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As a low-carbon and environmentally friendly renewable energy source, wind

power has been globally recognized as the best solution to achieve energy

saving and emission reduction and promote low-carbon economic growth.

With the increase of wind power penetration, wind power has a great impact on

sub-synchronous state stability and dynamic characteristics of the grid-

connected system. Aiming at the fact that the correlation between

clustering indexes and sub-synchronous oscillation (SSO) mode and the

difference of the contribution to the clustering results are seldom

considered in the current equivalent modeling of doubly-fed induction

generator (DFIG)-based wind farm, this paper proposes a clustering method

based on the index dimension reduction and weighted fuzzy C-means (WFCM)

clustering algorithm. Besides, for the SSO study of the grid-connected system

without sufficiently considering the coupling effects between controller

parameters, a multi-parameter coupling optimization design strategy

combining orthogonal experiment method (OEM) and response surface

method is proposed. Firstly, the dominant variables of SSO mode of the

DFIG-based wind farm connected to weak grid by series compensation

system are taken as the initial clustering indexes. After dimension reduction

by principal component analysis, the WFCM algorithm is utilized to cluster the

wind farm. Then, the proportional and integral coefficients of the grid-side

controller, rotor-side controller and phase-locked loop are optimized to

achieve the simultaneous optimization of the SSO characteristics and

dynamic characteristics of the system. Finally, the interaction between

control parameters and the influence degree and trend on the system

performance are quantitatively evaluated, and the optimal parameter

combination is obtained. The proposed strategy can mitigate SSO more

effectively while improving anti-interference than the particle swarm

optimization based on OEM.
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1 Introduction

Building a new power system with new energy as the main

body and non-carbon energy as the carrier, and constructing a

low-carbon and high-efficiency energy system are important

ways to accelerate the construction of ecological civilization

and realize the harmonious coexistence between human and

nature (Huang et al., 2022). As a low-carbon and

environmentally friendly renewable energy source, wind

power has become an effective way to alleviate energy

scarcity, combat climate change, and promote low-carbon

economic growth worldwide (Xia et al., 2020). Doubly-fed

induction generator (DFIG)-based wind farms are generally

located in remote areas far from load centers. The strength of

the grid is usually classified according to the short-circuit ratio

(SCR). Generally, the grid with the value greater than 20 is

considered as the strong grid and the value less than six is weak

grid (Miao, 2012). As the grid-connected capacity of DFIGs

continues to increase, the interaction between grid impedance

and the equivalent impedance of DFIG-based wind farm can

cause oscillations with weak grid operating condition. In

addition, the series compensation capacitor will lead to the

risk of sub-synchronous oscillation (SSO) (Liu et al., 2020;

Leon et al., 2021). With the increasing penetration of wind

power, equivalent modeling of wind farms has attracted

attention at home and abroad. If each wind turbine is

modeled in detail, it will not only increase the complexity of

the power system model, but also be highly prone to the problem

of dimensional disaster, which cannot reproduce SSO correctly

(Han et al., 2020). Therefore, it is necessary to study dynamic

equivalent modeling methods for wind farms to simplify the

complexity of the model and reduce the computational effort.

Wind farm dynamic equivalence methods are generally

divided into the single-machine equivalence method and the

multi-machine equivalence method. The single-machine

equivalence method equates all wind turbines into one unit,

and the equivalent parameters are usually obtained by the

weighted summation method (Pan et al., 2015). However, the

actual operating conditions of the units within a large wind farm

vary due to factors such as topography, wake effect, and time lag.

When studying the dynamic characteristics of wind power grid-

connected systems, the accuracy of the single-machine

equivalence model cannot meet the actual demand. The

multi-machine equivalence method clusters wind farms into

multiple groups based on the principle that the operating

conditions of wind turbines are the same or similar, and

equates the wind turbine parameters of the same cluster, and

finally uses several units to characterize the wind farm (Lei et al.,

2013). The core idea of the multi-machine equivalence is to find

the attribute that characterizes the key features of DFIG and use

this attribute for clustering. In (Shabanikia et al., 2021), a

weighted dynamic aggregation method is proposed to obtain

equivalent turbines for the problem of wind speed variations in

different regions and different turbine parameters in wind farm

aggregation modeling. A dynamic equivalence method for DFIG-

based wind farms based on density-peak clustering algorithm is

proposed in (Liu et al., 2019), which performs a two-stage

clustering of wind farms based on the protection state of the

crowbar and the transient characteristics of each unit under

faults. In (Zhou et al., 2019), variables such as steady-state wind

speed, slip rate, active power output, and rotor current are

selected as indicators and Gaussian density distance clustering

algorithm is used for clustering.

However, the current equivalence model does not consider

the correlation between clustering indexes and SSO mode. It is

inconclusive whether it is applicable to the analysis of SSO

characteristics of DFIG-based wind farm connected to weak

grid by series compensation systems. Moreover, the data set

consisting of multiple DFIGs and clustering indexes may contain

strongly correlated variables, making the effect of a particular

index magnified and resulting in a bias in clustering results.

Because of high dimensionality, the data is complicated and

redundant, which leads to a long time spent in clustering. Most of

the clustering algorithms currently used focus on the

optimization of clustering centers and the determination of

the number of clusters, ignoring the differences and

correlations between clustering indexes.

