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Accurate and timely estimation of cotton yield over large areas is essential for

precision agriculture, facilitating the operation of commodity markets and guiding

agronomic management practices. Remote sensing (RS) and crop models are

effective means to predict cotton yield in the field. The satellite vegetation indices

(VIs) can describe crop yield variations over large areas but can’t take the exact

environmental impact into consideration. Climate variables (CVs), the result of the

influence of spatial heterogeneity in large regions, can provide environmental

information for better estimation of cotton yield. In this study, the most important

VIs and CVs for estimating county-level cotton yield across Xinjiang Province were

screened out. We found that the VIs of canopy structure and chlorophyll contents,

and the CVs of moisture, were the most significant factors for cotton growth. For

yield estimation, we utilized four approaches: least absolute shrinkage and

selection operator regression (LASSO), support vector regression (SVR), random

forest regression (RFR) and long short-term memory (LSTM). Due to its ability to

capture temporal features over the long term, LSTM performed best, with an R2 of

0.76, root mean square error (RMSE) of 150 kg/ha and relative RMSE (rRMSE) of

8.67%; moreover, an additional 10% of the variance could be explained by adding

CVs to the VIs. For the within-season yield estimation using LSTM, predictions

made 2months before harvest were the most accurate (R2 = 0.65, RMSE = 220 kg/

ha, rRMSE = 15.97%). Our study demonstrated the feasibility of yield estimation and

early prediction at the county level over large cotton cultivation areas by

integrating satellite and environmental data.
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Introduction

Cotton is an important cash crop used in fabrics, cloth, and oil.

According to the International Cotton Advisory Committee (ICAC),

China is the largest cotton consumer and second largest cotton

producer in the world, and Xinjiang Province accounts for > 80%

of the total cotton production of China. Precise estimation of the

cotton yield of Xinjiang Province could inform Chinese and

international policy decisions, and promote stable operation of

agricultural commodity markets. Besides different genotype and

management practices, extreme weather (e.g. droughts, floods, and

high temperatures) also makes crop yield vary from year to year

(Bauer et al., 2015). To prevent losses, it is necessary to measure the

cotton yield in an accurate and timely manner for effective agronomic

management practices (Xu et al., 2021a; Li et al., 2022b).

Satellite remote sensing (RS) is widely applied in agricultural

research. Vegetation indices (VIs) calculated from satellite data are

the most common means of predicting crop yield (Bian et al., 2022).

VIs can describe such biotic features as the canopy structure,

chlorophyll, and nitrogen content of crops and different indices

indicate different features. The Normalized Difference Vegetation

Index (NDVI), Enhanced Vegetation Index (EVI) and Near-

Infrared Reflectance of Vegetation (NIRv) have been used to

explain variation in wheat, corn, rice and soybean yields (Johnson,

2014; Meng et al., 2017; Fan et al., 2021). However, it is still not clear

which RS VIs are optimal for predicting cotton yield and which biotic

features are most relevant to the yield. Additionally, genotype (G),

environment (E) and management (M), namely biotic and abiotic

conditions have the greatest influence on crop growth and production

(Jones et al., 2003; Tao et al., 2009). VIs alone have limited ability to

estimate yield. Therefore, Climate variables (CVs) have also been

applied by taking abiotic features into consideration at the same time.

Temperature and precipitation are the most influential abiotic factors

in crop breeding (Mathieu and Aires, 2018; Kang et al., 2020).

However, their predictive power varies among regions. Precipitation

does not precisely reflect the moisture available for plants between the

sowing and mellowing stages. Since except for inevitable algorithm

error in estimating precipitation value, the processes of crop growth

are complicated. Water evaporation of leaves, and irrigation and

drainage management practices, also affect moisture (Folberth et al.,

2016; Chen et al., 2018). Vapor pressure (vap), vapor pressure deficit

(vpd), reference evapotranspiration (pet), land surface temperature

(LST), and the soil moisture resulting from the interaction of liquid

and solar radiation in soil and vegetation have been used in analyses

of the effects of climate changes on crop production (Rigden et al.,

2020). Recent researches have shown that each satellite and climate

index has advantages and disadvantages for predicting yield that

depend on the diversity of the terrain and topography, spatial

distribution of crops, and phenology (Tao et al., 2009; Kern et al.,

2018). Therefore, it is necessary to investigate the relationships

between VIs and environmental stress in the context of cotton

crops over a large area.

The main approaches to crop yield estimation are crop models

and regression methods. Biophysical models provide mathematical

descriptions of crop growth and development in terms of radiation,

photosynthetic production, respiration, transpiration, dry matter
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generation, and distribution (Sinclair and Seligman, 1996; Dorigo

et al., 2007; Kheir et al., 2022). Process-based crop models consider all

the G×E×M factors and their interactions. These models use daily

crop type, soil, meteorology and field management data as input

(Sinclair and Seligman, 1996; Keating et al., 2003; de Wit et al., 2019).

However, the use of these high-quality inputs throughout the

breeding and reproductive period is computationally intense (Tao

et al., 2018). Although crop models for monitoring and predicting

yield at a single location, or at the field scale, have made great

progress, application to the regional scale is difficult due to the

intricate data collection and huge calculation costs (Curnel et al.,

2011; Wu et al., 2021). Statistical regression models are powerful tools

applicable to large scales. They use fewer parameters and simpler

inputs than the crop models, and are less computationally intense.

