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The chronic inflammatory disease ankylosing spondylitis (AS) is marked by back

discomfort, spinal ankylosis, and extra-articular symptoms. In AS, inflammation

is responsible for both pain and spinal ankylosis. However, the processes that

sustain chronic inflammation remain unknown. Despite the years of research

conducted to decipher the intricacy of AS, little progress has been made in

identifying the signaling events that lead to the development of this disease. T

cells, an immune cell type that initiates and regulates the body’s response to

infection, have been established to substantially impact the development of AS.

T lymphocytes are regarded as a crucial part of adaptive immunity for the

control of the immune system. A highly coordinated interaction involving

antigen-presenting cells (APCs) and T cells that regulate T cell activation

constitutes an immunological synapse (IS). This first phase leads to the

controlled trafficking of receptors and signaling mediators involved in folding

endosomes to the cellular interface, which allows the transfer of information

from T cells to APCs through IS formation. Discrimination of self and nonself

antigen is somatically learned in adaptive immunity. In an autoimmune

condition such as AS, there is a disturbance of self/nonself antigen

discrimination; available findings imply that the IS plays a preeminent role in

the adaptive immune response. In this paper, we provide insights into the

genesis of AS by evaluating recent developments in the function of vesicular

trafficking in IS formation and the targeted release of exosomes enriched

microRNAs (miRNA) at the synaptic region in T cells.
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Introduction

Spondyloarthritis (SpA) is a constellation of rheumatic disorders

with comparable clinicopathological features (1). Ankylosing

spondylitis (AS), a form of SpA, is an autoimmune disease

involving the joints of the spine, the sacroiliac joints (SIJs), and the

surrounding tendons and ligaments. In the absence of treatment,

inflammation may lead to neo-ossification, which fuses the spine

and restricts spinal movement (2, 3). Common clinical

manifestations of AS include back discomfort, increased spinal

stiffness, and inflammation of the hips, shoulders, and peripheral

joints. Extra-articular manifestations (EAM) include acute anterior

uveitis and inflammatory bowel disease (IBD). The objectives of

treating AS are to alleviate symptoms, lessen functional limitations,

maintain normal posture, and improve and maintain spinal

flexibility. Nonsteroidal anti-inflammatory drugs (NSAIDs) and

TNF inhibitors (TNFis) are the cornerstones of pharmaceutical

therapy. Sulfasalazine, methotrexate, and non-TNFi biologics

(secukinumab) are additional therapies. In addition, tofacitinib and

filgotinib, two oral small-molecule JAK inhibitors, show promise in

clinical trials and may soon be approved for AS (1, 4–7) (Figure 1).
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The role of HLA-B27 in AS

The development of AS is considered to occur from a

complicated interaction between genetic predisposition and

environmental circumstances (1, 8). Despite recent

breakthroughs in understanding, the cause of AS remains

poorly understood. According to research, other risk variables,

including genetic background, immune response, microbiological

triggers, and hormonal effects, have been linked to AS. Previously,

genetic markers for prevalent susceptibility genes associated with

immune regulation, including immunological synapse and T cell

activation, have been studied. It is believed that AS is a hereditary

disease, with HLA-B27 being the primary genetic risk factor (9).

The Assessment of Spondyloarthritis International Society

(ASAS) group’s recent suggestion of categorization criteria for

patients without definite radiographic sacroiliitis is the result of

updated data (10, 11). The criteria were based on two attributes:

“imaging perspective,” patients with positive sacroiliitis on

imaging (radiograph or MRI) and at least one SpA symptom,

and “clinical characteristic,” HLA B27-positive individuals with at

least two SpA symptoms (10–12).
FIGURE 1

The physical manifestations of AS and a guide to diagnose and treatment. In AS, inflammation mostly affects axial joints, entheses, and extra-
articular systems, including the uveal tract, digestive tract, mucocutaneous tissue, and heart. HLA-B27 is closely linked to spondyloarthropathies,
particularly AS. In order to diagnose AS, at least one clinical indicator and one radiologic indicator are necessary. Bone scanning and magnetic
resonance imaging (MRI) may help in the early detection of inflammation of the axial skeleton. Effective therapies for AS include local or
systemic corticosteroid therapy, exercise, NSAIDs, DMARDs, methotrexate, azathioprine, anti-IL-17A monoclonal antibodies, TNF- antagonists,
and MSCs therapy. Image was created with BioRender.com.
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Genome-wide association research has shown an abundance

