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The role that H2S plays in the global sulfur cycle has been studied extensively in

recent years. This paper focuses on the influence of H2S released from gas

hydrates on sulfur cycle and establishes a one-dimensional mathematical

model to calculate the amount of H2S released from the dissociation of gas

hydrates present in multiple layers in the Qiongdongnan Basin China. The

results show that the sulfate and methane transition zone that covers an

area of about 100 km2in the Qiongdongnan Basin contains 2.3 × 1012 g of

pyrite, which requires 4.06 × 1011 mol of H2S for its formation. The H2S released

from the dissociation of gas hydrates is 5.4 ×1011 mol, which is about 1.3 times

that needed for the formation of pyrite. Therefore, the H2S released from the

gas hydrates is an important source of H2S for the formation of pyrite in the

sulfate-methane transition zone of Qiongdongnan Basin. According to the flux

of H2S and the partial pressure ofO2 (PO2) in the atmosphere, the critical value of

the balance between the flux of H2S and PO2 turns out to be 0.13 mol kg−1·bar−1.
Furthermore, considering the effect of global sea-level changes, three risk

modes are identified to categorize the amount of H2S released from the

dissociation of gas hydrate into the atmosphere. We classify the periods

from 5–12 Ma BP, 25–29 Ma BP, 47–52 Ma, and 57–61 Ma BP into the high-

risk mode. Furthermore, the results show that a part of the H2S released from

the gas hydrate dissociation is oxidized by the Fe (III) oxide metal, with much of

the metal ions being released into the pore water. Another part of the H2S is re-

oxidized by the O2 in the ocean, with much of SO4
2- released into the seawater.

Therefore, the process also provides metal ions and SO4
2- to pore water or

seawater when the H2S released from gas hydrate diffuses from the bottom.

This paper provides new insights into the source of H2S in the ocean and shows

that the H2S contained in gas hydrates plays an important role in the global

sulfur cycle.
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1 Introduction

Pyrites are the most important sulfur sinks and are widely

distributed in marine sediments (Lin et al., 2017). They have a

significant influence on the sulfur cycle and have resulted in a

series of studies involving major scientific issues, such as the

evolution of oxygen and the origin of life (Butler et al., 2004;

Chen et al., 2006; Formolo and Lyons 2013; Akhoudas et al.,

2018). Therefore, many scholars have carried out detailed

research on their cause and isotope composition (Hu et al.,

2012; Pan et al., 2018). Two pyrite formation pathways have

been proposed. One pathway is the polysulfide one:

FeS(s) → FeS(aq) + S2−n(aq) � FeS2(aq) + S2−n−1(aq) (1)

The other is the H2S pathway, initially observed as the

reaction of pyrrhotite (Fe1-xS) with H2S(aq):

FeS(s) → FeS(aq) +H2S(aq) � FeS2(S) +H2(g) (2)