Regression methods for yield prediction typically use optical satellite

data instead of daily inputs over the entire growth stage. Moreover,

they perform better than process-based crop models when there is a

sufficient amount of training data (Liu et al., 2012). However,

conventional linear regression methods have difficulty capturing the

sophisticated relationships between various features, and may

oversimplify the nonlinear relationships. Machine learning (ML)

and deep learning (DL) algorithms can overcome the drawbacks of

traditional statistical-based models. They disentangle the complicated

relationships among input and target variables by fully training the

model before practical application (LeCun et al., 2015; Ashapure et al.,

2020). As well as having lower computational costs than biophysical

models, DL and ML models can also assess the yield of numerous

crops with greater accuracy and less error than linear regression

approaches. DL methods have made particularly significant progress.

They routinely involve hidden layers that abstract non-linear features

to another dimensional space for linear partition as a black-box, thus

simplifying the relationships among various inputs and outputs

(LeCun et al., 2015; Chu and Yu, 2020). At the same time, these

non-linear models are usually complex and difficult to interpret,

highly dependent on data volume and need test sets to avoid

overfitting. Nevertheless, ML and DL methods show excellent

performance in terms of capturing the spatiotemporal variation of

input data (van Klompenburg et al., 2020; Xu et al., 2021b). Recent

studies have demonstrated the superiority of ML and DL methods for

crop yield prediction. Support vector regression (SVR), random forest

regression (RFR), convolution neural networks (CNNs), and long

short-term memory networks (LSTM) have successfully estimated the

yield of various crop types, considering the effects of climate change at

the pixel or county scale (Gopal and Bhargavi, 2019; Sun et al., 2019;

Khaki et al., 2020). To enhance ML and DL methods, the ensemble

Bayesian model averaging (EBMA) and You Look Only Once version

5 (YOLOv5) which are improved models also applied (Wang et al.,

2022; Fei et al., 2023). Furthermore, deep learning adaptive crop

model (DACM) is proposed considering the spatial heterogeneity of

large areas for yield estimation (Zhu et al., 2022). However, the basic

ML and DL methods for cotton yield estimation are not sufficiently

advanced for direct application to production and practice, especially

in Xinjiang Province, China.

Regression models, including those based on ML and DL, require

various parameters that are closely related to crop growth to narrow

the gap between actual and potential (i.e. predicted) yield. The
frontiersin.org
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application of comprehensive RS and environmental data has

improved crop yield predictions because different datasets contain

diverse information on crop growth and development (Kamir et al.,

2020; Zhang et al., 2020). For example, the green chlorophyll

vegetation index (GCVI) combined with LST and other climatic

indices explained about 70% of the variance in maize yield across

China, with the LSTM showing the best performance (Zhang et al.,

2021). Various environmental data for single and double rice systems

have been integrated with the NDVI and EVI to predict rice yield in

China (Cao et al., 2021). NDVI, Maximum temperatures and

accumulated rainfall data were used to monitor Australian wheat

yield (Kamir et al., 2020). Considering climate or weather conditions

of crops within season, prediction of corn and wheat have been

reached (Johnson, 2014; Jin et al., 2022). While for cotton yield

estimation, most of the studies are limited to the field scale by means

of remote sensing (Ashapure et al., 2020; Meng et al., 2021; Wang

et al., 2021). These study areas are often dedicated to cotton fields in

small areas. When we expand the study regions, spatial heterogeneity

must be considered. Therefore, it is difficult to apply the methods and

processes of the field scale over a large area. However, the optimum

VIs and CVs for cotton yield estimation remain unclear, and the

ability of ML and DL methods to predict early cotton yield also needs

to be further explored.

Here, we used satellite data and environmental parameters to

build regression models for accurate prediction of cotton yield from

2012 to 2019 at the county level in Xinjiang Province. Based on the

extracted cotton field, we calculated VIs and CVs to screen out the

best ones for model establishment. We used one linear (least absolute

shrinkage and selection operator, LASSO), two ML (SVR and RFR),

and one DL (LSTM) model. Our overall workflow is shown in

Figure 1. We sought answers to three questions: (1) which VIs and

CVs can most precisely describe the county-level cotton yield in

Xinjiang Province? (2) which regression model best simulates cotton

yield over a large area? (3) how long before harvest could the yield

be predicted?
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Materials and methods

Study region and cotton yield

This study attempted to estimate cotton yields in Xinjiang

Province (Figure 2), which produces more than 85% of the cotton

grown in China. The study area, between 34°22′N-49°10′N and 73°40′
E-96°23′E, covers approximately 166 million hectares. Xinjiang is

among the districts in China most susceptible to climate change, as it

spans the mid-temperate, south-temperate, and plateau climatic zones

from north to south, with average daily air temperatures ranging from

–28°C to 41°C and annual precipitation of about 150 mm. In Xinjiang,

cotton is commonly planted in spring (April) and harvested in autumn

(September–October; mostly in September). Therefore, we define the

cotton growing season as the period from April to September.