of additional loci (13), including ERAP1 and interleukin-23

receptor (IL-23R). HLA-B27 poses the highest risk and is

identified in 90% of AS patients. However, only 5% of

individuals with the HLA-B27 gene develop AS, suggesting

that epigenetic mechanisms may be at play. AS may thus be a

great example of a polygenic disease affected by epigenetics (14).

Enhanced expression of HLA-B27 on APCs and CD4+ T cells is

required for the development of AS, according to results from

HLA-B27/b2 microglobulin transgenic (TG) rats (15). The

conventional heterotrimeric MHC class I molecule consists of

three non-covalently attached polypeptides: a highly

polymorphic heavy chain (HC), a b2-microglobulin (b2m)

light chain, and an 8- to 10-residue-long oligopeptide. In the

absence of b2m, HCs may misfold and undergo endoplasmic

reticulum (ER)-associated degradation. Misfolding and the

production of dimers and multimers are common occurrences

for HLA-B27. The three unique forms of dimeric MHC-I

structures include cell surface HLA-B27 homodimers,

intracellular MHC-I dimers, and exosomal MHC-I dimers.

Exosomes are multivesicular bodies (MVBs) formed when

endosomes proliferate inwards. A portion of these MVBs will

fuse with the plasma membrane, therefore releasing intracellular

vesicles into the extracellular environment. Different MHC-I

dimers have been found on the surfaces of numerous cell types

that produce exosomes (16, 17). It has been shown that the DCs

of HLA-B27 TG rats have defective immunological synapse

formation, which may be due to a number of physiological

factors (18). Self-reactive T cells with poor immunological

synapse formation may be able to circumvent negative

selection in the thymus, where self-antigen expression is

exceedingly low, owing to the extremely low expression of self-

antigens. Numerous self- and foreign-antigen peptides have

been analyzed and sequenced in the past, but there is no

evidence that any of these peptides are cross-reactive (19). In

addition, Taurog et al. observed that clinical symptoms

manifested in HLA-B27/Hu2m transgenic rats lacking

functional CD8+ T cells (20, 21). Creating a disease model for

AS in which HLA-B27 exposes a peptide to CD8+ T cells is

challenging (21, 22). In 2012, Glatigny et al. studied the

molecular pathways underlying the diminished ability of

dendritic cells (DCs) from HLA-B27 transgenic mice to form

conjugates with naive T cells (23). They analyzed the

interactions between CD4+ T cells and DCs generated by

HLA-B27 transgenics (24). In the HLA-B27-transgenic rat

model of spondyloarthropathy, researchers showed that

mature HLA-B27 molecules expressed by DCs restrict the

establishment of an antigen-independent immunologic synapse

between naive CD4+ T cells and DCs by preventing the

interaction of costimulatory molecules (24, 25). This process

may impact the production and maintenance of Treg cells and

contribute to the proliferation of pathogenic CD4+ T cells (26).
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Immunological synapse formation

By regulating leukocyte chemotaxis, migration, and T cell

activation and by secreting exosomes to create the immune

response, the IS contributes to a greater biological purpose (27).

Within the immunological synapse, T cells interact with MHC-

presented peptides on antigen-presenting cells, which are crucial

biochemical interactions for regulating the immune response

(28). If the IS is dysregulated and its connections are disturbed,

aberrant immune activation may occur (29). Critical processes in

immunological synapses are triggered by signaling in distinct

micro-clusters of T cell antigen receptors and are essential for T

cell development and effector functions. T cells commit to

proliferating after interaction with APCs carrying antigens.