There have beenmany studies related to the formation of pyrite,

right from the identification of the macroscopic sedimentary

environment to the microscopic microbial culture, and are

mainly focused on the redox state of the sedimentary

environment and the global C-S-Fe cycle (Peckmann and Thiel

2004; Kraal et al., 2009; Lin et al., 2016). In recent years, the influence

of the local depositional environment on the formation of pyrite and

its isotopes has received increasing attention, and the idea of using

pyrite sulfur isotopes to trace the evolution of depositional

environment (such as sea-level changes) has been put forward

(Wang et al., 2018a), especially in shallow seas (Peckmann et al.,

2001; Lim et al., 2011; Sima et al., 2011). During OSR and SO4
2--

AOMprocesses, higherHS- concentrations are produced in the pore

water and HS- reacts with Fe2+ in pore water or sediment to form

pyrite. During this process, metal oxides are gradually converted into

FeS and finally into pyrite under the action of excessive hydrogen

sulfide. Therefore, studying the source of hydrogen sulfide has

important scientific significance to understand the change of

depositional environments. However, the speciation of H2S in

seawater is complex, with the species most often described in

terms of free sulfide (H2S+ HS−+ S2-). Furthermore, questions

remain regarding the role that H2S plays in the global sulfur

cycle, particularly with respect to its presence in the remote

oceanic atmosphere and possible transfer across the air/sea

interface. Previous studies have found that the main source of

hydrogen sulfide for the formation of pyrite in marine sediments

is from the anaerobic oxidation of methane (AOM) and organic

sulfur reduction (OSR) (Xie et al., 2019; Wei et al., 2020). The

production of hydrogen sulfide also occurs in hydrothermal systems

due to geochemical processes (Yao and Millero, 1996). Huene and

Pecher, (1999) summarized the H2S concentrations found in a large

number of hydrothermal fluids at various locations in the Pacific

and Atlantic oceans, whereas the concentrations ranged from 1.1 to

110 mmol kg−1 (Von et al., 1995). However, previous studies have

focused more on the mechanism of the formation of hydrogen

sulfide and the source of hydrogen sulfide from volcanic eruptions,

hydrothermal flux, or from the AOM and OSR (Radford- Knwry

and Cutter, 1994, Shen et al., 2008; Wu et al., 2018). Only a handful

of studies have focused on hydrogen sulfide contained in hydrates.

At present, H2S has been observed in gas hydrates using Raman

spectroscopy at the Hydrate Ridge (Hester et al., 2007), the Nigerian

Margin (Chazallon et al., 2007), and the South China Sea (Fang et al.,

2019). In marine sediments, there are huge reserves of gas hydrates,

which are widely distributed. There are also huge reserves of H2S in

gas hydrates, which are universally present across the Earth.

Moreover, H2S released from gas hydrates has an important

influence on the environment. Considering the huge reserves of

FIGURE 1
The methane seep area was observed in Qiongdongnan Basin. [(A): Study Area, (B–E): Biological status of methane leakage area].
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gas hydrates, the amount of H2S contained in gas hydrates is also

huge. Furthermore, when gas hydrates dissociate, much of the H2S

released from the gas hydrates also affect the environment, the sulfur

cycle in the ocean, and the local ecosystem (Kastner et al., 1998).

Therefore, it is important to study the role that gas hydrates play in

pyrite formation.

2 Geological setting

Qiongdongnan Basin is located in the western part of the

northern continental slope of the South China Sea (Figure 1).

The northern part of the basin is bound by the Hainan Island,

while the west is adjacent to Indochina. Additionally, the east is close

to the Pearl River Mouth Basin. The Qiongdongnan Basin covers

more than 80,000 km2, and approximately 60% of the basin has a

water depth of more than 300 m (Wang et al., 2015). The seafloor

water temperature at the Qiongdongnan Basin is 2°C–3°C, and the

mean geothermal gradient is approximately 40°C/km. However, due

to the common gas-bearing fluid activity in the Qiongdongnan

Basin, the geothermal gradient in the study area is relatively much

higher (Yuan et al., 2009). Oil and gas have been discovered in

multiple reservoirs in different structural tectonic belts in the

Qiongdongnan Basin (QDNB) (Zhang et al., 2014; Wang et al.,

2015; W. Zhang et al., 2015; Zhang et al., 2016; Qin et al., 2019). The

sediments deposited during the Pliocene and Quaternary possess

favorable conditions for hosting biogenic gases, and these

were commonly encountered in the strata shallower than

2,300 m during gas logging. In addition, the coal-measure

source rocks deposited in the Oligocene are in the thermal

evolution stage of mature-to-high-mature, with favorable

conditions for thermogenic gas generation (Huang et al.,

2015; Huang et al., 2017). Overpressure was common

during the formation of QDNB when the rapidly filling

sediments deposited in the Cenozoic became deeply buried

under compaction (Shi et al., 2019; Wang et al., 2020). The

mud diapirs and gas chimneys caused by overpressure are

widely distributed in the deep water, providing an important

vertical migration pathway for hydrocarbons and for the

formation and accumulation of natural gas hydrates (Zhang

et al., 2016; Wang et al., 2020). Furthermore, there is a large

concentration of bivalve shells in the methane seep area

(Figures 1B–E), indicating that the methane flux is higher.