County cotton yields (in kg/ha) from 2012 to 2019 were obtained

from the agricultural statistical yearbook (https://www.

yearbookchina.com). To reduce uncertainty, a preliminary quality

check was used to identify and filter outliers, i.e. data points that were

more than two standard deviations above or below the mean. Because

of the special administrative structure of Xinjiang, the yield data did

not cover the entire province. We selected counties with available

cotton yield as yield records. In total, 355 yield records were used to

define the study area (Figure 2).
Satellite remote sensing and
environmental data

Surface reflectance (SR) images of the cotton cultivation areas for

2012–2019 were acquired from MODIS (MOD09A1) and Sentinel-2

(L2A), and radiometrically calibrated and atmospherically corrected

within the Google Earth Engine (GEE). After removing images with >

10% clouds, we masked the clouds in the remaining valid images using

cloud-free bands. Based on these pre-processed images, 14 satellite VIs,
FIGURE 1

Workflow of county-level cotton yield prediction in this study.
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including the NDVI, EVI, and Universal Normalized Vegetation Index

(UNVI), were computed for yield prediction (Table 1). Annual and

monthly averages of the MOD09A1 VIs were produced for 2012–2019,

while only monthly averages for 2019 were produced for the Sentinel-2

L2A VIs. The annual values obtained by averaging the monthly means

from April to September were used to predict cotton yield in 2012-2019.

The monthly values were used to predict the yield before the cotton

harvest and to explore the temporal pattern of cotton growth. To validate

the feasibility of theMODIS dataset for estimating, the Sentinel-2 data of

2019 were used.

Since precipitation, temperature, and soil all play important roles

in plant growth, they are widely used for estimating crop yield (Kamir

et al., 2020; Schwalbert et al., 2020; Gomez et al., 2021). We collected

historical Climate Hazards Group Infrared Precipitation with Station

data (CHIRPS) for daily precipitation (pre), ERA5 monthly

temperature data [including maximum (Tmax), minimum (Tmin),

and mean (Tmean) values], and TerraClimate data for monthly actual

evapotranspiration (aet), climate water deficit (def), the palmer

drought severity index (pdsi), precipitation accumulation (pr), soil

moisture (soil), vapor pressure (vap), vapor pressure deficit (vpd) and

reference evapotranspiration (pet) as climate parameters for the yield

prediction models (Table 2). Yearly and monthly average values of the

CVs were produced for 2012–2019. The same with VIs, the yearly and

monthly values were for cotton yie ld est imat ion and

prediction, respectively.
Cotton cultivation area

The cotton maps used to mask satellite and climate parameters

during 2012–2019 were from our previous work. Based on high-

spatial-resolution time series images that integrated Sentinel-2 and

Landsat 8 satellite data, we explored the effects of image synthesis, the

spectral index, and spatial texture on cotton identification accuracy,

while also considering agricultural zoning. We applied the LSWI to a
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10-day composite period analysis according to the farming division in

Xinjiang, with texture features added at days 100, 200, and 260 to

distinguish cotton from maize, wheat, and other main crops, and

finally drew a spatial distribution map of cotton in Xinjiang in 2020.

The map was verified with 5061 field samples obtained from ground

surveys, with 3082, 466, 154, 341, and 1018 samples for cotton, maize,

wheat, other crops, and non-farm land, respectively. The overall

accuracy (OA) of cotton identification reached 0.8851, with a kappa

coefficient of 0.8294, user precision of 0.9246, and producer precision

of 0.9677. The specific spatial distribution of cotton cultivation areas

shows in Figure 2
Assessment of variable importance

To identify the most important yield predictors and discard

unimportant variables, the relative importance of each input

variable was calculated using the Boruta algorithm. It is essentially

the same as the Random Forest Importance. They both were

originated from the Random Forest but expressed in slightly

different forms. The Boruta algorithm is a wrapper built around the

random forest classification algorithm implemented in the R package

randomForest in 2010 (Liaw and Wiener, 2002; Kursa and Rudnicki,

2010). It has also been introduced into Python, and the current Boruta

version of Python is BorutaPy (https://github.com/scikit-learn-

contrib/boruta_py). Boruta can iteratively remove less important

features while running RFR. Based on the original feature, a

shadow feature is derived via a shuffling process that extends the

feature matrix. Then, the z-score is computed and the maximum

value is used as the threshold. During each random forest run,

original features with importance values exceeding the threshold are

marked as important, while those with importance values below the

threshold are marked as unimportant. In subsequent runs, the

important features are included and unimportant ones are

removed. When every original feature is marked as important or
FIGURE 2

The study areas, cotton cultivation area and counties with recorded yield in Xinjiang Province in 2019. yields are from the Statistical Yearbook.
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unimportant, or the random forest runs reach a previously defined

limit, the algorithm ends.
Prediction models

We first normalized the input variables using the z-score method,

and then built regression models to determine their impact on yield.

Four regression models were used to estimate cotton yield at the

county level, i.e. a LASSO linear regression model, two ML models

(SVR and RFR), and a DL model (LSTM), and their performances
Frontiers in Plant Science frontiersin.05
were compared. Due to insufficient valid data in the yearbook, 10-fold

cross-validation, which can make full use of limited data, was applied.

In the 10-fold cross-validation process, the dataset is evenly divided

into 10 copies and each sample is labelled from 1-10. The cross-

validation was repeated 10 times, once for each label as a test. During

each run, the data with the same label are deemed as testing sets while

the others are for training. For each prediction model, the averaged

R2, root mean square error (RMSE) and relative RMSE (rRMSE) of 10

runs were used in the training and testing datasets for evaluating the

performance. For within-season prediction result, the averaged R2,

RMSE, rRMSE of 10 testing datasets were used.
TABLE 1 Vegetation indices (VI) and their calculations.