Once committed, T cells proliferate quickly and, under the

influence of lineage-specific cytokines, develop into several

subsets of T helper cells (30–32). T cells establish several

contacts of varying length and quality with APC throughout

their scanning process. Some immunological synapses may only

exist for a few minutes (33). When a T cell recognizes an APC

containing homologous peptides, it stops its migration and

forms an immunological synapse. During different phases of T

cell activation, the actin cytoskeleton under the plasma

membrane may link integrins, TCRs, and chemokine

receptors, establishing a chemical and physical network

that promotes cell-cell adhesion and enhances signal

transmission (34). Cell adhesion molecules play a significant

role in enabling these processes. Integrins are crucial modulators

of immune cell activity during homeostasis and inflammation by

mediating immune cell trafficking into tissues and developing

immunological synapses (33). As part of the routine process of

monitoring in lymph nodes and other organs, T cells form

adhesions with APCs. The majority of these adhesions are

caused by the binding of integrins to ligands on the surface of

APCs. The degree of membrane contacts and intracellular

signals that regulate the integrin’s conformation dictate the

strength of integrin interactions.

T cells in the immunological synapse need prolonged

stimulation to commit to proliferating, and they commit to

proliferating after interacting with APCs carrying antigens. The

cells that receive prolonged TCR activation inside a developing

clone become polarized effectors, whereas the other cells remain

nonpolarized. In response to specific cytokines, T cells

proliferate rapidly and differentiate into several subsets of T

helper cells. The cells travel to inflamed organs of the periphery,

where they conduct effector activities and survive as a separate

but smaller population of “effector memory” cells. Nonpolarized

T cells that move to lymph nodes and react promptly to

antigenic stimulation will proliferate after a brief TCR

activation that is sufficient to induce commitment.

On the other hand, a persistent TCR activation in the

presence of cytokines leads T cells to differentiate and move to
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1102405
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tavasolian et al. 10.3389/fimmu.2022.1102405
inflamed peripheral tissues. Exosomes are secreted by immune

cells and may govern the interplay between innate and adaptive

immunity by influencing the link between them. Exosomes may

be ingested by target cells, often by phagocytosis, and then fuse

with their membranes to integrate membrane fragments into the

host cell membrane and efficiently transport their cargo to the

cytosol. Exosome-derived miRNAs are also recognized as crucial

regulators of T-cell activity and differentiation. Extracellular

signals, including co-stimulation and cytokine signals,

dynamically control T-cell expression (35). As a consequence of

these influences, the target cell’s phenotype and functioning may be

altered. Exosomes are thus recognized as important intercellular

communication intermediates, and the IS’s exosome-enriched

miRNA release may also impact the immune response (36–38).
AS is characterized by an altered
immunological synapse

AS patients present high HLA-B27 expression levels (30).

The processing and presentation of antigens occur sequentially.

The multi-unit proteasome complex first degrades many

proteins into peptide fragments of up to 25 amino acids,

which are subsequently further degraded. TAP delivers antigen

peptides of 8–16 residues into the ER (39). endoplasmic

reticulum aminopeptidase 1/2 (ERAP1/ERAP2)/leucyl cystinyl

aminopeptidase(LNPEP) will further cleave N-terminal

extended precursors into oligopeptides of 8 or 9 residues, the

ideal length for HLA-B27 binding (40). The peptides are then

transported to the Golgi apparatus, where mature epitopes are

produced. Other longer peptides may bind to HLA-B27, where

they stay in the peptide groove with a protruding C-terminus or

middle bulge. These peptides associated with HLA-B27 may be

extremely immunogenic and evoke a T-cell response repertoire

that is abnormally biased (41, 42).

The study on an animal model of AS has shown that DCs in

HLA-B27 transgenic rats are dysfunctional (they lack class II

MHC expression, leading to the elimination of a tolerogenic

CD103+ population), which may promote the development of

Th17 by inhibiting the creation of immunological synapses,

hence aggravating the illness. CD4+T cells are discharged as

naive CD4+ cells into the periphery, developing into Th1, Th2,

Treg, and Th17 effector T cells. These effector T cells generate

specific cytokines and transcriptional master regulators (30,

43, 44).

