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To solve the risks brought by the uncertainty of renewable energy output and

load demand to the virtual power plant dispatch, a multi-objective information

gap decision theory (IGDT) dispatching model for virtual power plants

considering source-load uncertainty under vehicle-to-grid (V2G) is

proposed. With the lowest system operating cost and carbon emission as

the optimization objectives, the multi-objective robust optimization model

for virtual power plants is constructed based on the uncertainties of wind

output, photovoltaic output and load demand guided by the time of use price.

The weights of uncertainties quantify the effects of uncertainty factors. The

adaptive reference vector based constrained multi-objective evolutionary

algorithm is used to solve it. The weight coefficients, evasion coefficients of

uncertainties and the penetration rate of electric vehicles are analyzed for the

optimal dispatching of the virtual power plant. The algorithm results show that

the method can effectively achieve load-side peak shaving and valley filling and

has superiority in terms of economy, environmental benefits, robustness and

stability.
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1 Introduction

Distributed energy is widely used in building new power systems with its multiple

advantages such as green, low-carbon, flexible and renewable (China International

Economic Exchange Center and State Power Investment Group Co. Ltd, 2021). And

distributed energy has intense volatility and intermittent drawbacks; in the future, large-

scale and high-ratio access will bring no small challenge to power system stability and

energy security. Therefore, building a new power system with more flexible and resilient

operation becomes urgent. The virtual power plant (VPP) participates in the power

market operation as a particular power plant by aggregating and controlling wind

turbines, photovoltaic, energy storage, electric vehicles and other controllable loads
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through advanced communication technologies. Through the

complementary advantages and optimal allocation within the

VPP, the randomness and volatility of renewable energy are

smoothed out, and the multi-energy complementarity on the

power side and flexible interaction on the load side is realized.

Therefore, it is of great practical value to study the optimal

dispatching and operation method of VPPs to realize the optimal

utilization of distributed energy (Taheri et al., 2020; Yi et al.,

2020).

For the problems brought by renewable energy, domestic and

foreign research mainly regulates from generation and user sides

(Liu et al., 2020). In practice, the limited capacity of the power

generation equipment configuration leads to many abandoned

wind and photovoltaic (PV) problems. Therefore, starting from

the user side and tapping the user potential is an effective way to

operate the VPP economically and achieve renewable energy

consumption. Wang et al. (2022a) proposed a peak-shaving

cooperative dispatching strategy to guide EVs to participate in

auxiliary services through price signals and verified the

economics of the proposed EV peak-shaving collaborative

dispatching strategy for electricity costs. Wang et al. (2022b)

proposed a hierarchical optimal dispatching model for EVs in

V2G, analyzed the benefits of both EV owners and distribution

network participants in the V2G process, and verified the

economics and feasibility of the proposed model. However,

the objective functions of the studies above mainly focus on

the economic benefits, and the effects of multiple factors such as

the economy and environmental protection are not considered

comprehensively. In the reference (Zhang et al., 2022), to

evaluate the feasibility of V2G as flexible storage, an

optimization-based system planning framework was proposed

to simulate the stochastic characteristics of EV fleets, and the

economic and environmental benefits of the model were verified

using an improved NSGA-II algorithm. Sc and Zl (2019)

proposed a multi-objective approach for network

reconfiguration, which considered renewable energy sources

and EV access to the distribution system. The Analytic

hierarchy process determined the weights of individual

objectives, and the model was solved using an improved

genetic algorithm. However, although these studies take into

account the economic and environmental aspects, they do not

consider the uncertainty of renewable energy output faced by the

system.

Meanwhile, the uncertainty of a high percentage of

renewable energy output is one of the hot spots of current

research. Reference (FALSAFI et al., 2014; ALABDULWAHAB

et al., 2015; BAI et al., 2016; Lu et al., 2020; Qian et al., 2021)

studies the scenario-based stochastic planning method to

consider the uncertainty of wind power output or electricity

price forecast for wind farms. Stochastic programming requires

a large number of data samples of random variables and an

accurate probability distribution function to obtain the optimal

operation. Fang et al. (Fang et al., 2022) uses stochastic

optimization and robust optimization to deal with the

uncertainty of the load side and generation side respectively.

Wang et al. (Wang et al., 2020) constructed a two-stage

distributed robust optimization model of wind and solar

power output prediction error fuzzy set. The robust

optimization method needs to consider the worst case, and

its extremely low occurrence probability makes the scheduling

plan of the virtual power plant more conservative, and the

economy is poor. Reference (MORALES et al., 2010;

CATALÃO et al., 2011; Zhong et al., 2020) studies the

system scheduling considering the uncertainty of wind

power output based on fuzzy theory. Pan et al. (2018)

studied the scheduling problem of an electric thermal multi-

energy coupling system connected with a large number of

electric vehicles, and analyzed the uncertainty of load

demand and wind power output based on fuzzy theory. The

optimal solution of fuzzy programming should be obtained

based on empirical probability and reasonable fuzzy

membership function. Reference (Zhang et al., 2019; Niu

et al., 2021; Zeng et al., 2021; Jiang et al., 2022) adopts the

interval optimization method to consider the uncertainty of

renewable energy and load demand. Interval optimization does

not need to assume the probability distribution of uncertain

variables, but needs to choose a reasonable confidence interval.