Meanwhile, multiple layers of gas hydrate are also found in the

study area (Liang et al., 2019) (Figure 2).

3 Methods

In the current study, we used mass conversation equations to
calculate the amount of H2S in the sink and how much H2S is
released from the sink.

The total mass of H2S at any given time can be described as:

d

dt
H2S � H2SRG +H2SRA +H2SSRO+H2SPH −H2SFP −H2SRM

−H2SO

(3)
where H2SRG denotes the H2S released from gas hydrate

dissociation, H2SRA denotes the H2S produced from AOM,

H2SR0 denotes the H2SRO produced by OSR, H2S denotes the

H2S released from hydrothermal sources, H2SFP denotes the

H2S that reacts with the metal ions to form pyrite, H2SRM
denotes the H2S that is oxidized by the Fe (III) oxides, and

H2SO denotes the H2S that is oxidized by oxygen. In the study

area, there is no volcanic and hydrothermal activity.

Therefore, in the current paper, the H2SPH is assumed to

be zero.

In the present study, the percentage of H2S in gas hydrates

was confirmed by the relative peak intensities of H2S to CH4. in

FIGURE 2
The mode distribution of gas hydrate and sulfate methane
transition zone.
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Spectroscopy. Moreover, their Raman quantification factor ratios

were calibrated using the crystal established absolute cage

occupancies of a pure H2S sample (Figure 3) (Qin and Kuhs

2013), which is similar to the procedures described in (Qin and

Kuhs, 2013) for CH4 hydrate.

The percentage values of the partial pressure of atmospheric

oxygen (PO2) are determined by Liu et al. (2021) and the present

value of PO2 is 212.28 mbar. The geological time of PO2 is

determined by multiplying the fraction of PO2 with 212.28 mbar.

4 Results and discussion

4.1 Influence of the H2S released from gas
hydrates on the formation of pyrite

In marine sediments, the formation of H2S occurs in a variety of

settings. The production ofH2S in the porewater of sediments and the

water column of stagnant basins is due to the anaerobic oxidation of

methane (Yang et al., 2007). Submarine hydrothermal emissions are

also a possible source of H2S to the ocean. However, previous studies

have shown that H2S released from submarine hydrothermal

emissions are not easily transferred into the atmosphere and

shallow sediments (Yao and Milero., 1996). Therefore, the organic

sulfur reduction (OSR) and anaerobic oxidation of methane (AOM)

are the main sources of H2S for the formation of pyrite (Commeau

et al., 1987; Egger et al., 2015; Lin et al., 2015; Xie et al., 2019;Wu 2020;

Wu, 2020; Wu, Xie, et al., 2020). However, the question remains as to

how to evaluate the quantity of H2S involved in the process of the

formation of pyrites. Aswe all know, theAOM iswidely present in the

seepage area of gas hydrates (Wang et al., 2018b). Pyrites are also

concentrated in sulfate and methane transition zone. During the

process of AOM, the methane diffused from the bottom reacts with

the sulfate from the overlying water at the sulfate-methane transition

zone (SMTZ). The specific process is as follows:

CH4 + SO2−
4 → HS− +HCO−

3 +H2O (4)

From Eq. 4, assuming the same reaction rate conditions,

when 1 mol of methane is reduced by the sulfate, 1 mol of HS− is

produced at the same time. However, during the process of pyrite

formation, 2 mol HS− is needed to form 1 mol of pyrite

(Peckmann et al., 2001; Canet et al., 2006; Lin et al., 2017).

The specific reactions are as follows:

Fe2+ +HS− → FeS +H+ (5)
FeS +H2S → FeS2 +H2 (6)

FIGURE 3
The concentration of H2S in gas hydrate at Qiongdongnan basin (Referend from huang et al., 2017).
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Moreover, 1mol of hydrogen sulfide is provided by the AOM

process, and another 1mol is provided by another unknown

mechanism. The presence of H2S in the gas hydrates provides an

explanation (Qin et al., 2020).Of course, organic sulfur reduction (OSR)

also provides part of themissingH2S. The specific reaction is as follows:

2CH2O + SO2−
4 → 2HCO−

3 +H2S (7)

However, OSR often takes place in the open environment

and shallower sediments as compared to AOM (Xie et al.,

2019). Therefore, the hydrogen sulfide produced by the OSR is

always diffused upwards under the influence of pressure

gradient. Due to this reason, it is difficult for it to be

diffused downwards.

