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Single underwater image
enhancement based on adaptive
correction of channel
differential and fusion

Zefeng Zhao1, Zhuang Zhou2, Yunting Lai2, Tenghui Wang2*,
Shujie Zou1, Haohao Cai1 and Haijun Xie2

1Faculty of Data Science, City University of Macau, Macau, Macao SAR, China, 2Key Laboratory of
Intelligent Detection in Complex Environment of Aerospace Land and Sea, Beijing Institute of
Technology, Zhuhai, China
Clear underwater images are necessary in many underwater applications, while

absorption, scattering, and different water conditions will lead to blurring and

different color deviations. In order to overcome the limitations of the available

color correction and deblurring algorithms, this paper proposed a fusion-based

image enhancement method for various water areas. We proposed two novel

image processing methods, namely, an adaptive channel deblurring method

and a color correction method, by limiting the histogram mapping interval.

Subsequently, using these two methods, we took two images from a single

underwater image as inputs of the fusion framework. Finally, we obtained a

satisfactory underwater image. To validate the effectiveness of the experiment,

we tested our method using public datasets. The results showed that the

proposed method can adaptively correct color casts and significantly enhance

the details and quality of attenuated underwater images.

KEYWORDS

underwater image processing, image enhancement, histogram stretching, color
correction, fusion
1 Introduction

Underwater optical imaging is one of the most direct ways to obtain underwater

information. Currently, clear underwater images are urgently needed for marine life

research, marine environmental protection, and underwater equipment maintenance, among

other fields. Unlike that on the ground, however, underwater imaging tends to be less effective

due to, for example, color distortion, blurred details, and low contrast and brightness, among

others. These issues hinder the use of unprocessed underwater images for research.

Absorption and scattering are the causes of poor underwater imaging. During the

propagation of light underwater, the attenuation rates of light at different wavelengths
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differ due to water absorption (Adolfson and Berghage, 1974).

As the water depth increases, red light is attenuated first,

followed by yellow, green and purple, and then blue light. On

the other hand, scattering of the underwater medium and

particles leads to fogging and the blurring of details (Chao and

Wang, 2010). Scattering is classified into forward scattering and

backward scattering. Forward scattering is defined as light from

the object moving through particles in the same direction before

it reaches the camera, while backward scattering is defined as

light that is reflected by particles before it reaches the object.

Scattering can be considered as chiffon covering the underwater

image, reducing its contrast and blurring its details. Therefore,

deblurring and color correction are the main challenges to

obtaining information from attenuated underwater images.

In this paper, we propose a single underwater image

enhancement method based on adaptive correction of channel

differential and fusion (ACCDF). In Section 3, firstly, we deblur

and enhance the underwater image using an underwater

physical imaging model and the image pixel-based method

separately. Subsequently, we use the pyramid-based fusion

method to enhance the underwater image. Finally, we obtain

the enhanced underwater image. In Section 4, we use the EUVP

(Enhancing Underwater Visual Perception) dataset (Islam

et al., 2020) and the Raws dataset from the UIEB (Underwater

Image Enhancement Benchmark) (Li et al., 2019) for analysis.

According to the the results, our method can deblur and

adaptively correct color. We also compare our method with

other methods using the same dataset, validating the higher

performance of our method.

The main contributions of this article are as follows:
Fron
1) A method of underwater image blurring was proposed

based on the dominant hue of the image combined with

dark channel prior to better deal with color degradation

in different environments.

2) Based on the contrast limited adaptive histogram

equalization (CLAHE) method, the contrast stretching

of the dominant hue’s channel of the image was

restricted better to restore the severely degraded color

in the image.

3) It was demonstrated that the fusion of the deblurred and

color-corrected images can preserve their respective

advantages at the same time.
2 Related work

Underwater image processing includes an underwater

physical imaging model and a non-physical model based on

image pixel processing. Where the physical method estimates
tiers in Marine Science 02
the reasonable degradation model of the image and restores the

image quality through the inverse process, the non-physical

method improves visual quality by enhancing the values of the

parts of interest and weakening the values of the parts of

no interest.

Underwater image degradation, also known as fogging, is

caused by the scattering of suspended particles and absorption.

He et al. (2010) proposed the dark channel prior (DCP) image

recovery method to solve image fogging. The authors considered

that, in each locality of a picture without fog, there is at least one

color channel in each locality with pixel values close to zero, and

these darkest points are used to remove fogging evenly.

Although DCP performs well in terrestrial images, Chao and

Wang (2010) and Chiang and Chen (2011) provided proof that

DCP is not effective or even worse when applied directly to

underwater scenes due to absorption and the presence of large

areas similar to atmospheric light. Considering the attenuation

of red light, Galdran et al. (2015) proposed an automatic red

channel recovery method to reduce the influence of the red

channel and artificial light sources on the estimation of the

transmission map. Furthermore, considering that the red

channel caused by absorption in the underwater environment

is almost dark, Drews et al. (2013) proposed the underwater dark

channel prior (UDCP) method. The modified DCP is only

applied to the blue and green channels. Peng et al. (2018)

proposed the generalization of the dark channel prior (GDCP)

method to estimate the transmission map based on the

brightness difference between the environment and the object.