Vegetation Index Formulation Reference

Normalized Difference Vegetation Index (NDVI) NDVI =
Nir − Red
Nir + Red

(Rouse, 1974)

Enhanced Vegetation Index (EVI) EVI =
2:5� (Nir − Red)

Nir + 6� Red − 7:5� Blue + 1
(Huete et al., 2002)

Green NDVI (gNDVI) gNDVI =
Nir − Green
Nir + Green

(Kaufman and Merzlyak, 1996)

Triangular Chlorophyll Absorption Ratio Index (TVI) TVI=60×Nir−Green−100×(Red−Green) (Broge and Leblanc, 2001)

Land Surface Water Index (LSWI) LSWI =
Nir − Swir1
Nir + Swir1

(Tucker, 1979)

Green Index (GI) GI =
Green
Red

(Gitelson et al., 2003a)

Near-Infrared Reflectance of Vegetation (NIRv) NIRV = Nir � Nir − Red
Nir + Red

(Badgley et al., 2017)

Ratio Vegetation Index (RVI) RVI =
Nir
Red

(Jordan., 1969)

Difference Vegetation Index (DVI) DVI=Nir−Red (Tucker, 1979)

Normalized Difference Built-up Index (NDBI) NDBI =
Swir1 − Nir
Swir1 + Nir

(Zha et al., 2003)

Soil-Adjusted Vegetation Index (SAVI) SAVI =
1:5� (Nir − Red)
Nir + 0:5 + Red

(Huete, 1988)

Atmospherically Resistant Vegetation Index (ARVI) ARVI =
Nir − (2� Red − Blue)
Nir + (2� Red − Blue)

(Kaufman and Tanre, 1992)

Green Chlorophyll Index (CIgreen) CIgreen =
Nir

Green
− 1 (Gitelson et al., 2003b)

Universal Normalized Vegetation Index (UNVI) UNVI =
Cv − 0:1� Cs − C4

Cv + Cv + Cs

(Zhang et al., 2019)
TABLE 2 Summary of the dataset used in this study.

Category Variables Spatial
Resolution

Temporal
Resolution

Time
Coverage Source

Crop yield Cotton yield
Statistical
division

Yearly 2012-2019 https://www.yearbookchina.com

Satellite
data

MODIS VIs 500 m 8-day 2012-2019
https://lpdaac.usgs.gov https://doi.org/10.5067/MODIS/MOD09A1.
006

Sentinel-2 VIs 20 m 5-day 2019 https://sentinel.esa.int

Climate
data

Pre 0.05° Daily 2012-2019 CHIRPS (Funk et al., 2015)

Tmax, Tmin, Tmean 10 km Monthly 2012-2019 ERA5 (Horanyi, 2017; Hersbach et al., 2020)

aet, def, pdsi, pet, pr, soil, vap,
vpd

4 km Monthly 2012-2019 TerraClimate (Abatzoglou et al., 2018)
org

https://www.yearbookchina.com
https://lpdaac.usgs.gov
https://doi.org/10.5067/MODIS/MOD09A1.006
https://doi.org/10.5067/MODIS/MOD09A1.006
https://sentinel.esa.int
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R2 = 1 −o
n
i=1 yact,i − ypre,i
� �2

on
i=1 yact,i − yave
� �2   (1)

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1 yact,i − ypre,i
� �2r

(2)

rRMSE =  
RMSE
yave

  (3)

where yact is the actual true yield,ypre is the model predictive yield,

yave is the averageyact value, andn is the sample size. Details of the four

models follow: LASSO regression is a shrinkage method characterized

by variable selection and regularization that fits a generalized linear

model (Tibshirani, 2011). The loss function can reduce the weight of

input features to zero, which helps avoid overfitting. The LASSO uses

the L1-regularization method to minimize the weight coefficient w in

the cost function [equation (4)]. The L1-penalty is the absolute value,

which can’t get derivation directly. Therefore, the gradient descent

method is used to approach the optimal solution gradually by

iteratively updating the values of the weight coefficients along one

of the coordinate axes. We ran the LASSO model from the

linear_model package and let the parameter alpha to be optimized

through the GridSearchCV function from the sklearn package in

Python 3.8.

Cost wð Þ =o
N

i=1
yi − wTxi
� �2

+lw (4)

where yi is the response value, xi is the standardized predictors,l
is the penalty coefficient,w is the vector of weight coefficient, andN is

the sample size.

SVR is a variant of a support vector machine that uses kernels to

map input data in higher dimensional feature space, such that we can

identify relationships between input and output variables (Drucker

et al., 1996; Hsu and Lin, 2002). SVR uses hyperplanes that can

minimize the error arising from training samples and make all data

have the shortest distance from the plane [equation (5)]. This is a

convex quadratic programming problem that can be solved by the

Lagrange method. Of the various kernel functions, we used the radial

basis function (RBF) instead of linear, sigmoid, or polynomial kernels
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due to its greater accuracy in terms of localized and finite responses.

We ran the SVR from the svm package and tuned the parameter C,

epsilon, and gamma through the GridSearchCV function from the

sklearn package in Python 3.8.

min  
1
2
w2   s : t :     yi − wTxi + b

� �
≤ ϵ,   i = 1,   2,  …,   l (5)

where (w, b) is the hyperplane, (xi, yi) is the sample point, ϵ is the

tolerance deviation, andl is the sample size.