The control system of DFIG consists of several PI controllers

and the effects of different control parameters on the system

performance vary greatly. The SSO can be effectively mitigated

by reasonably adjusting control parameters to optimize the

overall dynamic performance of the system. The main

methods for optimizing DFIG control parameters are

engineering tuning (Wanigasekara et al., 2022), small-signal

analysis (Hu et al., 2022), and intelligent algorithm (Han

et al., 2021). The engineering tuning relies too much on

experience and there is “over-adjustment” or “blind

adjustment” in the process of parameter adjustment; the

small-signal analysis is not universal and is greatly influenced

by the system operation state; the intelligent algorithm is difficult

to obtain the optimization range and the global optimum cannot

be satisfied. In (Bakir et al., 2020), the offline optimization of PI

controllers at the rotor side of the DFIG wind energy system is

achieved by bacterial foraging algorithm. In (Chen et al., 2019),

based on participation factors and small signal model

eigenvalues, the system damping is increased by exploring the

optimal range of PI parameters. Most of the present studies on

the optimization of DFIG parameters adopt intelligent
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algorithms. There is a lack of analysis of the interaction between

parameters, and it is easy to fall into local optimum due to the

lack of clear optimization direction.

To address the above problems, the dominant variables of SSO

modeof theDFIG-basedwindfarmconnected toweakgridbyseries

compensation system are taken as the initial clustering indexes.

Considering the adaptation to dynamic and transient process

analysis under multi-disturbance scenarios, a clustering method

for DFIG-based wind farm based on the principal component

analysis (PCA) and weighted fuzzy C-means (WFCM) clustering

algorithm is proposed. The main contributions are as follows:

1) The proposed clustering method solves the problem that the

correlation between clustering indexes and SSO mode, the

contribution degree of different clustering indexes to the

clustering results, and the inaccurate clustering caused by data

redundancyareseldomconsidered intheequivalentmodelingof

thewind farm in the current studyof theDFIG-basedwind farm

connected to weak grid by series compensation system.

2) A multi-parameter coupling optimization strategy combining

orthogonal experiment method (OEM) and response surface

method (RSM) is proposed to quantitatively analyze the

interaction between each control parameter and the sensitivity and

influencetrendonthesystemperformance,whichsolvestheproblem

that the intelligent algorithm is easy to fall into local optimum.

3) Aiming at the simultaneous optimization of the sub-

synchronous state stability and dynamic characteristics of

the system, the control parameters of the clustered equivalent

units are optimized. The optimal parameter combination is

obtained, and the effective mitigation of SSO and the

improvement of system anti-interference are achieved.

The rest of this paper is organized as follows: Section 2

introduces the DFIG-based wind farm clustering method based

on the PCA andWFCM algorithm. The multi-parameter coupling

optimization strategy based on the OEM-RSM is explained in

Section 3. Section 4 gives the results of equivalence modeling and

parameter optimization of the wind farm, and analyzes the

interaction between control parameters and the influence

degree on the performance of the grid-connected system.

Conclusions and outlooks are drawn in Section 5.

2 Sub-synchronous oscillation
equivalence of DFIG-basedwind farm

2.1 Dimension reduction of clustering
indexes based on PCA

2.1.1 Selection of clustering indexes for DFIG-
based wind farm

In the DFIG-based wind farm connected to weak grid by

series compensation system, the analysis of the SSO mechanism

shows that the phase-locked loop (PLL) phase angle may affect

the output voltages of grid-side controller (GSC) and rotor-side

controller (RSC) and thus the output current of DFIG leading to

system destabilization oscillation. And the fluctuation of DC-link

voltage may affect the output current of DFIG and thus the grid

voltage through GSC and RSC output voltages (Dong et al.,

2016). Also, the grid strength, series compensation degree (SCD),

DFIG d-axis and q-axis stator current and d-axis and q-axis rotor

current are the main influencing factors of SSO (Liu et al., 2017).

In order to better analyze SSO characteristics of the system,

improve the effectiveness of clustering, and then design more

targeted mitigation measures, this paper takes the dominant

variables of SSO mode as clustering indexes: grid current

angular frequency ωs, DC-link voltage Udc, d-axis stator

current isd, q-axis stator current isq, d-axis rotor current ird,

q-axis rotor irq.

The initial operating point of DFIG-based wind farm is an

important basis for characterizing its steady-state properties.

Different initial operating points affect the dynamic response

of the wind turbine during SSO, resulting in differences in the

state. Considering the adaptation to the analysis of dynamic and

transient processes under multi-disturbance scenarios, this paper

selects one time point of data before DFIG-based wind farm is

connected to weak grid by series compensation (ωs1, Udc1, isd1,

isq1, ird1, irq1), one time point of data during DFIG-based wind

farm is connected to weak grid by series compensation (ωs2,Udc2,

isd2, isq2, ird2, irq2), one time point of data during the fault (ωs3,

Udc3, isd3, isq3, ird3, irq3), and one time point of data after fault

removal (ωs4, Udc4, isd4, isq4, ird4, irq4). A total of 24 indexes are

taken as initial clustering indexes.

2.1.2 Dimension reduction by PCA
The 24 initial clustering indexes may contain strongly

correlated variables, which makes the weight and influence

of a certain index magnified, resulting in a tendency of

clustering results and affecting the accuracy of clustering.

Moreover, the dimension of the data set is high and the data

are complicated and redundant, so it takes longer time for

clustering. Therefore, before using the initial clustering index to

cluster DFIGs, it is necessary to process the data to eliminate the

strong correlation and redundancy among them and reduce the

negative impact on the clustering results caused by the

interference of the data itself.