In the study area, the SMTZ is mainly distributed at

6–9 mbsf in the Taixinan Basin and the content of pyrite in

the sediments is about 1.16%–1.03% at Taixinan Basin (Wu

et al., 2019; Wei, et al., 2020). Previous studies have shown that

the content of pyrite at the Zhujiangkou Basin, where the

SMTZ is present at 5–7 mbsf, is about 2.5%–2.6% (Liu et al.,

2016). In the Qiongdongnan Basin, the content of pyrite lies

within the range of 1%–3%, and the SMTZ is distributed at

about 2–3.9 mbsf. Furthermore, the SMTZ is also very close to

the water-sediment seafloor, indicating that the methane flux

is high in the Qiongdongnan area (Miao et al., 2021). During

the GMGS5 voyages, the methane seep area was found, which

covered an area of about 100 km2 in the Qiongdongnan Basin

(Figure 1). In this area, there is a rich concentration of gas

hydrates and pyrites in the sediments. Based on the above

analysis, the amount of pyrite in the SMTZ deposits in the

methane seep area in the Qiongdongnan Basin can be

calculated using the following equation

Quantitypyrite � DepthSMTZ × Smethane seep area × Qsediment density

× Cthepyrite percent of sediments (8)
MoleH2S � Quantitypyrite

m
× 2 (9)

In this paper,m represents the relative molecular weight of

pyrite. The depth of the SMTZ is 1.9 m, whereas the cover area

is 100 km2. Moreover, Q ranges from 1.64 to 1.9 g/cm3 (Zhang

et al., 2015; Liang et al., 2019). We selected a sediment density

of 1.8 g/cm3 and a pyrite percentage in the sediment of 2% in

the Qiongdongnan Basin (Figure 4) (Mao et al., 2021; A.

Haggerty 1991; Lim et al., 2011). The calculated quantity of

pyrite is 6.9 × 1012 g. Therefore, the H2S needed to form pyrite

is 4.06 × 1011 mol. The same methods can be applied to

calculate the quantity of H2S released from the gas hydrates

(see Eq. 10).

Quantitygas hydrate � Depthgas × S × Qsediment density

× Saturation ofgas hydrate (10)

In this equation, the Depth gas hydrate has been confirmed to

be deposited at the three sediments sections

(18.55–40.42 mbsf, 43.42 to 56.12 mbsf, and 58.6 to

98.42 mbsf) and was based on coring and sampling results

FIGURE 4
Content of pyrite at sulfate and methane transition zone in different sediments basin.
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and pilot hole LWD anomalies, which showed a high

resistivity, low density, high gamma-ray values, and

elevated acoustic velocity (Liang et al., 2019) Herein, the

first Depth gas is 21.87 m, the second Depth gas is 13 m,

and the saturation of gas hydrate is 31%. The quantity of

gas hydrate in the first layer is 1.22×1015 g. The percentage of

H2S in the gas hydrate ranges from 1% to 2%, and, therefore,

the quantity of H2S in the gas hydrate of the first layer is 1.83 ×

1013 g. The moles of H2S released from the dissociation of gas

hydrates in the first layer can be calculated using the following

equation:

MoleH2S � QuantityH2S

d
(11)

According to this analysis, the released quantity of H2S is

5.4 ×1011 mol. The H2S released from the gas hydrate is about

1.3 times the H2S needed for the formation of pyrite. The

calculation results show that the H2S released from the

dissociation of gas hydrates may be the source of H2S

required to form pyrites. What is more, a greater volume

and continual release of H2S from the gas hydrate could cause

the H2S to seep into the water and even into the atmosphere. If

so, it is still not clear what its biological and chemical

consequences could be.