Information gap decision theory (IGDT) is a non-probabilistic

risk assessment method, which can link the prediction

deviation with the optimal objective function to maximize

the uncertainty variable disturbance while ensuring the

lowest objective value. Reference (CAO et al., 2018; Ye et al.,

2021) realized multi-source joint dispatching of power systems

based on information gap theory, and carried out microgrid

operation planning; Reference (Peng et al., 2020; Niu et al.,

2021) studies the impact of renewable energy output based on

classification probability opportunity constraint information

gap decision theory on distribution network energy storage

configuration effect; Reference (Li et al., 2019; Li et al.,

20222022), based on information gap theory, studied the

stochastic optimal scheduling strategy of integrated energy

system considering carbon trading mechanism and carbon

capture.

Based on the above references, a multi-objective IGDT

dispatching model for VPPs in V2G mode considering

source-load uncertainty is constructed with the optimization

objectives of minimum operating cost and minimum carbon

emission. To fully reflect the scenery-load uncertainty, a risk-

averse strategy is introduced to build a robust IGDT model,

which is solved using an adaptive reference vector based

constrained multi-objective evolutionary algorithm (MOEA).

Finally, the effectiveness and superiority of the proposed

method in coping with the source load uncertainty are

verified by case calculations, and the comprehensive goal of

minimizing the system operation cost and carbon emission is

achieved.
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2 VPP containing orderly charging
and discharging of electric vehicles

2.1 Virtual power plant framework

The VPP model studied in this paper integrates Wind

Turbine (WT), Photovoltaic (PV), Gas Turbine (GT), Energy

Storage System (ESS), Charging Pile and Electric Vehicle (EV)

and other common electrical load. User-side load and

distributed power are coordinated to establish a VPP with

EVs. The overall framework is shown in Figure 1. The power

grid and the gas company are the primary sources of energy

supply for the VPP. The new energy generation units are wind

turbines and photovoltaic power plants, and the gas turbines

consume gas to supply power to the user-side load. The gas

turbine and the energy storage system have the fast regulation

capability, which is complementary to the non-regulation of

renewable energy and can effectively suppress the volatility of

scenery power and improve the consumption of new energy

generation. The V2G technology dispatches EVs to smooth out

the fluctuation of new energy generation and reduce the impact

of the randomness of renewable energy on the power system so

that the system can operate efficiently, stably and safely.

However, the traditional economic dispatch to balance the

uncertainty of scenic power output can cause excessive calls

of gas turbines, significantly reducing environmental benefits.

Therefore, to limit the total carbon emission of VPPs, carbon

emission cost is introduced into the operation cost to optimize

the ratio of each distributed energy output and make the

dispatching result of VPP balance economic and

environmental benefits.

2.2 Operation process

2.1.1 Renewable energy power generation units
Wind and photovoltaic energy are renewable energy

prioritized to be connected to the grid. The output of other

controllable power sources in the VPP will be coordinated to

complete the planned output to prioritize the utilization of

renewable energy.

2.1.2 Gas turbine and energy storage system
There is a specific error between the predicted and actual

output of wind power and PV. The deviation of the VPP output is

adjusted by the optimal control of the gas turbine and the

charging and discharging of the energy storage system so that

the actual output of the VPP tracks the planned output.When the

output deviation exceeds 0, the ESS is charged; if the output

deviation still exists after setting the ESS, the GT output is

reduced to meet the VPP output plan. When the output

deviation is less than 0, the ESS is discharged first, and if the

deviation still exists, the GT is compensated for the output on a

priority basis; if the output deviation still exists, the power will be

purchased from the superior grid to meet the planned output

of VPP.

FIGURE 1
Framework of virtual power plant with electric vehicles.
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2.1.3 Electric vehicle
2.1.3.1 Electric vehicle charging behaviour

Electric vehicle currently has a bi-directional flow, and the

user travel demand must be met before the energy storage

capacity of EVs can be fully utilized (Zhu et al., 2021; Shi

et al., 2022).

Average mileage per trip indicates the average driving

mileage of a single trip, and according to the “China New

Energy Vehicle Big Data Research Report (2020)" released by

the New Energy Vehicle National Big Data Alliance, the data

source of real-time monitoring operation data of new energy

electric vehicles in 2019 was used for statistical analysis and

fitting. It is found that its average mileage per trip approximately

obeyed a normal distribution with the following probability

density function:

fs(x) � As

σs
���
2π

√ exp[ − (x − μs)2
2σ2s

] (1)

where As is 89.99, σs takes 1.05, μs and takes 2.99.