As a dimension reduction method for unsupervised learning,

PCA is mainly used to reduce the dimension of dataset by

measuring the amount of information through variance to

eliminate the interaction between the original data (Sun et al.,

2021). The magnitude of carrying the original feature variance

information can be characterized by the contribution rate of

principal component (PC). A larger contribution rate indicates

that the PC is more capable of explaining the original feature

information. In this paper, PCA is used to reduce the dimension

of 24 initial clustering indexes in five steps (Li et al., 2019):
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1) Build the samplematrixof theoriginaldata.The initial clustering

index data extracted from the wind farm are constructed into a

sample matrix Xw as shown in Eq. 1. Where n is the number of

samples, i.e., the number of DFIGs in the wind farm; p is the

number of indexes in each sample, and p is 24.

Xw �
x11 x12 / x1p

x21 x22 / x2p

..

. ..
.

1 ..
.

xn1 xn2 / xnp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � x1, x2, . . . , xp[ ] (1)

2) Calculate the sample covariance matrix. The data in Xw can

be normalized by calculating the mean and standard

deviation of the sample.

xij
* � xij − xj

s2j
i � 1, 2, . . . , n, j � 1, 2, . . . , p( ) (2)

xj � 1
n
∑n
i�1
xij (3)

s2j �
1

n − 1
∑n
i�1

xij − xj( )2 (4)

Where xij is the original sample data of the j-th index of the i-th

DFIG; xij
* is the normalized data of xij; xj and s2j are the mean

and standard deviation of the j-th index, respectively. Xw is

normalized to X*
w and the covariance matrix Rw can be obtained

by Eq. 5. The correlation coefficient rej between x*e and x*j in X*
w

can be calculated from Eq. 6, where x*e and x
*
j are the mean values

of the e-th and j-th indexes; xie
* and xij

* are the normalized data of

the e-th and j-th indexes of the i-th DFIG, respectively.

Rw � 1
n

X*
w( )TX*

w �
r11 r12 / r1p
r21 r22 / r2p

..

. ..
.

1 ..
.

rp1 rp2 / rpp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

rej �
∑n
i�1

xie
* − x*e( ) xij

* − x*j( )��������������������∑n
i�1

xie
* − x*e( )2∑n

i�1
xij
* − x*j( )2√ e, j � 1, 2, . . . , p( ) (6)

3) Calculate the eigenvalues of Rw and their corresponding

eigenvectors. Establish the eigen equation |λI − Rw| � 0 and

apply the Jacobi method to solve it to obtain the eigenvalues.

Arrange the eigenvalues in descending order to make

λ1 ≥ λ2 ≥/≥ λp ≥ 0. The corresponding eigenvectors can be

obtained fromthearrangedeigenvalues as inEq. 7, and then the

eigenvector matrix Vw can be constructed.

ν1 � ]11, ]21,/, ]p1( )T
ν2 � ]12, ]22,/, ]p2( )T

..

.

νp � ]1p, ]2p,/, ]pp( )T
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (7)

4) Calculate the PC contribution rate and cumulative

contribution rate.

δj � λj∑p
e�1
λe

j � 1, 2, . . . , p( ) (8)

μj �
∑j
j�1
λj

∑p
j�1
λj

(9)

Where δj is the variance contribution rate of the j-th index;

μj is the cumulative variance contribution rate of the first j

indexes; λj is the eigenvalue of the j-th index. The variance

contribution rate represents the ability to describe the original

sample matrix. The larger the value is, the more information the

original sample matrix contains, and the closer the reduced

matrix is to the original matrix. The number of PCs is

determined by cumulative contribution rate. To ensure the

validity of data after dimension reduction and subsequent

clustering, the first l PCs can reflect the information of p

indexes when μl ≥ 95%, so the first l PCs play the main role

(Ma et al., 2021).

5) Construct the new sample matrix after dimension

reduction. After determining the number of PC, take the

first l rows of Vw to form a new matrix Vwl, and the new

sample matrix after dimension reduction can be calculated

as Yw � X*
wVwl .

Compared with the initial data of DFIG-based wind farm, the

reliability and validity of the data after dimension reduction by

PCA are improved. Taking them as the clustering indexes of

DFIG-based wind farm can improve the accuracy of clustering

results.

2.2 Clustering of DFIG-based wind farm
based on WFCM algorithm

2.2.1 WFCM clustering algorithm
FCM clustering algorithm is a method to describe and

partition things with ambiguity or uncertainty (Zhao et al.,

2022). When the traditional FCM algorithm is used to cluster

wind turbines, the contribution degree of different clustering

indexes to the clustering results is ignored, resulting in

unreasonable clustering results. According to PCA, the

contribution of each index is greatly different. Therefore, this

paper proposes an FCM clustering algorithm with fixed weights

of indexes by assigning corresponding weights to each index. The

weights can be calculated by Eq. 10.
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PC � λ1
λ
PC1 + λ2

λ
PC2 +/ + λl

λ
PCl

λ � λ1 + λ2 +/λl

ωk � λk
λ

k � 1, 2, . . . , l( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (10)

Where PCl is the l-th PC; λl is the eigenvalue of the l-th PC; ωk is

the weight of the k-th PC; and the weight vector of l PCs is W �
ω1,ω2, . . . ,ωl{ }.

The reduced dimensional PC is taken as the clustering index

of the DFIG-based wind farm. Yw is the sample data set, where

yi � yi1, yi2, . . . , yil{ } is the i-th sample with l PCs. The WFCM

algorithm can be calculated as follows:

1) Initialize the number of clusters c(c ∈ [2, �
n

√ ]), the

maximum number of iterations Tm, and the fuzzy index

M. M is a constant that portrays the degree of

fuzzification and takes a range of values from [1, 2.5].
Generally, M is 2 (Wang et al., 2020).