RFR is a bagging ensemble learning method for model training

and prediction that integrates numerous decision trees lying on a

collection of random variables sampled independently; the trees are

then aggregated to produce a forest. Each decision tree yields a

prediction from the samples and features drawn, and by combining

the results of all the trees and taking the average, the regression

prediction for the whole forest is obtained. By calculating the

arithmetic mean, RFR can produce accurate predictions without a

high computational burden (Breiman, 2001). The RFR ran in the

ensemble package and the parameters n_estimators, max_depth, and

max_features were tuned through the RandomizedSearchCV function

from the sklearn.ensemble package in Python 3.8.

LSTM is a special type of recurrent neural network (RNN) that can

solve the problems of gradient disappearance and explosion and learn

time-dependent information to understand crop growth processes

(Hochreiter and Schmidhuber, 1997). These models include an input

layer, one or more LSTM layers (consisting of LSTM cells), and an

output layer. Figure 3 shows the architecture of the LSTMmodel. Each

LSTM cell contains forget, input, and output gates to determine which

information to forget, retain, and output in the LSTM layers. Through

the activation (s) and tanh functions, the hidden neurons (ht) and

internal memory cells (Ct) renewed continuously, contributing to the

memory ability of the network. We ran the LSTM model in MATLAB

2020, which contains the lstmLayer structure. The hyper-parameters

were optimised by an optimiseParameters function that is created by

ourselves to compare the accuracy of different parameter combinations

and select the highest precision one. In this study, the networks were

run for 60 epochs; the batch size was 10 in the learn rate drop period

and the factors were 100 and 0.02. Table 3 shows the specific

parameters of the four models.
FIGURE 3

The architecture of long short-term memory (LSTM) model. The VIs variables refer to GI, RVI, NDVI. The CVs variables are soil, pet and vap.
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Results

Most important variables for estimating
cotton yield

The ability of the 14 typical VIs listed in Table 1 to predict cotton

yield was evaluated using LASSO, SVR, RFR, and LSTM approaches.

According to the relative importance of the variables, as illustrated in

Figure 4, the green index (GI), ratio vegetation index (RVI), and

NDVI contributed most to predictions of cotton yield in the study

area, with importance values > 0.5; these were followed by CIgreen,

gNDVI, and ARVI, with importance values of 0.4–0.5. The

importance of the remaining variables did not exceed 0.4,

indicating that cotton yield was little affected by them.

The three most important climate features for predicting yield were

soil moisture, pet, and vap, with relative importance values of 0.47, 0.44,

and0.43, respectively.Theothervariableshad importancevalues<0.4.The

least significant climate feature was pdsi, with an importance value< 0.1.
Performance of satellite and climate data for
cotton yield estimation

Table 4 summarizes the yield estimation performance (mean

values of 10-fold for training and testing results) achieved by
Frontiers in Plant Science 07
applying the four regression algorithms using various parameters

from 2012 to 2019. The important parameters were divided into VIs

groups andVIs plus CVs groups. In experiments using both groups, the

LSTM model outperformed the other models, followed by the two ML

models (RFR and SVR). The linear regression model based on LASSO

performed the worst, with non-linear relationships seen among the

different predictors and cotton yield. Only the LSTMmethod had an R2

> 0.6, RMSE< 200 kg/ha and rRMSE< 11%. The two ML methods

explained only 30-50% of the variance in cotton yield, with SVR

performing slightly worse than RFR. We found that, with combined

use of satellite and climate data as input variables, greater accuracy was

achieved compared with the individual satellite data; R2 increased by

10%, and RMSE decreased by > 10 kg/ha, indicating that climate data

provide complementary information that merits consideration. Our

results suggest that the two datasets explain 66% and 76% of the cotton

yield variability when using LSTM, respectively.
Within-season predicting performance

Using themost suitable variables and algorithms for predicting yearly

yield, the seasonal cycles were examined (Figure 5). Generally, the values

of all VIs (bothMODIS and Sentinel-2 derived) increased gradually from

April to July and the mid-summer peak during the cotton-blooming

season (July–August), but peaked at different times between the two

satellite systems.The threeVIspeaked in July in theMODISsystem,while

in the Sentinel-2 system, onlyGI peaked in July and the seasonal cycles of

RVI andNDVI lagged by 1month.However, the difference between peak

timingswasverysmall. The satellite-derivedVIs for Julywereveryclose to

those for August. The GI and RVI derived from MODIS were clearly

distinct from July to August, and dropped from 1 to 0.9. The NDVI

derived fromMODIS, andall threeVIsderived fromSentinel-2, remained

high, as in July. FromAugust to September, theGI andNDVIdeclined the

mostand least rapidly, respectively. SinceGI is themost importantVIs,we

explored the spatiotemporal pattern for Manas County (a large cotton
TABLE 3 The detail list of parameters used for the regression models.

Model Parameters

LASSO alpha = 0.1

SVR C = 5000, gamma = 10, epsilon = 0.01

RFR n_estimators = 120, max_depth = 12, max_features = 4

LSTM
miniBatchSize = 10, MaxEpochs = 60, LearnRateDropPreriod = 100,
LearnRateDropFactor = 0.02
A B

FIGURE 4

Relative importance of county-level remote sensing (A) and climate (B) variables on cotton yields during 2012-2019. Note: the aet, def, pdsi, pr, vap, vpd,
pet, pre, soil, Tmax, Tmin, and Tmean represent actual evapotranspiration (mm), climate water deficit (mm), the palmer drought severity index,
precipitation accumulation (mm), vapor pressure (kPa), vapor pressure deficit (kPa), reference evapotranspiration (mm), daily precipitation (mm), soil
moisture (mm), monthly maximum, minimum and mean temperature (°C), respectively.
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growing area commonly used for research) in 2019 (Figure 6), verifying

the reality of the whole county.

