6ap ruOpuaTi MoJeKynanapabiH in SiliC0 KOHCTPYKIMACKH 3epTTEII.
Autodock Vina Oarmapmamanblk KypasblH TaiiajlaHy apKbUIBI JOKHHITI 3€pTTey JKYPri3iami >kKoHe
JKoOallaHFaH KOCBUIBICTap/AblH OaiylaHBICY SHEprusichl mamauHTopi3ai mporeasa (PDB: 3E9S) xome
3-xuMoTpHICcHHTOpi3Ai mucrtenH npoteaszackl (PDB: 6LU7) ymiH asbikranmsl. TyilickeH mo3amap MeH
AMHUHKBIIIKBUIIAPEIHBIH 63apa opekertecyl Biovia Discovery studio 4.5 kemerimeH Ttekcepinmi. Bapibik
’Ko0aNaHFaH KOCBUIBICTApABIH OalIaHbIC >HEPTUSIIApPBl CTAHAAPTTAPMEH CaNBICTBIPBULABI, KOChUIbic RL1
(2-(5-(3-kapbamorut- 1H-1,2,4-tprazon-1-wi)-3,4- IMru ipoKCUTETParuApoQy paH-2 1) METOKCH)KapOOHIT)  aMHH)-
(ruapoxcu)MeTrN)KapOoamMom)heHuIareTar) xone Kocsuibic FL2 (8-rumpokcu-2-(3-rugpokcu-4-merokcude-
HI)-4-0KcoxpoMaH-6-uit-(2-(6-¢rop)3-okco-3,4- muruaponupasun-2-kapookcamu 10 )-1-ruapokcu-3-herun-
npommn)kapbamar) KymnTi OalllaHBICYbl 0ap TEpCIEKTHBAJIBI areHTTEp OOJBIN MIBIKTBL. BHPYCTHIK
PEIUTMKALUSIHBl TEXKEHTIH THOPHATI MOJIeKynanap, MYMKIH eTHeli Kyd MHruoutopnapsl peringe, SARA-
Co0-V wuHQeKnusICchH XoHE OHBIMEH OaiIaHBICTBI ACKBIHYJIAapAbl eMJey/Ae NaijanaHy YIIH opi Kapai
3epTTeyl MYMKIH.

Kinm ce30ep: COVID-19, CL-pro, PL-pro, Bupycka Kapchl, aHTUTPOMOOTHKAIIBIK, MOJEKYJIAIbIK JOKHUHT,
TUOPUATI MOJIEKyTIa.

P. bxumanBap, A. Tomac, JI. Korxanamisl, A. I'ogace,
C.T'anan, C. Yangansrl, ['. Mop, I'. JIxxagxas, C. Hoyaxapu

IMoTeHnuaNbHBbIE THOPUIHBIE MOJIEKYJIbI ¢ IBOWHBIM MPOTHBOBUPYCHBIM
U AHTUTPOMOOTHYECKUM JeiicTBMeM NMpoTuB nHGpeknun SARS-CoV-2
U CBA3AHHBIX C HEH 0CJO0KHEHUH ¢ MCIOJb30BAHUEM HcciaexoBanmud in silico

COVID-19, 3a6oneBanue, Bo3BanHoe BupycoM SARS—CoV, 6suto BeisiBieno B Yxane (Kuraii) B mexabpe
2019 r. IlepBoHa4aIbHO OHO CUUTAIOCH MPOCTO MH(MEKIMEH AbIXaTeNbHON CHCTEMBI, HO U3-3a €r0 TPaHCMHC-
CHBHOTO XapakTepa OHO ObLIO OOBSBICHO MaHAEMHEH. BbUTH peann30BaHbl pa3iMyHble BAPHAHTHI JICUCHUS,
BKJIIOYAsi TPOTUBOBHPYCHBIE MPEIapaThl, TAKUEe KaK peMaecBUp, (aBUIIMpaBUp, a TaKkKe BUTAMHHBI U aHTH-
okcunanThl. JlanbHeiime uccienoBanus mokasany, 4yro uHpeknus Covid—19 npuBoauT K TpOMOOTHUECKUM
CeplIeYHO-COCYANUCTBIM OCJIOKHEHUSIM, YTO SIBIISIETCS OCHOBHOM NMPUYMHOW MOBBIILIEHHOH CMEPTHOCTH, CBS-
3aHHOM ¢ 3TO# mHpeknueil. B aToM uccrenoBannu n3ydena KoHCTpykmus in SilicO rubpuaHBIX MONEKyIT ©
HPOTHBOBHPYCHBIMH M aHTUTPOMOOTHYECKUMH CBOWCTBaMHu. VccieoBaHHE JOKUHTA MPOBOMIHM C HCIIOIb-
30BaHHEM MporpamMMHoro obecrieueHuss Autodock Vina, a sHepruu cBsI3bIBaHUA Pa3pab0TaHHBIX COETUHEHUH
ompenensui s narmanHonogooHoi mpoteassl (PDB: 3E9S) m 3-XxMMOTpHIICHHOTOAO00HOH HMUCTEHMHOBOM
npoteassl (PDB: 6LU7). CocThIKOBaHHBIE MO3BI U B3aUMOACHCTBHS aMHUHOKHCIIOT OBUTH IPOBEPEHBI C HC-
none3oBanreM Biovia Discovery studio 4.5. DHeprum cBsi3u Bcex pa3pabOTaHHBIX COSIUHEHHH CpaBHHBAIIH
co cranmapramu, coeamnenne RL1 (2-(5-(3-xkapGamomi-1H-1,2 4-tpuazon-1-wn)-3,4-auruapokcurerpa-
rusipodypan-2-1iI)MeTOKCH )KapOOHHIT)aMUHO )(THAPOKCH )METHI)KapOoamorn)peHnnaneTaT) U COeAnHEHHe
FL2 (8-ruapokcu-2-(3-ruapokcu-4-merokcudenin)-4-okcoxpoman-6-mn-(2-(6-drop-3-okco-3,4-auruaponu-
pas3uH-2-kapOokcaMuIo)-1-ruapokcu-3-peHumponmn)kapoaMaT) oKa3aaiuch MHOTOOOCHIAIOINMHI areHTaMu
C CHJIBHBIM CBSI3BIBAIOLINM B3auMojeiicTBueM. ['HOpHIHBIE MOJIEKYIIBI, KOTOPbIE HHTHOHPYIOT PEIUIHKALHIO
BHpPYCa, BO3MOXHO, B KA4€CTBE HHIMOUTOPOB TIEPEXOTHOTO COCTOSHHS, MOTYT OBITh JOMOJHUTENIBHO HCCIIe-
JTOBaHBI IS UCTIONB30BaHMs B iedeHun HHPekuun SARS—CoV u CBsI3aHHBIX ¢ HEH OCIIOKHEHUM.

Kouegvie cnosa: COVID-19, CL-pro, PL-pro, npoTHBOBHPYCHBIH, aHTUTPOMOOTHYECKHUIA, MOJICKYJISIPHBIH
JIOKHHT, THOpHIHASA MOJIEKYJIa.
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