The IS induces T cell proliferation, expansion, and

differentiation into cytotoxic and helper T cells. As indicated

by establishing immunological synapses in AS, this process must

be carefully managed and controlled (44). Most likely, the

immunological synapse coordinates T-cell migration and

activation, and the production of exosomes may affect the
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subsequent immune response. Exosomes transport several

autoantigens linked with autoimmune disorders, including

DNA and nucleosomes, DEK, a-enolase, citrullinated proteins,

Sjögren syndrome-related antigen A (SSA), Sjögren syndrome-

related antigen B (SSB) and Smith antigen (Sm) (45, 46).

Exosomes secreted by stimulated or stressed cells or microbes

have the potential to trigger autoimmunity. Exosomes may

induce many inflammatory pathways, as supported by a large

number of studies. However, uncertain is the degree to which

exosomes have a role in initiating or sustaining the course of

certain autoimmune disorders (47).

Immune cells produce exosomes in the intracellular space for

communication. These exosomes are generated inside the cell

along the endocytic route by the inward budding of the endosomal

membrane, which results in the formation of minute vesicular

structures within the endosome lumen. Intraluminal vesicles

(ILVs) may be exosomes that are pre-secreted and released into

the extracellular environment following the fusion of so-called

MVBs with the plasma membrane. Exosomes express MHC class

I and II on their surface and are able to present antigens to T cells

(48). Cross-dressing is a more efficient method of semi-direct

antigen presentation that occurs when exosomes bind to the

surface of DCs, where the DC plasma membrane concentrates a

large number of peptide–MHC complexes for efficient

immunological synapse formation. DCs endocyte exosomes,

which lead to the intracellular processing and indirect

presentation of antigens and peptides linked with exosomes, is

another way of antigen presentation. Cross-presentation of MHC

class I-restricted antigens to CD8+ T cells occurs when migratory

DCs from the inflammatory environment migrate to the draining

lymph nodes and, through synaptic vesicle transfer, convey

antigens to conventional DCs in the lymph nodes (Figure 2) (49).
Exosomes composition

The lipids, proteins, and RNAs in exosomes are different.

Exosomal membrane lipids are abundant in sphingomyelin,

cholesterol, glycosphingolipids, ceramide, phosphatidylserine,

lysophosphatidylcholine, lyso-phosphatidylethanolamine, and

phosphatidylcholine with short saturated fatty acids. The most

abundant exosomal proteins include ESCRT machinery

components (Alix, TSG101), heat-shock proteins (HSP 90/70),

and tetraspanins (50). These proteins may largely contribute to

the arrangement of receptors and other proteins inside

exosomes. Due to their connection with lipid raft regions of

the exosomal membrane, several proteins may also be packed

into exosomes (51). In addition to carrying a variety of proteins,

exosomes also transport cell-type-specific proteins. Exosomes

may convey tumor antigens from tumor cells to dendritic cells

(52). It has been proven that exosomes recovered from cells
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infected with various intracellular pathogens, including

microbial particles, may enhance antigen presentation and

macrophage activation (53).

Exosomes transport mRNA, miRNAs, and other short

noncoding RNAs and long noncoding RNAs (54). Several

studies have demonstrated that distinct miRNAs are expressed

in innate and adaptive immune cells and play an essential role in

the development and function of both types of immune cells,

such as the regulation of inflammation and the modulation of T

cells in AS (55). MiRNAs that target diverse signaling pathways

regulate the differentiation of separate T-cell subgroups,

resulting in differentiation start or inhibition/termination (56).

The miRNAs operate as a group of gene regulators and may

originate from either intracellularly modified expression or

extracellular circulation. These circulating miRNAs may be

transferred to IS via exosomes and transfer the signal to
Frontiers in Immunology 05
recipient cells, initiating an inflammatory signaling pathway in

AS (57–60).