Of the CVs, pet and vap increased from April to July, peaking in

July and August, respectively. The VIs had similar seasonal cycles,

although pet decreased dramatically from the peak and reached its

lowest value in September. The monthly variation in soil moisture

had a different pattern from all other parameters examined. From the

beginning of April to the end of September, it declined gradually from

1 to 0. There were no obvious differences among the green-up stage,

blooming period, and cotton boll opening stage.

Table 4 indicates that the LSTM model best predicted the yearly

cotton yield at the county level. Hence, we used LSTM for the final

regression model to analyze the within-season predicting performance

for cotton in different months. To validate the MODIS satellite data,

which has a spatial resolution of 500m andmay exceed the cotton field

scale, we used Sentinel-2 data with a spatial resolution of 20 m to

predict the yield in 2019, after training the model using data for 2012–

2018. Figure 7 shows the time series of the 10-fold averaged R2, RMSE

and rRMSE, achieved with the LSTMmethod fromApril to September.
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The model showed poor performance during the early seedling and

germination stages. As the cotton grew and developed, the information

derived from the satellite data becamemore important. The estimation

accuracy also increased gradually, peaking in July before starting to

drop slightly in August. In September, when the cotton bolls began to

open, the prediction accuracy decreased to a level close to that in June.

The addition of CVs improved the ability of VIs to predict within-

season production. From July to September R2 increased by 10%,

RMSE and rRMSE decreased by 40 kg/ha and 3.25%, respectively; these

values were much better compared with those for the green-up stage.

Compared with the MODIS data, the Sentinel-2 data better predicted

the cotton yield every month. After adding CVs to VIs as inputs,

MODIS had essentially the same accuracy as Sentinel-2, revealing the

feasibility of using MODIS data for county-level cotton yield

prediction. Moreover, the 2019 validation experiment showed that

MODIS can satisfactorily predict the cotton yield about 2 months

before harvest (R2 = 0.65, RMSE = 220 kg/ha, rRMSE = 15.97% in July;

R2 = 0.62, RMSE = 244 kg/ha, rRMSE = 17.39% in August). The

Sentinel-2 data had slightly greater accuracy.
TABLE 4 The training and testing model performances (R2, RMSE and rRMSE in the average of 10-fold cross-validation) at county-level from 2012 to 2019 .

Model Variables Training R2 Training RMSE (kg/ha) Training rRMSE Testing R2 Testing RMSE (kg/ha) Testing rRMSE

LASSO VIs 0.25 223 13.94% 0.23 229 15.42%

VIs+CVs 0.31 216 13.31% 0.27 207 13.74%

SVR VIs 0.85 95 5.51% 0.35 224 12.93%

VIs+CVs 0.95 85 4.94% 0.38 218 12.60%

RFR VIs 0.85 83 5.03% 0.37 215 12.86%

VIs+CVs 0.96 78 4.74% 0.47 208 12.50%

LSTM VIs 0.98 65 3.60% 0.66 182 10.53%

VIs+CVs 0.99 23 1.34% 0.76 150 8.67%
A B

D EC

FIGURE 5

Normalized monthly means of the satellite (A, C, D) and climate (B, E) variables for the cotton study area for 2012-2018 (top row) and 2019 (bottom
row), with raw values normalized to 0-1 to match their minimum and maximum values.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1048479
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lang et al. 10.3389/fpls.2022.1048479
Discussion

The most suitable parameters for estimating
Xinjiang cotton yield

Our first experiment examined which satellite data and CVs are

most important for cotton yield estimation. After screening 14 VIs

and 12 CVs, 3 of each showed clear superiority over the other

parameters. The VIs GI, RVI and NDVI that with importance

values > 0.5, and the CVs soil moisture, pet, and vap that with

importance values > 0.4, performed best. They are significantly more

important than the later ones. Like most plants, the reflectance for

cotton is highest in the near-infrared band, with relatively less

reflectance seen in the green band and an absorption valley

occurring in the red band. VIs are an efficient way to measure crop

growth and, ultimately, production (Meng et al., 2017; Ren et al.,

2018). GI is defined as the ratio of the green and red bands. It is

mainly influenced by the canopy chlorophyll concentration, and best

explained the variability in cotton yield in this study. RVI is the ratio

of the near-infrared and red bands. It is affected by vegetation

structure and canopy nitrogen content, and is sensitive to

atmospheric correction of the red band. Previous studies showed

that NDVI is effective for estimating maize, rice, and soybean yield
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(Lambert et al., 2018; Cao et al., 2021). However, it often reaches a

saturation point and is sensitive to the soil background, which may

explain why it did not outperform GI and RVI in this study. Among

the VIs with importance values exceeding 0.5, the red band was the

most important. The first five VIs utilized only the information in the

green, red, and near-infrared bands, illustrating their utility for

estimating cotton yield. It’s due to the presence of chlorophyll,

green plants strongly absorb radiation energy in the red band (>

90%) and form a green reflective peak in the green band (10% - 20%).