2) Determine the affiliation matrix U and the clustering center

matrix C. U is a matrix of n × c, where uih is the affiliation of

the i-th sample yi in Yw to the h-th clustering center, as

shown in Eq. 11. C is a matrix of c × l, where Chk is given in

Eq. 12.

uih � 1

∑c
m�1

∑l
k�1

ωk yik−Chk‖ ‖2∑l
k�1

ωk yik−Cmk‖ ‖2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

M−1 i � 1, 2, . . . , n, h � 1, 2, . . . , c( )

(11)

Chk �
∑n
i�1
uM
ih yik

∑n
i�1
uM
ih

h � 1, 2, . . . , c, k � 1, 2, . . . , l( ) (12)

Where yik is the i-th sample in Yw; d2(yik, Chk) � ‖yik − Chk‖2 is
the Euclidean distance from the i-th sample yik to the h-th

clustering center.

3) Construct the objective function F(U ,C,W) as in Eq. 13 and

the constraints as in Eq. 14.

minF U ,C,W( ) �∑n
i�1
∑c
h�1
∑l
k�1

uM
ih ωkd

2 yik, Chk( )( ) (13)

0≤ uih ≤ 1∑c
h�1

uih � 1

∑l
k�1

ωk � 1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (14)

4) Update the clustering center Chk and the affiliation degree uih
so that the objective function is the minimum, and keep

repeating the above process until the number of iterations

reaches Tm.

2.2.2 Clustering validity test
Clustering validity research is the process of evaluating the

quality of clusters and determining the optimal number of

clusters by establishing validity indexes (Chen et al., 2018). In

order to ensure the accuracy and objectivity of the clustering

results, the Xie-Beni(XB) index, which is widely used in fuzzy

clustering, is chosen to determine the optimal number of clusters

(Geng et al., 2019).

VXB �
∑n
i�1
∑c
h�1
∑l
k�1

uM
ih ωkd2 Chk, yik( )( )

nmin
h≠a

∑l
k�1 ωkd2 Chk, Cak( )( ) a � 1, 2, . . . , c( ) (15)

The numerator of VXB reflects the degree of compactness

within a cluster, the smaller the value the more the compact; the

denominator reflects the degree of separation between clusters, the

larger the value the better the separation. Therefore, the smaller the

value of VXB, the better the clustering effect. The c corresponding

to the smallest VXB is the optimal clustering number.

To verify the rationality of the wind farm clustering indexes

and further illustrate the effectiveness of WFCM algorithm and

the rationality of clustering results, the Silhouette coefficient (SC)

index and Calinski-Harabasz index (CHI) are selected for

evaluation. The SC index is defined as follows:

SCi � βi − αi
max αi, βi( ) i � 1, 2, . . . , n( ) (16)

SCm � 1
n
∑n
i�1
SCi (17)

Where αi is the intra-class compactness, which is the average

distance between the sample yi and all other samples in the same

cluster, and the smaller the value, the more compact the cluster; βi
is the inter-class dispersion, which is the average distance between

the sample yi in any cluster and all samples in the nearest cluster,

and the larger the value, the more disperse the cluster. SCi is the

profile coefficient of the i-th unit and SCi ∈ [−1, 1]. SCi < 0
indicates that the clustering is not reasonable, and the larger

the value of SCi, the more reasonable the clustering. SCm is the

average profile coefficient, and the larger the value, the more

effective the clustering result.

The CHI takes into account the inter-class dispersion B and

intra-class compactnessW. Larger ICHI indicates better inter-class

dispersion and intra-class compactness.Where �y is the mean value

ofallsamples;εh,i istheaffiliationofthe i-thsampletotheh-thcluster.

ICHI � B/ c − 1( )
W/ n − c( ) (18)

B �∑c
h�1
∑n
i�1
εh,i Ch − �y
���� ����2

W �∑c
h�1
∑n
i�1
εh,i yi − Ch

���� ����2
εh,i � 1, yi ∈ Ch

0, yi ∈ Ch
{

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(19)
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The flow chart of the proposed WFCM algorithm is

demonstrated in Figure 1.

2.3 Calculation of equivalent parameters
for DFIG-based wind farm

According to the principle of constant output characteristics

before and after equivalence, all the units in the cluster can be

equivalent using the model of one unit. Assuming that there are d

DFIGsofthesametypeinthesameclusterafterclusteringbyWFCM

algorithm, the equivalent parameters can be calculated as follows:

Seq �∑d
i�1
Si, Peq �∑d

i�1
Pi, Qeq �∑d

i�1
Qi

Heq �∑d
i�1
Hi,Deq �∑d

i�1
Di, Keq �∑d

i�1
Ki

Req � Rs

d
, Xeq � Xs

d
, veq � 1

d
∑d
i�1
v3i⎛⎝ ⎞⎠1/3

, ZTeq � ZT

d

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(20)

where the subscript eq is the equivalent parameter; the subscript i

is the i-th wind turbine in the same cluster; S, P,Q,H,D,K, Rs, Xs,

v, and ZT are the rated capacity, active power, reactive power,

inertia time constant, damping coefficient of shafting, stiffness

coefficient of shafting, stator resistance, stator reactance, effective

input wind speed, and transformer impedance, respectively.

According to the constant voltage difference before and after

equivalent, the equivalent impedance of the trunk type collector

line of the wind farm Zeq1 can be calculated by Eq. 21, and the

equivalent impedance of the radial collector line Zeq2 can be

calculated by Eq. 22. Where Zf is the impedance of the f-th line;

Zi is the impedance of the i-th turbine line.