Sometimes, the RNA profile of exosomes is distinct from

that of their parent cells, suggesting that the encapsulation of

miRNA into exosomes is a competitive process (61). Multiple

cell types create vesicles with similar miRNA contents,

demonstrating the existence of a mechanism for selective

miRNA export (62).
Significance of exosomal miRNAs

Exosomal miRNAs may serve as diagnostic biomarkers,

according to current studies. Even though exosome synthesis

seems to be higher in tumors, exosomal miRNA transmission is

also seen in healthy conditions, specifically between immune
BA

FIGURE 2

Exosome biogenesis. The MVB gradually fills with intraluminal vesicles as a consequence of inward budding. And these multivascular entities are
capable of doing two tasks simultaneously. One of these two pathways may allow MVBs to combine with lysosomes and break down their
contents. Alternatively, it may follow the exocytic route, fusing with the plasma membrane to discharge its contents into the extracellular
environment. ILVs are referred to as “exosomes” after they are discharged into the extracellular environment. (A) Antigen presentation by
exosomes. By expressing MHC molecules on their surface, exosomes may directly transport antigens to T cells. Exosome-associated peptide-
MHC complexes are densely localized in the DC plasma membrane for efficient immunological synapses when exosomes bind to the surface of
DCs. (B) Exogenous antigens are digested and presented onto MHC-I molecules by phagocytic antigen-presenting cells, which causes specific
CD8+ T lymphocytes to cross-present MHC class I-restricted antigens (49).
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cells (63). Exosome-mediated transport of miRNAs from T cells

to antigen-presenting cells controls gene expression in recipient

cells at immunological synapses (64). Likewise, the transfer of

miRNAs between mouse dendritic cells through exosomes was

functional since they inhibited the translation of target mRNAs.

It has also been shown that mRNAs, miRNAs, and cytokines

delivered by exosomes produced from dendritic cells affect and

interact with immune cells (65).
What occurs subsequent to
exosome packing?

The MVB migrates along microtubules and fuses with the

plasma membrane at a cytoplasmic site during inward budding,

releasing ILVs as exosomes into the extracellular environment

(66). At least three mechanisms enable recipient cells to acquire

exosomes from circulation. Initially, the exosomal membrane’s

extracytoplasmic location may fuse with the plasma membrane of

the receiving cell. By incorporating exosomal membrane and

transmembrane proteins into the target cell’s plasma membrane,

RNAs and proteins are released into the cytoplasm of the target

cell (67). Second, endocytosis, which comprises clathrin-mediated

endocytosis, caveolin-dependent endocytosis, lipid raft-mediated

endocytosis, phagocytosis, and micropinocytosis, may integrate

exosomes into the receiving cell. Following endocytosis, exosomes

may fuse with the endosomal membrane or be transported to

lysosomes for destruction (68). Third, upon adhesion to recipient

cells, exosomes may remain stably attached to the plasma

membrane, initiating signaling cascades by interacting exosome

ligands with cell-surface receptors. Stable and extended cell

surface exposure is probable, especially for cells with little or no

endocytic activity (69, 70).
The function of exosomal miRNA in
the IS

It has been shown that the IS functions as a channel for cell-

to-cell interactions involving vesicular traffic and an active

location for releasing soluble chemicals. The vesicular

trafficking component may be engaged in synapse construction

and the targeted release of microvesicles, which function as

synaptic transmission facilitators (71). The immunological

synapse is also the releasing location for canonical, MVB-

derived CD63+ exosomes rich in miRNAs. As discussed

before, signaling molecules, cytoskeletal components, and

organelles must be rearranged in a temporally and spatially

specified way in order for the IS to form (72). The IS membrane

is arranged in concentric domains known as supramolecular

activation clusters (SMACs), with the central supramolecular

activation cluster (cSMAC) enclosing the TCR and associated
Frontiers in Immunology 06
proteins (TCR signalosomes) and the peripheral and distal

supramolecular activation clusters (pSMAC and dSMAC,

respectively) (73, 74). The pSMAC is rich in integrins, such as

LFA-1, and cytoskeleton-binding proteins, such as talin, while

the dSMAC is rich in F-actin and proteins with large

ectodomains, such as CD45 and CD43 (75, 76). Exosome-like

extracellular vesicle compartments (exo-cSMAC) have recently

been found in synaptic regions rich in miRNA, DNA, and

proteins. Exosomes bearing TCR are picked up by their

respective APCs. They perform out signaling and allow

intercommunication among T cells and APCs by releasing

miRNA-loaded exosomes from T cells, which control gene

expression in APCs (77, 78).