4.2 Evaluating the concentration of H2S
released from gas hydrates into the ocean
and atmosphere

In general, H2S can be depleted in seawater via oxidation.

Recognized loss processes include photochemical oxidation,

reaction with dissolved oxygen (Millero et al., 1987), After

hydrogen sulfide (HS=H2S+HS
−+S2-) is produced, it mainly

participates in three types of reaction processes: 1) It gradually

diffuses to the seabed and enters the bottom seawater body or

oxidizes during the diffusion process. The oxidants in this process

include oxygen, Iron oxides and manganese-containing oxides,

products include elemental sulfur (S0), complex sulfides (e.g.,

S2O3
2-) and sulfates; 2) Combine with organic matter to form

organic sulfur; (three is also the most important reaction process,

that is, it combines with iron-bearing minerals to form iron-bearing

polysulfides and monosulfides and finally converts to pyrite. This is

also the main formation mechanism of pyrite in marine sediments.

In addition, a large number of laboratory studies have shown that

pyrite can also be formed directly without the transformation of iron

polysulfides. However, it is not all HS required for pyrite formation

comes from SO4
2--AOM. (Kelly and Kadish, 1982). However, in

marine anoxic sediments, the concentration of oxygen and is low.

Yao andMillero, 1996 found that elemental sulfur was the dominant

FIGURE 5
(A) Variation in the value of PO2 from present to 600 Ma BP. (B) Critical values changes from present to 600 Ma BP under the H2S released from
the complete dissociation of the first layer of gas hydrate. Moreover, from the present to 400 Ma, the H2S released from the complete dissociation of
the first layer of gas hydrate hardly moves into the atmosphere.
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product (95–100%) produced by the oxidation of H2S by hydrous

Fe(III) oxides. In fact, elemental sulfur is seldom found in themarine

sediments in the Qiongdongnan Basin. Therefore, in anoxic

sediments, the H2S released from gas hydrates cannot be easily

consumed, except in the process of forming pyrite. Nanomolar levels

(0.1–2 nM) of H2S have been found in the surface waters of the

oceans (Cutter and Oatts, 1987; Iii and Tsamakis, 1989). However,

the mechanism of the production and maintenance of hydrogen

sulfide in surface seawater remains unclear. As is discussed in

Section 4.1, if the second layer of gas hydrate dissociation results

in the release of hydrogen sulfide into seawater, the main controlling

factor for the release of hydrogen sulfide into the atmosphere is

oxygen. In fact, in anoxic basins, mildly sulfidic deep waters are

separated from the atmosphere by an oxygenated surface layer, at

the base of which is a sulfide chemocline through which O2

concentrations fall to zero. Kump et al. (2005) found that a

significant buildup of H2S in the deep sea could have led to toxic

emissions of H2S into the atmosphere, methane accumulation, and

global warming Kump et al. (2005). The question is how to evaluate

the seepage of H2S into the water or atmosphere, and that the

fundamental characteristic affecting the supply of H2S into the water

or atmosphere is the supply of O2, whose transport through the

surface layer must exceed the upwelling and diffusive flux of the

reductant (H2S) from below. The flux of O2 must be at least two

times the concentration of H2S given the stoichiometry of the

following reaction:

H2S + 2O2 → SO−2
4 + 2H− (12)

The fundamental characteristic of a stable chemocline is that the

supply of O2 from the atmosphere across the air-sea interface and its

transport through the surface layer must exceed the upwelling and

diffusive flux of the reductant (H2S) from below. Kump et al. (2005)

treated the exchange of gases, including O2, between the atmosphere

and ocean by using a piston-velocity formulation, whereby the flux

of gases occurs at a rate (in this case, FO2) that is proportional to the

contrast in gas concentrations between the atmosphere and surface

oceanwith the proportionality constant being the piston velocity (k):

FO2 � ρoce · k · KH (PO2atm –PO2oce) (13)

The supply of H2S from below by upwelling (FH2S) can be

written as

FH2S � ρoce · u · [H2S]deep (14)

where u is the upwelling rate (four in m·yr−1), [H2S]deep is the

concentration of H2S in deep waters (in mol·kg−1), ρoce is the density
of seawater (1,002 kg/m3), and KH is the Henry’s law constant for O2