Zeq1 �
∑d
i�1

∑i
f�1

Zf ∑n
b�f

Pb( )Pi( )
∑d
i�1
Pi( )2 (21)

Zeq2 �
∑d
i�1
P2
i Zi

∑d
i�1
Pi( )2 (22)

FIGURE 1
Flow chart of the WFCM algorithm.
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3 Multi-parameter coupling
optimization design of DFIG-based
wind farm based on OEM-RSM

In (Zhang et al., 2022), we have optimized the proportional

and integral coefficients of GSC, RSC and PLL for a single DFIG

connected to weak grid by series compensation system.

Considering the SSO characteristics and dynamic

characteristics of the system, the integrated average value of

DC-link voltage overshoot ΔUdc, active power overshoot ΔPs,

and grid current angular frequency overshoot Δωs when the

disturbance occurs have been chosen as the performance indexes.

After weighting by the analytic hierarchy process-coefficient of

variation compound weighting method, the minimization of the

weighted sum OD has been taken as the optimization objective.

The control parameters have been optimized by OEM and

particle swarm algorithm (PSO). As a result, the sensitivity

and influence trend of control parameters on the system

performance have been revealed, and the SSO has been

effectively mitigated while ensuring strong anti-interference.

However, the strategy is unable to analyze the interaction

between parameters and is prone to fall into local optimum

due to the use of intelligent algorithm. Therefore, this paper

improves it and proposes a multi-parameter coupling

optimization strategy for DFIG-based wind farms combining

OEM and RSM.

The single-factor experiment method is to conduct

experiments on only one factor while keeping all other factors

constant, so as to explore the optimal range of values for each

factor. The RSM uses a multiple quadratic regression equation to

establish the functional relationship between the influencing

factors and the response values based on the data obtained by

the experimental design method, and the optimal parameter

combination can be found by analyzing the equation (Si et al.,

2018). It is generally utilized for experimental designs with few

factors (generally 2–4) and few factor levels. In this paper, control

parameters of each equivalent wind turbine are changed

simultaneously and preliminary optimized by OEM to obtain

the three factors that have the most significant influence on SSO

and dynamic characteristics of the grid-connected system and

seven insignificant factors. The seven insignificant factors can be

valued according to the optimization results of OEM. Based on

the values of three significant factors and the influence trend of

them on OD, the single-factor experiment method is utilized to

further determine the appropriate range of values. Set the values

of each factor in RSM, a 3-factor, 3-level response surface

experiment can be designed by Box-Behnken central

combination. The experimental data of OD can be fitted

according to the model with the best fit, and the model can

be analyzed by analysis of variance (ANOVA) and constructed

statistics. When all the indexes of the model meet the criteria, the

regression equation between each factor and the evaluation index

can be fitted, which can be expressed by Eq. 23. Then, the three-

dimensional response surface can be plotted to obtain the

interaction between the factors and the optimal OD of the

system and the corresponding levels of each factor.

y � c0 +∑N
i�1
ciξ i +∑N

i�1
ciiξ

2
i +∑

i< j
∑ cijξ iξj + ε, i, j � 1, 2, · · ·, N

(23)

Where ε is the fitting error, c0 is a constant; ci, cii, and cij are

the coefficients of the first-order, second-order, and interaction

terms, respectively; ξi and ξj are experiment factors.

4 Case study

4.1 Parameter setting

A time-domain simulation model of DFIG-based wind

farm connected to weak grid by series compensation is built in

Matlab/Simulink as shown in Figure 2. The wind farm

contains 25 DFIGs of the same type, and the wind farm

parameters and DFIG control parameters are shown in

Table 1 and Table 2. The distance between each row of

DFIGs is 500 m. The DFIG-based wind farm is connected

to the 35 kV medium voltage bus through terminal

transformers and overhead lines, and then the main

TABLE 1 Parameters of DFIG-based wind farm.

Parameters Value

Base capacity SB 0.8 MVA

Rated voltage UB 690 V

Rated frequency fB 50 Hz

Stator resistance Rs 0.03 p.u

Rotor resistance Rr 0.016 p.u

Stator leakage inductance Lls 0.18 p.u

Rotor leakage inductance Llr 0.16 p.u

Stator-rotor mutual inductance Lm 2.9 p.u

Grid-side filter inductance Ll 0.3 p.u

Grid-side filter inductance parasitic resistance Rl 0.02 p.u

DC-link capacitor Cdc 0.01 F

DC-link voltage Udc ref 1150 V

Terminal transformer rated capacity 1.67 MVA

Terminal transformer voltage ratio 0.69/35 kV

Terminal transformer XT 6%

Main transformer rated capacity 50 MVA

Main transformer voltage ratio 35/220 kV

Main transformer XT 10.5%

Line resistance RL 0.115 Ω/km
Line inductance LL 1.05e-3H/km

Line length 30 km

Distance between unit rows 0.5 km
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transformer is connected to the 220 kV grid through the

transmission line. According to the wind speed, wind

direction, and wake effect, the wind speed of each unit in

the wind farm can be calculated as shown in Table 3.

4.2 Equivalent modeling results for DFIG-
based wind farm

The initial SCR is set to 3 and SCD is 20%. The SCR is

changed to 2 and SCD is changed to 60% at 2.1 s. The SCR and

SCD are changed back to initial values at 3.1 s. A three-phase

ground short-circuit fault is occurred at 4 s and removed at

4.15 s. The data collected at 2s are ωs1,Udc1, isd1, isq1, ird1, irq1, the

data collected at 3 s are ωs2, Udc2, isd2, isq2, ird2, irq2, the data

collected at 4.1s are ωs3, Udc3, isd3, isq3, ird3, irq3, and the data

collected at 4.6s are ωs4, Udc4, isd4, isq4, ird4, irq4. The data set

consisting of 25 DFIGs and 24 initial clustering indexes is the

sample matrix Xw of 25 × 24.