Notably, exosomes in the IS may contribute to immune

response induction. T cell activation is governed by the

interaction between T cells and dendritic cells (DCs), which

begins the immunological response (79). T cell activation needs

antigen presentation on immune cell surfaces, the formation of a

synapse, and the particular detection of a complex containing

three activating signals by T cells. Signal 1 is the antigenic

stimulation conveyed by MHC molecules carrying peptides; in

this case, exosomes can involve expressing MHC molecules on

their surface taking antigenic peptide (Figure 3), while signal two

is sent by costimulatory molecules, which may include exosomes

since they also express costimulatory molecules. Signal 3

originates from cytokines generated by DCs or other sources,

including exosomes and their cargo of proteins and miRNAs

(Figure 3) (49, 75, 80, 81). In an autoimmune disease that

involves dysregulation of self/non-self-discriminating, the

importance of the immunological synapse would be expected.

In addition, this model provides a framework for hypothesizing

the potential role of miRNA-exosome in the beginning and

modulation of the immune response in the immunological

synapse of AS (30). Multiple cell-surface-expressed receptors

and markers may be incorporated into the outer layer of

exosomes and delivered to the target cell membrane through

membrane fusion. This approach can potentially affect the

phenotype and many biological characteristics of the

transplanted recipient cells. Consequently, cells communicate

by delivering receptors to target cells or moving cargo consisting

of mRNA, miRNA, proteins, or other macromolecules from one

cell to another (73, 82) (Figure 3).
Viewpoints on the current
knowledge and future perspectives
of the immune synapse in AS

The essential function of the HLA molecule is inducing and

controlling immune responses. About 30% of the heritability of AS

is attributed to HLA-B27 (83). It is necessary to determine the

synapse’s signaling function in AS (30). Integration of experimental
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studies and computational models is required to elucidate the

interplay of complex competing effects in different aspects of T-

cell signaling. Computational models can explore and consider

outcomes of various mechanistic hypotheses for each signaling

component and determine whether or not individual hypotheses

produce results consistent with experimental observations (84).

Such analysis must be sufficiently powered, and independent data

sets are required for validation before biological validation. In vitro,

functional studies can provide final validation of these models and

an in-depth analysis of different subtypes of AS. We considered

available datasets from the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/geo) for “ankylosing

spondylitis”, included only series analyzed in Homo sapiens and

Mus musculus and through expression profiling by array or

sequencing. Only a few datasets related to AS in GEO met these

criteria as of October 2022. Blood samples, synovial biopsies, and

mesenchymal stem cells are all included in these datasets, but

exosomes are not. Notably, during immunological cell-cell contacts,

exosomes transfer to exchange chemicals. Exosome research has the

potential to reveal unidentified cellular and molecular pathways of

intercellular communication in AS. Although the precise process by

which exosomes and their cargo are absorbed by a recipient cell is
Frontiers in Immunology 07
unknown, the mechanism and subsequent destiny of the cargo

seem to be cell-type and environment-dependent. We hypothesize

that the immunological synapse and other forms of intercellular

connections facilitate the precise transfer of exosomes to guarantee

the effective delivery of their cargo, notably genetic material in the

form of miRNAs. Since exosomes are potential delivery systems for

gene therapy in immune system disorders like AS (85–90), a

thorough knowledge of how exosomes are transferred between

immune cells would enable their therapeutic exploitation. Given

that exosomes would be released as extracellular vesicles, they may

represent an important intercellular communication method.