The statistics in Figure 2 show that the average driving range

of electric vehicles is mainly 2–15 km.

The electric vehicle’s on-grid and off-grid moments

approximately obey log-normal distribution. For travel

moments, the following normal distribution:

ft �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1����
2πσ2t

√ exp[ − (lnx − μt)2
2σ2t

], 0<x#μt + 12

1����
2πσ2t

√ exp[ − (x − 24 − μt)2
2σ2t

], μt + 12< x#24

(2)

For the return moment:

fr �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1����
2πσ2r

√ exp[ − (lnx − μr)2
2σ2r

], 0< x#μr + 12

1����
2πσ2r

√ exp[ − (x − 24 − μr)2
2σ2r

], μr + 12< x#24

(3)

The EV charging data in this paper is selected from the

typical daily charging data of a charging station in Shanghai in

summer, as shown in Figure 3. The figure shows small charging

peaks around 10:00 and 19:00, and 13:00–15:00 is the prominent

charging peak.

2.1.3.2 Electric vehicle V2G model

In the actual calculation process, it is necessary to make the

following assumptions for the lithium-ion battery of EVs: the

discharge power of the power battery of the electric vehicle is

approximately a straight line; The response of EV users to the

time of use price follows specific probability characteristics.

Based on the above two assumptions, the discharge behaviour

of electric vehicles follows a binomial distribution:

Pdisc: B(Q, P) (4)

P � Rt
disc,EV

Rdisc,EV,max
(5)

Where P is the probability of EV discharge. Rt
disc,EV is the EV

discharge price provided by the grid at time t. Rt
disc,EV is the

highest discharge price customized by the superior grid. It is easy

to see that the probability of EV users responding to the grid

incentive is positively correlated with the real-time electricity

price. The higher the discharge price provided by the grid in real-

time, the greater the probability of EV users responding to the

FIGURE 2
Probability density of electric vehicle average mileage.
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grid incentive. Incentive mechanisms are set up to allowmore EV

users to participate more deeply in V2G. The VPP sets the

compensation price for V2G services based on the quality of

EV participation in auxiliary services, and EV users profit more if

they participate in peak shaving when the grid load fluctuates.

In this article, electricity price changes guide users to adjust

the energy consumption period through the electricity price

change. The time-of-use price is divided according to the

energy consumption periods and combined with customer

demand response. The price changes are used to motivate

customers to shift their loads. During the peak period, the EV

users are guided to change the load by raising the price to reduce

the peak-valley difference. Meanwhile, specific incentives are

provided to users to motivate them to participate in the

discharge behaviour when the price is high to compensate for

the volatility and randomness of renewable energy.

3 Deterministic dispatching model of
VPP with electric vehicles

3.1 Objective function

Objective function 1 is to minimize the operating cost of the

VPP system, which is expressed as:

minC1 � ∑T
t�1
(Ct

W + Ct
PV + Ct

GT + Ct
grid + Ct

ES + Ct
EV) (6)

WhereC1 is the economic cost of VPP in one dispatching cycle,T

is 24h. Ct
W, Ct

PV, C
t
GT, C

t
grid, C

t
ES, C

t
EV are the operation and

management cost of WT, the operation and management cost of

PV plant, the cost of GT power generation, the cost of purchased

electricity, the loss cost of ESS, and the battery degradation cost

respectively.

(1) The operation and management cost of WT

Ct
W � cWP

t
W (7)

Where cW is the operation and management factor of WT; Pt
W is

the WT output at time t.

(2) The operation and management cost of PV

Ct
PV � cPVP

t
PV (8)

Where cPV is the PV plant operation and management factor;

Pt
PV is the PV power output at time t.

(3) The cost of GT power generation

Ct
GT � cGTP

t
GT + CfpP

t
GT (9)

Cfp � CNG

ηeLNG
(10)

Where cGT is the GT operation management factor, Pt
GT is the

actual GT output, Cfp is the GT unit fuel cost factor. CNG is the

natural gas price, ηe is the gas turbine power generation

efficiency, LNG is the natural gas low-level calorific value.

(4) The cost of purchased electricity

Ct
grid � Rt

eP
t
grid (11)

where Rt
e is the purchased price for at time t, and Pt

grid is the

power purchased at time t.

(5) The loss cost of energy storage system

The loss cost of the energy storage system, including the

operation and maintenance cost of the energy storage system

Ct
OM, and the energy loss cost of the energy storage system Ct

el, is

as follows.