4.2.1 Results of dimension reduction by PCA
The dimension of Xw is reduced by PCA. The eigenvalues of

each component are arranged in descending order, and the

corresponding variance contribution rate and cumulative

contribution rate are calculated as shown in Table 4.

It can be found that the 24 initial clustering indexes contain

strongly correlated indexes, which will cause bias in the clustering

results, so the dimension of data need to be reduced. The

cumulative contribution rate of the first three PCs has reached

96.7319%, greater than 95%, which meets the requirement for the

selection of PCs in PCA, while the remaining indexes have little

influence on contribution. The contribution rates of the first

three PCs are 51.4265%, 33.9819%, and 11.3236%, respectively.

Therefore, the first three PCs can be selected for dimension

reduction, i.e., the initial clustering indexes are reduced to

3 dimensions. The component with the eigenvalue of

12.34236 is the first PC, the component with the eigenvalue of

FIGURE 2
Topology structure of DFIG-based wind farm.

TABLE 2 DFIG control parameters.

Parameters kp dc ki dc kp il ki il kp p

Value 6 400 0.8 5 1.6

Parameters ki p kp ir ki ir kp pll ki pll

Value 100 0.6 8 5 1.1

TABLE 3 Wind speed of each unit in DFIG-based wind farm (m/s).

WTij 1 2 3 4 5

1 13.0000 13.0000 13.0000 13.0000 13.0000

2 13.0000 11.1719 11.1719 11.1719 13.0000

3 11.1719 11.1719 9.3866 9.3866 13.0000

4 9.3866 11.1719 9.3866 7.9655 13.0000

5 7.9655 11.1719 9.3866 7.9655 7.1540
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8.155651 is the second PC, and the component with the

eigenvalue of 2.717655 is the third PC, which basically retains

the information of the original data. The contribution rates of

these three PCs are given in Figure 3.

So far, the dimension of 24 initial clustering indexes are

reduced to obtain 3 PC indexes by PCA, and the new sample

matrix after dimension reduction Yw is of 25 × 3. The weight

vector of the 3 PCs can be calculated as W �
0.5316, 0.3513, 0.1171{ } according to (10).

4.2.2 Clustering results for DFIG-based
wind farm

Yw is clustered by WFCM clustering algorithm. c is set as 2,

Tm is set as 100, and M is set as 2. According to the iteration of

(15), the optimal cluster for 25 DFIGs cop � 4. Thus the

clustering results with 3 PCs as multiple clustering indexes

can be obtained in Table 5; Figure 4.

In order to verify the effectiveness of WFCM algorithm and

the reasonableness of clustering results, Figure 5A shows the

profile coefficients of 25 DFIGs when the clusters is 4, Figure 5B

shows the results of average profile coefficient, and Figure 5C

shows the results of CHI.

It can be observed from Figure 5A that the profile coefficients

of 25 DFIGs are all greater than 0 when the cluster is 4, indicating

the clustering is reasonable and effective. From Figure 5B,C, the

average profile coefficient and CHI are both maximum at the

cluster of 4, which is consistent with XB index. Therefore, the

25 DFIGs built in this paper can be divided into four equivalent

clusters.

4.3 Multi-parameter coupling
optimization results for DFIG-based
wind farm

The equivalent wind farm after clustering are preliminarily

optimized by OEM, and the values of each control parameter can

be obtained as shown in Table 6. From the results of OEM, the

three factors that have the most significant effect on SSO

characteristics and dynamic characteristics of DFIG-based

wind farm connected to weak grid by series compensation

system are GSC DC voltage loop proportional coefficient

kp dc, RSC current loop proportional coefficient kp ir, and

PLL proportional coefficient kp pll. And the optimized values

are 10, 0.5, and 3, respectively. The single-factor experiments are

conducted for these three factors to narrow their range of values.

The corresponding generalized Nyquist curves of the system

scaled up at (−1, j0) are drawn in Figure 6.

TABLE 4 Contribution rates of PCs.

PC Eigenvalue Variance contribution
rate

Cumulative
contribution rate

PC Eigenvalue Variance
contribution rate

Cumulative
contribution rate

1 12.34236 0.514265 0.514265 13 2.79E-06 1.16E-07 1

2 8.155651 0.339819 0.854084 14 1.11E-06 4.63E-08 1

3 2.717655 0.113236 0.967319 15 2.33E-07 9.71E-09 1

4 0.567313 0.023638 0.990957 16 6.1E-08 2.54E-09 1

5 0.157528 0.006564 0.997521 17 8.24E-09 3.43E-10 1

6 0.040513 0.001688 0.999209 18 6.79E-10 2.83E-11 1

7 0.015618 0.000651 0.99986 19 3.16E-11 1.32E-12 1

8 0.002584 0.000108 0.999967 20 8.03E-12 3.34E-13 1

9 0.000376 1.57E-05 0.999983 21 1.56E-13 6.52E-15 1

10 0.000266 1.11E-05 0.999994 22 1.57E-14 6.51E-16 1

11 9.14E-05 3.81E-06 0.999998 23 4.85E-15 2.05E-16 1

12 4.52E-05 1.88E-06 1 24 -1.6E-16 -6.8E-18 1

FIGURE 3
Contribution rates of PCs.
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According to the generalized Nyquist stability criterion, if the

Nyquist curves do not enclose (−1, j0), the system is stable and

the further away from that point, the more stable the system is. It

can be found that the optimal value exists between 45 and 55 for

kp dc, 0.45 to 0.55 for kp ir, and 2 to 3 for kp pll. And the Nyquist

curves do not enclose (−1, j0) within the above values, indicating

that the system is stable. So the value ranges of each parameter

determined by the single-factor experiment method is reasonable

and valid. The response surface experiment is designed in

Design-Expert 11, and the level values of kp dc are set as 45,

50, and 55, the level values of kp ir are 0.45, 0.5, and 0.55, and the

level values of kp pll are 2, 2.5, and 3. A total of 17 sets of

experiments are conducted. A quadratic polynomial model is

fitted to the experimental data of OD, and the results of ANOVA

on the model are shown in Table 7. The constructed statistics are

shown in Table 8.