Therefore, the exosomal fully-folded MHC I dimers may transmit

signals to the resident cells in entheses to induce inflammation,

which may lead to alterations in the joint architecture and the

formation of new bone.
Conclusion

Variations in vesicular flow are critical elements in T cell-

mediated diseases. Current knowledge of IS assembly mechanics

supports the notion of the IS as being a promising pharmacological
FIGURE 3

Regarding immune cell activity, integrin participation may be divided into three types of processes: immune cell recruitment, immune cell
interactions, and immune cell signaling, followed by the formation of IS and biogenesis and secretion of exosomes in IS. T cell function is
affected by three distinct activation signals: (1) recognition and binding of the antigen peptide (Ag) by the T cell receptor (TCR), resulting in the
formation of the APC-T cell complex; (2) adjustment of the synapse by proteins CD28 and CD80/CD86; and (3) molecular interaction signaling
APC release of inflammatory cytokines and exosomes, which activate T cell differentiation. A platform hypothesizes the potential impact of
immune cell-derived exosomes containing miRNA on immune response initiation and immune system function and reprogramming the cells,
which explains the model that prioritizes diseases and phenotypes based on miRNA-mRNA-disease associations. By analyzing the features of
exosomes in individuals with AS in terms of the possibilities of utilizing exosomes as biomarkers and finding potential liquid biopsies, it may be
possible to acquire a better understanding of the pathophysiology of AS. Future research will concentrate on miRNA-containing exosomes and
their interactions with T cells to help address this essential knowledge gap. Image was created with BioRender.com.
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target. Drugs that target the activities of molecules involved in IS

production and alter the immune response in AS hold promise for

future AS treatments. This review paper focused on evolving

concepts of IS formation and mediators secreting in IS, like

exosomes and their cargoes, including miRNAs. We emphasized

the epigenetically significant role of exosomal miRNA modulation

of the immune response. Future research may investigate the

epigenetic effects on the pathophysiology of AS and how exosomal

miRNAs may alter gene expression in recipient cells.
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29. Martıń-Cófreces NB, Sánchez-Madrid F. Sailing to and docking at the
immune synapse: Role of tubulin dynamics and molecular motors. Front Immunol
(2018) 9:1174. doi: 10.3389/fimmu.2018.01174

30. Nakamura A, Boroojeni SF, Haroon N eds. Aberrant antigen processing and
presentation: Key pathogenic factors leading to immune activation in ankylosing
spondylitis. In: Seminars in immunopathology. Springer.

31. Slobodin G, Kessel A, Kofman N, Toubi E, Rosner I, Odeh M. Phenotype of
resting and activated monocyte-derived dendritic cells grown from peripheral
blood of patients with ankylosing spondylitis. Inflammation (2012) 35(2):772–5.
doi: 10.1007/s10753-011-9373-x

32. Vanaki N, Aslani S, Jamshidi A, Mahmoudi M. Role of innate immune
system in the pathogenesis of ankylosing spondylitis. Biomedicine Pharmacother
(2018) 105:130–43. doi: 10.1016/j.biopha.2018.05.097

33. Wang MS, Hu Y, Sanchez EE, Xie X, Roy NH, de Jesus M, et al.
Mechanically active integrins target lytic secretion at the immune synapse to
facilitate cellular cytotoxicity. Nat Commun (2022) 13(1):1–15. doi: 10.1038/
s41467-022-30809-3

34. de la Roche M, Asano Y, Griffiths GM. Origins of the cytolytic synapse. Nat
Rev Immunol (2016) 16(7):421–32. doi: 10.1038/nri.2016.54

35. Duan W, Zhang W, Jia J, Lu Q, Eric Gershwin M. Exosomal microRNA in
autoimmunity. Cell Mol Immunol (2019) 16(12):932–4. doi: 10.1038/s41423-019-
0319-9

36. Kim S, Kim S, Chang HR, Kim D, Park J, Son N, et al. The regulatory impact
of RNA-binding proteins on microRNA targeting. Nat Commun (2021) 12(1):1–
15. doi: 10.1038/s41467-021-25078-5

37. Liu X-M, Ma L, Schekman R. Selective sorting of microRNAs into exosomes
by phase-separated YBX1 condensates. Elife (2021) 10:e71982. doi: 10.1101/
2021.07.06.451310

38. Garcia-Martin R, Wang G, Brandão BB, Zanotto TM, Shah S, Kumar Patel
S, et al. MicroRNA sequence codes for small extracellular vesicle release and
cellular retention. Nature (2022) 601(7893):446–51. doi: 10.1038/s41586-021-
04234-3

39. Lorente E, Infantes S, Abia D, Barnea E, Beer I, Garcıá R, et al. A viral,
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