Ct
ES � Ct

OM + Ct
el (12)

Ct
OM � β × (Pt

c,ES + Pt
disc,ES) + α × Pr (13)

Ct
el � φ × [(1 − ηc) × Pt

c,ES + (1 − ηdisc) × Pt
disc,ES] (14)

Where: β is the cost factor of energy storage battery operation;

Pt
c,ES is the charging power of energy storage battery at time i;

Pt
disc,ES is the discharging power of energy storage battery at

time i; α is the maintenance cost factor of energy storage per

unit power; Pr is the rated power of energy storage battery; φ is

the cost factor of energy loss of energy storage battery; ηc and

ηdisc are the charging and discharging efficiency of energy

storage.

(6) The battery degradation cost

Ct
EV � aEV(Pt

disc,EV)2 + bEVP
t
disc,EV + cEV (15)

FIGURE 3
Electric vehicle charging station charging volume on a typical
summer day.
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Where: Pt
disc,EV is the EV discharge power at time I; aEV, bEV, and

cEV are the battery depreciation cost coefficients of EV, which are

0.003 ¥/kWh, 0.11¥/kWh, -0.02¥/kWh, respectively.

Objective function 2 is to minimize the carbon dioxide

emissions of VPP. WT, PV and ESS produce almost no

carbon emissions. The carbon emissions of the VPP

constructed in this paper consist of two primary sources,

electricity purchased from the superior grid and electricity

generated by GT, and its expression is

C2 � μc,gridP
t
grid + μc,GTP

t
GT (16)

Where, μc,grid and μc,GT are the carbon emission factors of grid

and gas turbine respectively, and the values are 0.75 and 0.226 kg/

kWh respectively.

3.2 Constraints

(1) Power balance constraint

VPP purchases electricity and natural gas resources from the

higher energy network and supplies energy to the multi-energy

users through various energy conversion equipment with the

following power balance constraints.

Pt
L � Pt

grid + Pt
W + Pt

PV + Pt
GT (17)

Where Pt
L is the electricity load of VPP at time t. Pt

GT is the

electrical power generated by the GT.

(2) Wind and photovoltaic output constraints

{ 0≤Pt
W ≤Pt

W,max

0≤Pt
PV ≤Pt

PV,max
(18)

Where Pt
W,max is the maximum value of wind power generation

in period t, and is the maximum value of photovoltaic power

generation in period t.

(3) Output constraint and climbing constraint of GT units

PGT,min#Pt
GT#PGT,max (19)

−PRD#Pt
GT − Pt−1

GT#PRU (20)

Where PRD and PRU are the minimum and maximum ramp rates

of GT, respectively. PGT,min and PGT,max are the upper and lower

limits of the output of the gas unit, respectively.

(4) ESS constraints

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Kt
c � Kt

disc

S min#St#S max

St � St−1(1 − δ) + (Pt
c,ESηc − Pt

disc,ESηdisc)Δt
E

(21)

Where Kt
c, K

t
disc are the charge and discharge coefficients of

ESS, respectively. Smin, Smax are the ESS’s minimum and

maximum capacity states, respectively. St, St−1 are the

remaining capacity states of ESS at time t and time t-1,

respectively; δ is the self-discharge rate of ESS; E is the

capacity of ESS.

(5) EV charging and discharging constraints and capacity

constraints

Pt
c,EV#Pc,1N

t
EV (22)

Pt
disc,EV#Pdisc,1N

t
EV (23)

SOC min < SOCt
EV < SOC max (24)

SEVi start � N(DEVipSEVimax, σ1
2) (25)

SEVi end � SOCi,max (26)
Where, Pc,1 and Pdisc,1 are the charging and discharging power

of a single EV, respectively.Nt
EV is the number of EVs in the off-

road state at time t. SOCt
EV is the average charge state of

controllable EVs at time t; SOCmin is the minimum SOC

value allowed for EVs; SOCmax is the maximum SOC value

allowed for EVs. i is the ith dispatchable EV. SEVi start is the

initial charge, N() is the normal distribution function, DEVi is

the depth of discharge, σ12 and is the variance of the initial

charge distribution. SEVi end is the power level at the moment of

pickup.

4 IGDT-based VPP dispatching model

4.1 IGDT-based VPP dispatching model

In the deterministic dispatching model established in

Chapter 3, the wind turbine output, PV output and base load

are deterministic quantities. At the same time, in the existing

system, all three parameters are volatile and uncertain. The IGDT

model can construct the most considerable extensive uncertainty

fluctuation intervals under the condition that the optimization

result is not worse than the preset value, to avoid the influence of

uncertainty on the solution result. For this paper, the uncertainty

sets of wind turbine output, PV output, and base load are

modelled as shown in (27).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U(αW, ~Pt

W) � {Pt
W:

∣∣∣∣Pt
W − ~P

t

W

∣∣∣∣#αW ~P
t

W}
U(αPV, ~Pt

PV) � {Pt
PV:

∣∣∣∣Pt
PV − ~P

t

PV

∣∣∣∣#αPV ~P
t

PV}
U(αL, ~Pt

L) � {Pt
L:

∣∣∣∣Pt
L − ~P

t

L

∣∣∣∣#αL ~P
t

L}
αWP0, αPVP0, αLP0

(27)

Where: ~P
t
W, ~P

t
PV, ~P

t
L are the predicted values of WT output, PV

output and load at time t; Pt
W, Pt

PV, P
t
L are the actual values ofWT

output, PV output and load at time t; αW, αPV, αL are the

uncertainty radius of WT output, PV output and load,

respectively.
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The comprehensive uncertainty radius of the system ψ is

obtained by the weighted sum form:

ψ � λWαW + λPVαPV + λLαL (28)

Where, λW, λPV, λL are the weight coefficients of WT output, PV

output, and load demand uncertainty radius respectively, which

can reflect the different demand levels for wind-PV-load

uncertainty by decision-makers.

The IGDT theory consists of risk aversion strategy

(RAS) and risk seeker strategy (RSS). RAS maximizes the

impact of uncertainty on the solution outcome by

constructing a robust model (RM), and RSS maximizes

the return from uncertainty risk by constructing an

opportunity model (OM). The optimization objective of

this paper is to avoid the impact of wind-PV-

load uncertainty on VPP optimal scheduling results.

Therefore, the RAS strategy is chosen to build IGDT robust

model.

According to the objective functions C1 and C2 in Chapter 3,

the robust optimization model of IGDT for VPP is:

FIGURE 4
Flow of adaptive reference vector based constrained-MOEA for solving.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxψ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0≤ψ ≤ 1
C1(X,PW,t,PPVt,PL,t)≤fc1

C2(X,PW,t,PPV,t,PL,t)≤fc2

fc1 � (1 + σ)fc10

fc2 � (1 + σ)fc20

equation(6) − equation(28)

(29)

where fc10 and fc20 are the minimum system operating costs and

minimum CO2 emissions, respectively, under the deterministic

model. fc1 and fc2 are respectively the optimal solution of system

operating cost and the optimal solution of carbon dioxide

emissions acceptable to decision-makers under the uncertainty

model. ψ is the deviation coefficient of the uncertainty, ψ > 0. σ is

the evasion coefficient of uncertainty, which indicates the range of

change that the decision-maker can accept. The larger, the greater

the degree of risk evasion and the stronger the robustness.

The cost of renewable energy is far less than that of purchased

electricity, and its carbon dioxide emissions are approximately

zero. When the WT and PV output is smaller and the load is

larger, the system operation cost is higher, and the carbon

emission is larger. Therefore, (29) is simplified to an

optimization model to improve the solution efficiency, as

shown in (30).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxψ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0≤ψ ≤ 1
C1(X,PW,t,PPVt,PL,t)≤fc1

C2(X,PW,t,PPV,t,PL,t)≤fc2

fc1 � (1 + σ)fc01

fc2 � (1 + σ)fc02

Pt
W � (1 − αW)~Pt

W

Pt
PV � (1 − αPV)~Pt

PV

Pt
L � (1 + αL)~Pt

L

equation(4) − equation(13), equation(14) − equation(26)
(30)

4.2 Solving algorithm

This paper uses an adaptive reference vector based

constrained-MOEA (ARVC-MOEA) algorithm to solve the

IGDT multi-objective dispatching model. ARVC-MOEA is

evolved from multi-objective evolutionary algorithm (MOEA).

MOEA is very successful in solving unconstrained multi-

objective optimization problems. When dealing with

constrained multi-objective optimization problems, suitable

constraint processing techniques are needed to handle

equation and inequality constraints.

To address the difficulties in dealing with constrained

problems in MOEA, an adaptive reference vector based

constrained-MOEA is used in this paper. The algorithm

classifies the populations in the initial stage: one class does

not consider the constraints so that the populations can cross

intervals with an extensive range of constraints; the other class

considers the constraints so that the populations remain well

distributed. In the last stage, the algorithm constructs a local

distribution enhanced region through local search. At the early

stage of the algorithm, some unconstrained populations can

guide the population to cross infeasible intervals and improve

convergence speed. In the later stage, the algorithm uses a weakly

distributive aggregation function to enhance the search capability

by expanding the search range of reference vectors that are not

helpful to population evolution.

ARVC-MOEA divides the reference vector into the main and

auxiliary reference vectors. The auxiliary reference vector is

adaptively adjusted to assist the algorithm in solving different

constraints, while the main reference vector is globally

unchanged to ensure the rationality and stability of the

algorithm. Compared with MOEA, ARVC-MOEA can obtain

better search performance and faster convergence speed by

hybrid computation of split categories and improve the

solution efficiency (Shi and Shi, 2022).

The solution flow of the VPP optimal dispatching model

based on the adaptive reference vector based constrained-MOEA

is shown in Figure 4.