As can be seen from Table 7, the p-value of the model is

less than 0.0001, indicating that the overall effect of the

parameter combination on OD is extremely significant.

Linear terms A, B and quadratic term B2 have an extremely

significant effect on OD, quadratic term C2 has a highly

significant effect on OD, interaction term BC has a

significant effect on OD, and the effects of other terms are

not significant. The significance of the effect of each factor is

A > B > C, that is, kp dc > kp ir > kp pll. The p-value of the lack

of fit in the table is greater than 0.05 (0.2951), indicating that

the lack of fit is not significant, so the model is able to fit the

data accurately.

The statistics of the experiment data should meet the

requirements of C.V.% less than 10, precision greater than 4,

R2, adjusted R2, and predicted R2 are close to 0.9, and the

TABLE 5 The clustering results for DFIG-based wind farm by WFCM.

Cluster Clustering results

1 WT14, WT24, WT15, WT25, WT35, WT45

2 WT44, WT54, WT55

3 WT41, WT51, WT33, WT43, WT53, WT34

4 WT11,WT21,WT31,WT12,WT22,WT32,WT42,WT52,WT13,WT23

FIGURE 4
The clustering results for DFIG-based wind farm by WFCM.

FIGURE 5
Clustering evaluation indexes. (A) Profile coefficient; (B) Average profile coefficient; (C) CHI.

TABLE 6 Optimal parameter combination based on OEM.

Parameters kp dc ki dc kp il ki il kp p

Value 10 380 0.6 5 1.6

Parameters ki p kp ir ki ir kp pll ki pll

Value 100 0.5 8 3 0.8
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difference between adjusted R2 and predicted R2 is less than 0.2.

From Table 8, it can be found that the statistics of the model all

meet the requirements, indicating that the fit and correlation of

the model are good and the error is small, so it can also predict

OD under different combinations of operating parameters.

A quadratic multiple regression is fitted to a total of 51 data

points from 17 sets of experiments to create a regression equation

as in (24). The response surface of each factor combination on

OD is depicted in Figure 7.

OD � 35.72 − 9.19A + 2.85B − 2.21C − 0.4965AB − 0.0402AC + 1.26BC
−0.1256A2 + 12.16B2 + 0.3401C2

(24)

As shown in Figure 7A, OD decreases and then rises as

kp ir increases from 0.45 to 0.55, and there is a minimal value

between 0.47 and 0.51; when kp ir is small, OD decreases

gradually with the increase of kp dc from 45 to 55, and the

decrease in OD increases as kp ir increases. From Figure 7B,

OD tends to decrease as kp pll increases from 2 to 3 and is

flatter; OD decreases rapidly as kp dc increases. From

Figure 7C, OD gradually decreases as kp pll increases, and

the effect of kp ir on OD is much more significant than that of

kp pll. As shown in Figure 7, the interaction between kp ir and

kp pll is significant, which is consistent with the ANOVA

results.

FIGURE 6
Generalized Nyquist curves of the system with (A) different kp dc , (B) different kp ir , and (C) different kp pll.
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The optimal solution that satisfies the optimization index can

be obtained by optimizing OD through (24). The optimal

predicted and experimental value can be calculated by

substituting the corresponding factor values into the

regression equation and simulation model and then the error

between them can be obtained. The results are listed in Table 9.

Noticeably, the OD predicted by the model is 24.411, which is

1.33% lower than the minimum value of the response surface

experiment (24.741). The error between the predicted and the

experimental value is 2.3% (not more than 5%), indicating that

the regression model is accurate and effective for the optimization.

4.4 Simulation results

To verify the effectiveness of the multi-parameter coupling

optimization design strategy in this paper, the strategy

combining the OEM and PSO in (Geng et al., 2019) is used

for comparative verification. The SCR is changed from 3 to 2 and

TABLE 7 ANOVA results for OD of RSM.

Source Sum of squares df Mean square F-value P-value Significance

Model 1415.17 9 157.24 217.94 <0.0001 ***

A-kp dc 675.44 1 675.44 936.17 <0.0001 ***

B-kp ir 64.81 1 64.81 89.83 <0.0001 ***

C-kp pll 39.22 1 39.22 54.36 0.0002 **

AB 0.9861 1 0.9861 1.37 0.2806 —

AC 0.0065 1 0.0065 0.009 0.9272 —

BC 6.31 1 6.31 8.75 0.0212 *

A2 0.0664 1 0.0664 0.092 0.7704 —

B2 622.97 1 622.97 863.45 <0.0001 ***

C2 0.4871 1 0.4871 0.6751 0.4384 —

Residual 5.05 7 0.7215 —

Lack of fit 2.87 3 0.9555 1.75 0.2951 —

Pure error 2.18 4 0.546 — — —

P-value is the probability of significance. The smaller the p-value, the more significant the effect of the factor on the response value. p < 0.0001 indicates that the effect of the factor on the

response value is extremely significant, denoted by ***; p ≤ 0.01 indicates that the effect is highly significant, denoted by **; 0.01 < p ≤ 0.05 indicates that the effect is significant, denoted by *;

p > 0.05 indicates that the effect is not significant.