(for warm surface waters, KH is 10–3 mol kg−1·bar−1).
The critical conditions for the balance of O2 and H2S must

conform to the following equations:

FO2 � 2FH2S (15)

ρoce · k · KH (PO2atm –PO2oce) � 2 ρoce · u · [H2S]deep (16)

Given these values, and setting the surface water O2

partial pressure (PO2oce) to zero, the PO2oce critical ratio of

H2S in the deep to atmospheric O2, above which the steady-

state surface-water O2 concentration is zero, is given by

Eq. 17.

(H2Sdeep
PO2, atm

) � k · KH
2u

� 1000m yr − 1 × 10 − 3mol kg − 1 bar − 1
2 × 4m yr − 1

≈ 0.13
mol
kg bar

(17)

In the study area, the dissociation of the first gas hydrate layer

would cause theH2S to reach 0.135 mol kg−1, and, at present, PO2 atm
is 212.28 mbar. Hence, H2Sdeep

PO2, atm present =
0.135mol·kg−1

212.28 × 10−3bar ≈ 0.64 mol
kg bar.

0.64 mol kg−1·bar−1 (Figure 5) is greater than the critical value of

0.13 mol kg−1·bar−1. Due to this reason, the dissociation of the gas

hydrate in the first layer would cause a subsequent release of H2S that

could easily enter the atmosphere in the present condition of PO2.

However, during geological time, PO2 often changes with time, so at

different geological times, the critical values would vary (Table 1). In

this paper, we calculated the various critical values from the present to

600Ma. Our results show that, from 0 to 200Ma, the H2S easily

seeped into the atmosphere through the dissociation of gas hydrate in

the first layer. From 200 to 300Ma, the calculated H2S deep/PO2 values

are lower than the standard values. Therefore, it would have been

difficult for the H2S to seep into the atmosphere if the temperature

and pressure changed during this geological time.

4.3 Evaluation of the influence of gas
hydrate dissociation on H2S release
through geological time

Gas hydrates are sensitive to temperature and pressure

(Wan et al., 2022). When these factors change, the gas

hydrates can dissociate. Previous studies have shown that

gas hydrates are sensitive to sea-level changes (Chown

et al., 2000; Blendinger 2004; Bangs and Nathan, 2005;

Jang-Jun et al., 2011). A decrease in sea level will cause a

corresponding change in the pressure. These pressure changes

can gradually cause the gas hydrates to dissociate. In fact, in

the sediments with normal methane seepage, it is difficult for

the hydrogen sulfide produced by AOM to reach the water, but

the existence of methane-hydrogen sulfide hydrate makes

large-scale hydrate decomposition that may lead to massive

hydrogen sulfide release. At this time, it is particularly

important to evaluate the conditions under which the

hydrogen sulfide gas reaches the water body. In this study,

we assume that the gas hydrate in the first layer is more

susceptible to changes in the sea-level, resulting in a
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dissociation of the gas hydrate in the first layer. The gas

hydrate in the second layer is assumed to be gradually

released, causing a 20%, 40%, 60%, 80%, and 100% release

of H2S. Previous studies have shown that the H2S released

from the dissociation of gas hydrates in the first layer easily

seeps into the atmosphere, except during 192–307 Ma BP.

When 20% of H2S is released from the gas hydrate in the

second layer, it easily seeps into the atmosphere, except from

199 to 325 Ma. When the H2S released by the dissociation of

gas hydrates in the second layer reaches 40%, it also easily

seeps into the atmosphere, except from 199 to 273 Ma

(Figure 6). When the H2S released by the dissociation of

gas hydrates in the second layer reaches 60%, it easily seeps

into the atmosphere, except from 212 to 293 Ma. When the

H2S released by the dissociation of gas hydrates in the second

layer reaches 80%, it easily seeps into the atmosphere, except

from 212 to 273 Ma. When the H2S released by the

dissociation of gas hydrates in the second layer reaches

100%, it easily seeps into the atmosphere, except from

232 to 273 Ma. For more precise estimates of the risk of

H2S being released into the atmosphere from the

dissociation of gas hydrates, we incorporated the effects of

sea-level change from 100 Ma BP to today and identified three

risk modes: 1) the high-risk mode indicates that the sea level

decreased sharply causing large-scale gas hydrate dissociation.