5 Example analysis

5.1 System parameter setting

This paper uses the VPP system shown in Figure 1 for

verification analysis. The VPP consists of a 900 kW wind

farm, a 500 kW PV plant, two 440 kW gas turbines and a

400 kW energy storage system. The load includes residential,

general commercial and industrial loads. The natural gas price is

2.5 ¥/m3, and the low calorific value of natural gas is 9.7 kWh/m3.

The detailed parameters of theWT, PV, GT and ESS are shown in

Table 1. The electricity price is based on the Shanghai two-part

summer time-of-use price, with peak hours from 08:00 to 11:00,

13:00 to 15:00, and 18:00 to 21:00; valley hours from 22:00 to 06:

00 the next day, and the other hours are the normal periods. The

time-of-use price is shown in Table 2. ARVC-MOEA algorithm

parameters are set: the population size is 50, the generation

TABLE 1 Relevant parameters.

Parameter Numerical value Parameter Numerical value

Pt
W,max 900 kW Cfp 0.1686 ¥/kW

Pt
PV,max 500 kW Smax 400 kWh

cW 0.0296 ¥/kW Smin 0

cPV 0.0096 ¥/kW Sc 100 kWh

PGT,max 440 kW Sdisc -100 kWh

PGT,min 0 β 0.05

PRU 180 kW α 0.009

cGT 0.12 ¥/kW φ 0.0253
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interval of the update mark is 50, and the number of terminating

iterations is 1,000 generations.

The forecast values ofWT and PV output and load are shown

in Figure 5.

5.2 Analysis of dispatching results based
on IGDT model

The system parameters and the predicted values of wind-PV-

load are substituted into the deterministic dispatching model and

solved to obtain the overall optimal solutions fc10 =

¥10,636.4 and fc20 = 13942.55 kg. Figure 6 shows the optimal

dispatching results corresponding to the optimal compromise

solutions obtained based on the IGDT model. A positive power

value indicates energy supply, and a negative power value

indicates energy consumption. From Figure 6, it can be seen

that from 00:00 to 06:00 a.m., the electricity price is at the valley

period. V2G guides the EV users to charge during this period

while the ESS enters the charging state. The GT output increases

significantly from 06:00 to 08:00, while the EVs and ESSs

continue to charge during the normal period. In the peak

period, VPP reduces the purchased electricity through optimal

dispatching and turns to natural gas and ESS to compensate for

the economic burden caused by the peak price. The GT output

increases significantly, and the ESS performs discharge to meet

the load demand. Meanwhile, guided by the time-of-use price

strategy and V2G, EVs serve as a power supply for the power

system, reducing the peak load and the VPP operation cost

during peak hours.

5.1.1 The effect of the evasion coefficient on the
dispatching results of the IGDT model

The uncertainty radius, system operation cost and carbon

emissions trends of the uncertainty model are shown in Figure 7

by setting the evasion coefficient to vary in 0–0.1. The operating

TABLE 2 Electricity for base load and electric vehicle charging and discharging time-of-use prices.

Time Electric vehicle price ¥/kWh Electricity price ¥/kWh

Discharge Charge

00:00–06:00 0.8 0.8 0.218

06:00–08:00 1.5 1 0.591

08:00–11:00 1.8 1.2 0.94

11:00–13:00 0.8 1 0.591

13:00–15:00 1.8 1.2 0.94

15:00–18:00 1.5 1 0.591

18:00–21:00 1.8 1.2 0.94

21:00–22:00 1.5 1 0.591

22:00–24:00 0.8 0.8 0.218

FIGURE 5
Wind and photovoltaic output curves on a typical day. FIGURE 6

Dispatching results based on the IGDT model.
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cost and carbon emissions are expressed in per unit value (p.u.).

The figure shows that the uncertainty radius keeps increasing

with the increase of the evasion coefficient, and the system

operation cost and carbon dioxide emission increase. This is

because the robust model under the RAS believes that

uncertainty makes the target expectation develop in an

unfavourable direction. The uncertainty factor is not

conducive to the reduction of the objective function. The

larger the uncertainty radius, the smaller the risk caused by

the uncertainty of WT output, PV output and the load; therefore,

the higher the system operation cost and carbon emission. The

increase in uncertainty radius represents improving the system’s

ability to withstand wind-PV-load uncertainty. The dispatching

scheme in this case, can better cope with the long-term

uncertainty of wind-PV-load, and VPP can select an

appropriate evasion coefficient according to the cost it can bear.