Therefore, we think the importance of chlorophyll in cotton growth

can’t be ignored. On adding the blue and short-wave infrared bands,

the effects of the other VIs decreased gradually. DVI and TVI were

unable to eliminate sensor and atmospheric effects. NIRv is multiplied

by the near-infrared band and NDVI, and has been successfully

applied for crop monitoring; however, it may eliminate certain types

of canopy structure information (Zeng et al. 2022). NIRv did not

estimate cotton yield well, suggesting that structure information

cannot be ignored when making yield predictions. Overall, the VIs

chosen herein to predict the Xinjiang cotton yield were characterized

by high correlations with crop growth conditions in the canopy

structure and the chlorophyll contents.

Among the CVs, soil moisture, pet, and vap best reflected the

yield variation according to environmental factors. All three of these
A B

D E F

C

FIGURE 6

The spatiotemporal distributions of GI in Manas County in 2019, (A–F) refer to the different growth periods of cotton.
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CVs are related to water, demonstrating that moisture greatly affects

cotton yield. This is in line with the growth characteristics of cotton.

In a field survey, we observed that cotton farmers used drip irrigation

to overcome water shortages caused by insufficient rainfall. For most

crops, precipitation and temperature are vital for yield prediction.

However, the three CVs that we selected showed that precipitation

was slightly more important than temperature. Based on a literature

review, this discrepancy has two antecedents. First, the geographical

vastness of our study area and great differences in altitude and terrain

complexity lead to uneven rainfall and large differences in

temperature, pressure, and soil type. Second, unlike precipitation

and temperature, which are single indicators, soil moisture, pet, and

vap are composite variables calculated from the former two variables.

For growth, cotton must absorb water from soil and breathe via leaf

evapotranspiration. Therefore, combining CVs with conventional

satellite RS data can provide complementary information, thereby

improving the accuracy of cotton yield estimation.
Potential of the LSTM network for
yield prediction

The results showed that the four statistical approaches performed

differently. The two ML methods (SVR and RFR) and DL method
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(LSTM) performed better than the linear regression model (LASSO),

consistent with previous studies (Gopal and Bhargavi, 2019; Zhang et al.,

2021; Jeong et al., 2022). The reason for this may be that the LASSO

algorithm lacks the ability to identify potential nonlinear and

complicated relationships among input variables, which is the main

strength of the other three models. The two ML methods exhibited

average performance; SVR could not capture the relationship between

yield and the other variables as well as RFR. We attributed this to an

algorithm difference; RFR has excellent robust generalization ability,

while SVR is limited by the quadratic programming problem. The

limited sample size could be another reason why the ML models did

not perform as well as expected, although we used 10-fold cross

validation. LSTM can efficiently and effectively extract key temporal

features hidden within input variables without the need for thousands of

samples. Due to its RNN structure, LSTM is a useful DL approach for

predicting crop yield. Furthermore, other studies have shown that RS

data and climate features can reveal the complex reasons for yield

variation (Cai et al., 2019; Kim et al., 2019; Cao et al., 2021). Therefore,

we integrated satellite RS data and CVs to predict cotton yield at the

county level. Compared with satellite VIs alone, all models performed

better after the addition of CVs. This suggests that environmental data

supplies additional information that RS data are unable to provide, and

verified the effectiveness of combining the two types of data for cotton

yield estimation. On the other hand, it seems that our results have worse
A B

D

E F

C

FIGURE 7

Testing performance [R2 (A, B), RMSE (C, D) and rRMSE (E, F)] of cotton yield prediction only with remote sensing variables and combined with climate
variables using the LSTM model for the whole growing season during 2012-2018 and 2019, respectively.
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performances than other studies (Ashapure et al., 2020; Jeong et al.,

2022). Meanwhile, some yield prediction performances are even worse

than ours (Zhang et al., 2021; Li et al., 2022b). Through comprehensive

analysis, we attribute the reasons for poor results to the following two

parts. The first one is the study scale. Comparedwith the county level, the

pixel or field scale that can capture more details without the influence of

complex background is muchmore elaborate. The second is the kinds of

data sources. Rather thanMODIS satellite data only, the climate data, soil

property, geography, and topography can provide extra information.The

more types of data sources, the higher the accuracy of yield estimation

(Zhang et al., 2020; Cheng et al., 2022; Li et al., 2022b). However, apart

from satellite and climate data, we have no access to other data for our

study region, resulting in relatively poor results. All in all, our results

demonstrate the advantage of integrating satellite and climate data for

the prediction of cotton yield.

Finally, since LSTM outperformed all of the other algorithms, we

explored how early it can predict the cotton yield and validated this using

Sentinel-2 satellite data for 2019. Exploring the within-season

performance of the selected variables, we also found phenological

changes in Xinjiang cotton. After planting cotton seeds in April, we

could predict cotton yield increasingly accurately until July, with the

accuracy then decreasing in August and September. In rice and wheat

crops, prediction accuracy is stable from July to harvest. Why does this

discrepancy arise? Regarding the monthly changes of the selected VIs

shown in Figure 5, we found the same trend as for the cotton estimation

accuracy, which is in accordance with the process of cotton growth, but

not that of rice andwheat. As cotton grows, the leaves become thicker and

less soil is exposed from April to July. The bolls begin to open in August,

which affects the satellite VIs directly; these start to decrease in August,

thereby reducing the connection between the green VIs and yield.