TABLE 8 Statistics for OD of RSM.

C.V.% R2 Adjusted R2 Predicted R2 Adeq precision

2.04 0.9964 0.9919 0.9653 54.9497

A B C

FIGURE 7
Effect of factors on OD. (A) Effect of kp dc and kp ir on OD; (B) Effect of kp dc and kp pll on OD; (C) Effect of kp ir and kp pll on OD.
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SCD is changed from 20% to 60% at 2s. The FFT analysis of the

grid-connected current and generalized Nyquist curves of the

system after 2s are depicted in Figure 8. Figure 9 shows the d-axis

stator current waveform.

The FFT analysis is used to determine the frequency at

which oscillations occur in the grid-connected system. It can be

found from Figure 8 that the system appears SSO with a

frequency of 39 Hz (lower than power frequency 50 Hz). The

generalized Nyquist curve after 2 s changes from enclosing (−1,

j0) to not enclosing and gradually moving away when control

parameters change from the original parameters to the

optimized parameters, indicating that the system changes

from unstable to stable. It can be observed from Figure 9

that the system is destabilized after the grid condition

changes to very weak grid and high series compensation

degree with the original parameters, resulting in divergent

SSR. After optimization by the strategy proposed in this

paper and the strategy in (Geng et al., 2019), the system

oscillations converge. The d-axis stator current returns to

stability after about 2 s with the optimized parameters of the

OEM-PSO, whereas it only oscillates for about 0.7 s with the

optimized parameters of the OEM-RSM. Apparently, both

optimization methods are effective in improving the stability

of the sub-synchronous state of the system, and the OEM-RSM

is more effective. The simulation results are consistent with the

theoretical analysis results.

Figure 10 illustrates the DC-link voltage, active power, and grid

current angular frequency curves when the SCR is 3 and SCD is 20%,

with a three-phase ground short-circuit fault occurring at 2 s and

removed after 0.1 s. To facilitate the analysis, ΔUdc, ΔPs, and Δωs

with 3 parameter combinations are calculated in Table 10.

From Figure 10, after optimization of the proposed strategy,

the overshoot and settling time of DC-link voltage, active power,

and grid current angular frequency with disturbance are much

smaller, and the fluctuation is significantly weakened and the

anti-interference is strongly enhanced. It can be found from

Table 10 that ΔUdc, ΔPs, and Δωs with the optimized parameters

of the OEM-PSO and the OEM-RSM are both reduced. Visibly,

ΔUdc is reduced by 26.65%, ΔPs is reduced by 12.83%, and Δωs is

reduced by 46.70% compared to the original parameters after

optimization by the OEM-RSM. In conclusion, both

optimization methods can improve the dynamic

TABLE 9 Optimal parameter combination based on RSM.

kp dc kp ir kp pll Predicted Experimental Error (%)

54.961 0.495 2.979 24.411 24.986 2.3

FIGURE 8
FFT analysis of the grid-connected current and generalized Nyquist curves of system. (A) FFT analysis of the grid-connected current; (B)
Generalized Nyquist curves.

FIGURE 9
D-axis stator current waveform.
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characteristics of the system. Moreover, the OEM-RSM is more

effective in optimizing both the SSO characteristics and dynamic

stability.

5 Conclusion

Based on the model of DFIG-based wind farm connected

to weak grid by series compensation system, this paper

proposes a clustering method based on the PCA and

WFCM algorithm, with the dominant variables of the

system SSO mode as the initial clustering indexes. For the

equivalent wind farm after clustering, the DFIG control

parameters are taken as the optimization object, and the

sub-synchronous state stability and dynamic characteristics

of the system are simultaneously optimized as the

optimization objective. The optimal design strategy

combining the OEM and RSM is adopted to quantitatively

evaluate the interaction between controller parameters and

the significance of their effects on the SSO and dynamic

characteristics of the grid-connected system. The optimal

parameter combination is obtained to achieve the effective

mitigation of SSO. The highlights are as follows:

1) The proposed equivalence modeling method for DFIG-

based wind farm takes into account the correlation

between clustering indexes and SSO mode as well as the

contribution degree of different clustering indexes to

clustering results. It eliminates the redundancy of data

and can be applied to study SSO in large-scale wind farm

grid-connected systems.

2) Compared with the OEM-PSO, the proposed multi-

parameter coupling optimization strategy can effectively

improve the anti-interference and system stability in the

sub-synchronous state, which can be applied to study the

optimization problems of complex systems with multiple

parameters and indexes.

3) kp dc, kp ir, and kp pll have significant effects on SSO

characteristics and dynamic characteristics of the

system, and there is a strong interaction between kp ir

and kp pll.

In addition, the current work will also be carried out for

better analyzing and solving the SSO problem in actual

situations in the near future. Since the control parameters of

each cluster are changed synchronously in this paper, the

interaction between clusters and the influence of control

parameters of different clusters at different locations on SSO

characteristics of the system will be fully considered to improve

the proposed strategy.
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FIGURE 10
DC-link voltage, active power, and grid current angular frequency waveform. (A) DC-link voltage; (B) Active power; (C) Grid current angular
frequency.

TABLE 10 Results of evaluation indexes with 3 parameter
combinations.

Evaluation indexes ΔUdc/V ΔPs/MW Δωs/pu

Original 67.9229 1.1119 6.3085E-4

OEM-PSO 56.1519 1.0037 4.5033E-4

OEM-RSM 49.8196 0.9692 3.3627E-4
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