5.1.2 The effect of weight coefficients on the
dispatching results of the IGDT model

Set the evasion coefficient σ as 0.02, and select different

weight coefficients to optimize the IGDT dispatching model, and

the results are shown in Table 3. From the table, it can be seen

that different weight coefficients affect the results of single

uncertainty radius αW , αPV , αL solutions. The smaller the

uncertainty radius is, the more sensitive the system will be to

the fluctuation of this uncertainty factor. The decision-maker can

set each weighting factor based on the principle that the higher

the sensitivity, the higher the weighting factor. Take the weight

coefficients λW � 5, λPV � 1, λL � 5 as an example, at this time

αW � 0.0278, αPV � 0.616, αL ≈ 0. The system’s operating cost

under this weight coefficient is ¥12,157.1and the carbon emission

is 14,280.5 kg. It shows that when the actual value of WT output

fluctuates within 61.6%, the actual value of PV output fluctuates

within 2.78%, and the load demand forecast is accurate, the total

dispatch cost of the system will not exceed ¥12,157.1. Under the

IGDT robust model with RAS, the conventional unit output

increases to cope with the uncertainty of wind-PV-load,

increasing the operating cost and carbon emission. Compared

with the deterministic model, the IGDT robust model with RAS

is more conservative.

Compared with the deterministic model, the IGDT robust

model under RAS is more conservative. Although different

weighting coefficients have a large impact on the single

uncertainty radius, they have a small impact on but not on

the integrated uncertainty radius of the system. Take λW � 5,

λPV � 1, λL � 5, and λW � 5, λPV � 1, λL � 10 for example, where

ψ is 0.7521. This is because although the load has uncertainty, the

FIGURE 7
Trends in operating cost, carbon emissions and uncertainty radius.

TABLE 3 Uncertainty radius with different types of weight coefficient.

λW λPV λL αW αPV αL ψ fc1 fc2

1 1 1 0.013 0.657 0 0.67 11834.7 14097.7

1 1 5 0.013 0.657 0 0.67 11834.7 14097.7

1 1 10 0 0.657 0.0025 0.682 12983.6 14162.9

5 1 5 0.0278 0.616 0 0.7551 12157.1 14280.5

5 1 10 0.0278 0.616 0 0.7551 12157.1 14280.5

5 1 15 0.0278 0.616 0 0.7551 12157.1 14280.5

5 1 25 0.0278 0.616 0.0079 0.9526 12635.5 14524.6

10 1 15 0.075 0.2983 0 1.0543 12955.4 14758.9

10 1 20 0.075 0.2983 0 1.0543 12955.4 14758.9
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daily fluctuation range of the load is limited, while the load

fluctuation has a certain regularity. Compared with PV and WT

output, the uncertainty of load is smaller, so the radius of

comprehensive uncertainty of the system does not change

much. The scheduling decision maker can set each weighting

factor according to the actual system situation and historical

experience, based on the principle that the higher the sensitivity,

the higher the weighting factor.

5.3 Effect of V2G on the load curve

GT output and purchased electricity have made major

contributions to the operation cost and carbon emissions, and

the discussion of GT and purchased electricity before and after

dispatching is more important. Figure 8 shows the comparison of

GT output and purchased electricity before and after the system

considers V2G. The solid line part considers V2G. Before and

after EVs dispatching, the output of GT and purchased electricity

have changed, and the change of purchased electricity is more

obvious. After the EVs participates in the dispatching, the peak

load is significantly reduced. Under the comprehensive goal of

considering economic and environmental benefits, the system

reduces the purchased electricity from the superior power grid.

The reduced purchased electricity in the peak time has made a

great contribution to reducing the operating cost of the system.

Meanwhile, the carbon emission coefficient of power grid is

higher than that of GT, the decrease of purchased electricity

reduces carbon emissions significantly. Some EVs in peak hours

are dispatched to charge at valley time, which increases the load

during this period. Because of the cheap electricity price at valley

time, the system chooses to purchase more electricity from the

superior power grid to reduce the operation cost.

Figure 9 shows the comparison of EV charging and discharging

as well as load before and after optimization. The bar chart

comparison shows that V2G increases the EV significantly in

both the normal and valley periods. EV has played a full role in

filling the valley, reducing the charging cost of EC owners, and has

played a positive role on both the supply and user sides. EV

discharges during peak hours of 08:00–11:00, 13:00–15:00 and 18:

FIGURE 8
Comparison of GT output and purchased electricity before and after the system considers V2G.

FIGURE 9
Comparison of load curve before and after dispatching.
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00–21:00, which play a peak-shaving role on the load curve and at the

same time reduce the amount of electricity purchased by VPP from

the superior grid during the peak hours. On the premise of meeting

the needs of EV owners, V2G gently transfers the load during peak

hours to normal and valley hours. The peak EV charging load from

13:00 to 15:00 is assigned to the normal period at noon and afternoon,

and that from 18:00 to 22:00 is transferred to 22:00 to the early

morning of the next day to achieve the purpose of peak shaving and

valley filling. Overall, by comparing the load curves, we can see that

the curve after dispatching tends to be smoother. V2G can smooth

the load curve and narrow the load peak-valley difference, which

effectively increases the operating economy and safety of the system.