The PO2 value within this geological period is low. In this case,

the H2S released into the atmosphere is high. 2) The

moderate-risk mode indicates that the sea level decreased

slower than in the high-risk mode and caused partial gas

hydrate dissociation. However, the PO2 values during

geological time are at a higher level. In this case, the

amount of H2S released into the atmosphere was moderate.

3) The low-risk mode indicates that the sea level is high and

the PO2 values during this geological period are also high. In

TABLE 1 The partial pressure of atmospheric oxygen level at different
geological period.

Geological time Partial pressure of
atmospheric oxygen level
(%)

PO2mbar

1.37 99.13 207.22

11.45 99.13 200.10

27.32 96.56 194.35

41.66 93.79 165.08

56.01 79.66 152.14

70.35 73.42 143.95

84.85 69.47 118.76

100.57 57.31 109.13

116.44 52.66 112.36

137.96 54.22 128.86

155.21 62.18 147.77

166.81 71.31 179.12

178.25 86.44 222.88

192.60 107.56 256.35

199.92 123.71 310.73

212.74 149.95 376.64

232.89 181.76 431.94

251.66 208.44 408.67

273.18 197.21 408.67

293.32 197.21 346.11

307.67 167.03 285.54

325.07 137.80 222.88

335.14 107.56 165.08

345.21 79.66 132.28

358.03 63.84 100.58

365.20 48.54 74.28

375.28 35.85 55.02

379.70 26.55 45.39

383.98 21.90 32.65

389.77 15.76 24.75

389.77 11.95 16.41

394.05 7.92 11.81

398.32 5.70 8.98

404.12 4.33 6.63

412.67 3.20 4.90

415.57 2.36 3.52

424.27 1.70 2.47

428.54 1.19 1.93

435.71 0.93 1.78

445.78 0.86 2.04

467.46 0.98 2.68

480.27 1.29 3.72

493.25 1.80 4.63

501.95 2.24 5.33

510.49 2.57 6.46

(Continued in next column)

TABLE 1 (Continued) The partial pressure of atmospheric oxygen level at
different geological period.

Geological time Partial pressure of
atmospheric oxygen level
(%)

PO2mbar

524.99 3.12 7.01

536.44 3.38 7.01

546.51 3.38 5.93

556.58 2.86 4.90

570.93 2.36 3.72

582.53 1.80 3.07

591.07 1.48 2.40

606.94 1.16 1.72

621.29 0.83 1.31

629.99 0.63 1.31

Frontiers in Earth Science frontiersin.org08

Wang et al. 10.3389/feart.2022.1018325

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1018325


this case, the H2S released from the gas hydrate would not

easily seep into the atmosphere. Based on the three risk modes,

we classified 5–12 Ma BP, 25–29 Ma BP, 47–52 Ma, and

57–61 Ma BP into the high-risk mode. In addition, we draw

a conclusion through detailed analysis: When geological time

of the PO2 was low and the gas hydrate’s temperature and

pressure changed greatly, it caused massive gas hydrate

dissociation resulting in a massive amount of H2S being

released from the gas hydrates and diffusing into the pore

water from the bottom. During the process, part of the H2S

released from the gas hydrate was oxidized by the Fe (III)

oxide metals, and part of it was used to form pyrite. Most of

the H2S entered the ocean and even into the atmosphere.

When geological time of the PO2 is high, the sea-level changed

greatly. Meanwhile, massive H2S was released from the gas

hydrate into the pore water. This released H2S will diffuse

from the bottom. During the process, a small part of H2S was

released from the gas hydrate (being the H2S source) to form

pyrite. However, most of the H2S will enter the ocean and get

re-oxidized to become sulfate by the O2 in the ocean.