Furthermore, given the possibility of errors accumulating due to the

low spatial resolution of theMODIS sensors, we also used Sentinel-2 data

to estimate the cotton yield. The patterns were similar in both cases,

demonstrating that MODIS satellite data can predict county-level yield

accurately. The three CVs also varied with cotton growth, with pet and

vap changing like the VIs, while soil moisture progressively decreased.

Overall, the cotton yield estimate was most accurate 2 months before

harvest. The accuracy of county-level cotton yield estimates did not

increase with time after planting, although many factors influence the

development and production of cotton in the full growth stage. Early yield

estimation plays an important role in precision agriculture. It can assist

farmerswithfieldmanagement before harvest, thus helping them to avoid

further losses, and also helps the Department of Agriculture make

marketing decisions pertaining to foods to maintain economic balance.
Uncertainties and prospects

This study found that a combination of satellite and climate data can

estimate cotton yield at the county level more accurately through the

application of different approaches using the GEE and python platforms.

LSTM showed the best performance. We successfully predicted the

cotton yield 2 months before harvest using the LSTM model. However,

like many other studies, ours had a few uncertainties and limitations.

First, our yield estimation did not include all counties in Xinjiang

Province. Xinjiang consists not only of counties, but also of
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“construction crops”. Moreover, these regions sometimes intersect,

which makes it difficult for the national statistical office to collect yield

data by county. Hence, after removing invalid data, production datawere

available only for part of Xinjiang. Second, our cotton distribution areas

remained static in the period 2012–2019, but in actuality they differed

over time. The cotton crop map for 2020 was used for the entire study

period, which probably led to errors when generating VIs and CVs (as

the land use varied from year to year between cotton and other fields).

Future studies should consider updating the cotton maps annually to

reduce errors in cotton yield estimation. In addition, more data types

should be considered to predict cotton yield, by making full use of

complementary information (Clevers and vanLeeuwen, 1996; Guan

et al., 2017; Franz et al., 2020; Zhang et al., 2020). We used common

VIs and CVs, and did not consider other data types. Solar-induced

chlorophyll fluorescence (SIF) and synthetic aperture radar (SAR) data

can also contribute to yield estimation. SIF is good at capturing the

photosynthetic activity of plants (Duveiller and Cescatti, 2016; Kang

et al., 2022), while SARmicrowave data can assess plant structure due to

its multi-polarization, multi-perspective scattering characteristics

(Setiyono et al., 2019; Wu et al., 2020). Furthermore, the specific

attributes of bolls compared with other crops and the spatial

distribution characteristics of small and scattered cotton fields in

Xinjiang should be considered. The domain knowledge-aware deep

networks that take into account the enormous importance of small

categories may offer a new way to conquer this problem (Li et al., 2022a).

Finally, the spatial resolution of our major datasets was insufficient to

reduce most of the errors affecting county-level predictions of cotton

yield at the local scale; the satellite SR data and CVs used are only

available at low spatial resolution, and the mixed pixels cannot

distinguish cotton from other features, which reduces the accuracy of

cotton yield prediction (Hunt et al., 2019; Meng et al., 2019). In the

future, wemay combine satellite data fromdifferent sensorswith a higher

temporal and spatial resolution to better extract the unique traits of

cotton and improve cotton yield estimation accuracy.
Conclusions

In this study, we pre-processed satellite data and CVs on the GEE

platform and then identified the most important variables for cotton

yield prediction at the county level in Xinjiang, using one linear

regression (LASSO) and two ML (SVR and RFR) models, and one DL

model (LSTM), with different combinations of input variables. The

results showed that LSTM performed best, with an R2 of 0.76, RMSE

of 150 kg/ha and rRMSE of 8.67% after an average of 10 runs. The

performance was better after integrating RS and climate features. We

used the LSTM algorithm, with VIs and CVs incorporated, to monitor

cotton cropland during its growth and development. Finally, the

within-season yield prediction suggested that cotton yield could be

predicted reasonably accurately in July, 2 months before harvest, with

an R2 of 0.65, RMSE of 220 kg/ha and rRMSE of 15.97%. The model

using high-spatial-resolution Sentinel-2 data performed slightly better

than the coarse MODIS data for yield predictions for 2019. The

MODIS and Sentinel-2 data had the same monthly prediction

accuracy, indicating that MODIS satellite data can satisfactorily

estimate cotton yield in advance, thus facilitating cotton
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management decisions. To remove redundant features, the Boruta

algorithm was used to determine which VIs and CVs were most

sensitive to the county-level cotton yield in Xinjiang; this identified

three VIs and three CVs. The VIs GI, RVI, and NDVI contain green,

red and near-infrared bands, indicating that information on cotton

canopy structure and chlorophyll contents can be useful for yield

estimation. Because cotton fields are scattered throughout Xinjiang,

only parts of each county are used to grow cotton, so the problem of

mixed pixels must be considered. The most important CVs in this

study were soil moisture, pet, and vap, which reflect moisture. Overall,

MODIS satellite data integrated with CVs based on the LSTM model

were superior for county-level cotton yield prediction in Xinjiang. In

the future, the VIs characterizing canopy structure and chlorophyll

and CVs related to moisture can be further investigated for cotton

growth, and the LSTM method can be widely applied in crop yield

prediction over large areas.
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