Before and after optimization, the electricity consumption

changed by the load curve follows the “equal area principle” in

principle. The increased electricity consumption after optimization

(the part of the optimized curve is higher than the pre-optimized

curve, S2 in Figure 9) and the cut electricity consumption (the part

of the pre-optimized curve is higher than the optimized curve, S1 in

Figure 9) should be equal. Since EV owners rarely release excess

electricity to the upper grid when charging freely. In V2G mode,

VPP will dispatch EVs with discharge potential to discharge

according to the owner’s electricity demand and current

electricity. Therefore, the actual optimized increased electricity

consumption is smaller than the cut electricity consumption.

For EV orderly charging under different responsiveness, the GT

power generation cost, purchased electricity cost, system operation

cost and the battery degradation cost are shown in Figure 10, and the

carbon emissions and peak valley difference ratio are shown in

Figure 11. All data are per unit values based on the Res = 50%.

Combining the two figures, it can be seen that as the percentage of EV

users participating in dispatching increases, the operating cost

decreases from ¥13,123.36 to ¥10,652.7, and the carbon emission

decreases from 14,447.51kg to 13,423.74 kg. Although the battery

degradation cost increases with the increase of responsiveness, the

operating cost still decreases due to the reduction of GT output and

out-purchased electricity, as well as the dual impact of EVs

participating in V2G on the power side and load side. At the

same time, a high proportion of EVs with orderly charging

participate in economic dispatch can effectively reduce the load

peak-to-valley difference. Therefore, adopting time-of-use prices or

other incentives to increase the responsiveness of EVorderly charging

is conducive to smoothing the load curve, reducing system operating

costs, and improving the environmental benefits of VPP.

5.4 ARVC-MOEA algorithm superiority
analysis

To verify the superiority of ARVC-MOEA applied in this

paper to handle the multi-objective model considering source

FIGURE 10
Comparison of operating costs for EVs with different
responsiveness.

FIGURE 11
Comparison of carbon emissions, peak-to-valley difference
rate under different responsiveness of EV.

FIGURE 12
Comparison of the best Pareto Frontier for different
algorithms.
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load uncertainty, NSGA-II and MOCD/E algorithms are used to

solve the IGDT-based VPP multi-objective model in V2G mode,

respectively. All algorithms with a population size of 50 and a

termination iteration number of 1,000 generations are used. The

best Pareto Frontier obtained after six runs are shown in

Figure 12. The Pareto Frontier for the three algorithms shows

that the operating costs and carbon emissions are generally in a

mutually constraining relationship. This is because to achieve

smaller carbon emissions, more EVs need to be mobilized to

participate in V2G regulation, and the corresponding GT output

and out-purchased electricity will be smaller during peak hours,

and vice versa. Therefore, the applied ARVC-MOEA processing

of the multi-objective model considering the source-load

uncertainty has a smaller operating cost for a certain carbon

emission. From the figure, it can be seen that the Pareto front

obtained by ARVC-MOEA is located at the bottom and has the

largest span, and is more complete than the other two algorithms

in the global non-inferior target domain. ARVC-MOEA

introduces primary and secondary reference vectors, and

solves different kinds of constraints by adaptively adjusting

the secondary reference vectors. ARVC-MOEA effectively

improves the ability of solving constraints and the search

ability of solutions while ensuring the rationality and stability

of the algorithm.

6 Conclusion

Based on the operational characteristics of multi-source

VPPs and the V2G characteristics of electric vehicles, this

paper establishes a multi-objective IGDT optimal dispatching

model for VPP in V2G mode, considering source-load

uncertainties with the system operating costs and carbon

emissions as the optimization objectives. The superior ARVC-

MOEA algorithm is used for an efficient solution, and the

following conclusions are drawn (Ma et al., 2016):

(1) The multi-objective IGDT optimal dispatching model of

VPP, considering source-load uncertainty in V2G mode,

can fully ensure the economic and environmental benefits of

the system. It can obtain the optimal dispatching scheme of

VPP with the integrated optimal system operation cost and

carbon emission.

(2) The IGDT-based uncertainty optimization dispatching

model quantifies uncertainty from a risk-averse

perspective and provides a robust dispatching model for

decision-makers. By setting weight coefficients, the influence

of wind-PV-load uncertainty on dispatching operation can

be quantified, which can provide a reference for the optimal

dispatching of multi-source VPPs.

(3) Based on time-of-use price, V2G is used to transfer EVs’

charging and discharging periods. Incorporating the demand

side adjustable resources into the power balance can realize

the “peak cutting and valley filling” of the load curve,

alleviate the energy supply pressure and improve the

power supply reliability.

(4) The Pareto optimal Frontier obtained by ARVC-MOEA is

better than the NSGA-II algorithm and the MOCDE

algorithm in terms of accuracy and completeness.

In this paper, the model used for EV dispatching is relatively

simple. The future research will consider the two-stage

optimization strategy of orderly charging and discharging of EVs.
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