Furthermore, the H2S released from the dissociation of the

gas hydrates would be oxidized by Fe (III) oxide metals, with

much of these metal ions being released into the pore water. In

addition, the H2S that was re-oxidized by the O2 in the ocean

also released much of the SO4
2-. Therefore, the process also

provides metal ions and SO4
2- into pore water or seawater

FIGURE 6
Variation in the values from 600 Ma BP under the gradual dissociation of second gas hydrate from 20% to 100%.

FIGURE 7
Risk ranging from present to 100 Ma BP. The purple curve represents the change in global sea level. The grey area represents the high risk of H2S
going into the atmosphere.
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when the H2S released from gas hydrate diffuses from the

bottom.

5 Conclusion

It is important to evaluate how H2S is released from gas

hydrates. In this study, we established a one-dimensional

mathematical model to calculate the amount of H2S released

from multiple layers of gas hydrates in the Qiongdongnan Basin.

We investigated the role that H2S released from the dissociation of

gas hydrates plays on the sulfur cycle. Furthermore, we established

the relationship between H2S released from gas hydrate dissociation

and the concentration of H2S in the atmosphere. Our results show

that the sulfate and methane transition zone (SMTZ) in the

Qiongdongnan Basin contains 2.3 × 1012 g of pyrite, which

requires 4.06 × 1011 mol of H2S for its formation. The amount

of H2S released from the gas hydrate dissociation is 5.4 ×1011 mol,

which is about 1.3 times more than that needed for the formation of

pyrite. Therefore, the H2S released from the dissociation of gas

hydrates is an important source of H2S for the formation of pyrites

in the SMTZ in the Qiongdongnan Basin. Based on the flux of H2S

and the partial pressure ofO2 (PO2) in the atmosphere, we calculated

the critical value of the balance between the flux of H2S and PO2 to

be 0.13 mol kg−1·bar−1. Furthermore, considering the effects of

global sea-level change, we determined three risk modes to

evaluate the possible seepage of H2S from gas hydrate

dissociation into the atmosphere. These are as follows: 1) the

high-risk mode indicates that the sea level decreased sharply

causing large-scale gas hydrate dissociation. The PO2 values

during this geological time are low. In this situation, there was a

larger amount of H2S released into the atmosphere. 2) The

moderate-risk mode indicates that the sea level decreased

gradually and caused partial gas hydrate dissociation. However,

the PO2 values at this geological time are higher. In this case, the

amount of H2S released into the atmosphere was moderate. 3) The

low-risk mode indicates that the sea level is high, and the PO2 values

at this geological time are also higher (Figure 7). Therefore, it was

not easy for the H2S released from the gas hydrate dissociation to

seep into the atmosphere. Based on the three risk modes, we

classified 5–12Ma BP, 25–29Ma BP, 47–52Ma, and 57–61Ma

BP into the high-risk mode. Furthermore, the H2S released from the

FIGURE 8
Mode of the sulfur cycle. The results show that a part of the H2S released from the dissociation of the gas hydrate is oxidized by Fe (III) oxide
metal, with much of the metal ions being released into the pore water. Another part of the H2S is re-oxidized by the O2 in the ocean, with much of
SO4

2- released into the seawater. Therefore, the process also provides metal ions and SO4
2- to pore water or seawater when the H2S released from

the gas hydrate diffuses from the bottom. The difference in A and B is the level of PO2. In (A), the PO2 is high and the released hydrogen sulfide
from the decomposition of hydrate finds it difficult to enter the atmosphere. In (B), the PO2 is low and the released hydrogen sulfide from the
decomposition of hydrate finds it easy to enter the atmosphere.
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gas hydrate was oxidized by Fe (III) oxide metals, with much of the

metal ions being released into the pore water. The H2S that was re-

oxidized by theO2 in the ocean also released a lot of SO4
2- (Figure 8).

Therefore, the whole process also provides the raw materials for the

process itself. This paper provides new insights into the source of

H2S found in the atmosphere and shows that the H2S contained in

gas hydrates possibly plays an important role in the global sulfur

cycle.
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