Similar to UDCP, the authors processed different color channels

in the image formation model. Song et al. (2018) estimated the

depth of the underwater scene by means of supervised learning.

The background light and the transmission map estimated by

the depth map have been proven to be able to effectively improve

the image restoration effect.

The distribution of the histogram reflects the statistical

characteristics of the image gray level. Histogram equalization

(HE), as an image enhancement method, can enhance the

contrast of the image. The HE method uniformly maps the

gray level of the image histogram to the range from 0 to 255. This

method can obtain a better contrast enhancement effect when

the histogram of the image does not change dramatically.

However, it is obvious that roughly stretching the histogram

distribution to the range of 0–255 has a limited effect. Based on

the HE method, the adaptive histogram equalization (AHE)

method was proposed (Ketcham et al., 1974). It uses grids to cut

the image into multiple regions, calculates the cumulative

distribution function of the region where each pixel is located,

and then maps the pixels. However, when the histogram in an

area has only one gray level, an obvious “mosaic” phenomenon

(Figure 1) will appear in adjacent areas. To avoid tearing caused

by the AHE method, Pizer et al. (1987) proposed the contrast

limited adaptive histogram equalization (CLAHE) method. This
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method includes two innovations. The first is to limit the

histogram distribution. When the gray level of an image

exceeds the specified threshold, the excess part will be evenly

distributed to each gray level. The second is to consider the

bilinear interpolation of the image boundary. It finds two

adjacent windows for one pixel of the boundary window of the

image and four adjacent windows for one pixel of the non-

boundary window, calculates the mapping value of the adjacent

window histogram cumulative distribution function (CDF) to

the pixel point, and finally performs linear and bilinear

interpolations. Huang et al. (2018) proposed the relative global

histogram stretching (RGHS) method to stretch the histogram of

the GB channels according to the histogram distribution and

absorption of underwater images.

The above algorithms have their own advantages in terms of

color correction or defogging or image detail enhancement.

Combining multiple algorithms to process one underwater

image may be a good attempt. In order to combine the

advantages of various methods, Ancuti et al. (2012) proposed

the FUSION framework to solve the problems of a single

attenuated underwater image. This framework has two inputs:

one is the image processed by white balance and the other the

image processed by CLAHE. In the experiment, the authors

found that the direct pyramid fusion technology can make the

image glow, but the multi-scale filter did not work well.

Therefore, the authors used the multi-scale Laplacian pyramid

(Burt and Adelson, 1987) to fuse the two processed images. Lu

et al. (2015) performed optimization on the basis of FUSION. In

order to further strengthen the image details, the authors

changed the original FUSION input to the denoised image

obtained using the local adaptive filter (Lu et al., 2017) and the

denoised and reflected high-resolution image obtained using the

subsample super-resolution method (Huang et al., 2015). Bai

et al. (2020) used a multi-scale Gaussian filter to denoise the

image on the basis of FUSION, conducted global and local

histogram processing according to the different color channels of

the image, and then fused the two different processing results.

The machine learning method has strong performance and

is a powerful technique for underwater image processing. Since

machine learning requires ground truth, Perez et al. (2017)

believed that the repaired image has details similar to the
Frontiers in Marine Science 03
ground truth, so a new convolutional neural network (CNN)

model was proposed, which uses the repaired image as the

ground truth to train the model. However, the constructed

model cannot adapt to images at different locations. Anwar

et al. (2018) considered that the existing machine learning

methods would need ground truth for training, which is

extremely challenging; therefore, a fully data-driven and end-

to-end model was proposed: the underwater image enhancement

convolutional neural network (UWCNN). This model trains

optimizing the loss of the mean square error (MSE) and

structural similarity (SSIM), which was an innovative attempt.

Chen et al. (2021) uses the CNNmodel to estimate the backward

scattering and direct transmission. Fabbri et al. (2018) proposed

generating enhanced underwater images with generic adversarial

networks (GANs). On the other hand, the authors also proposed

generating degraded images based on non-degraded images

using GANs, which can build more underwater available

datasets. Guo et al. (2019) proposed a new GAN model that

combines residual learning, dense concatenation, and multi-

scaling and uses a variety of loss functions to preserve the

textural details.
3 Adaptive correction of channel
differential and fusion

In this paper, we propose the enhancement of a single

underwater image based on ACCDF. Our main aim was to

deblur and correct images based on the degree of

color attenuation.

Hitam et al. (2013) stated that red light first degrades in

water and is almost absorbed at a depth of 5 m. As the water

depth increases, green light is then gradually absorbed, and

finally blue light. Due to this phenomenon, it is reasonable to

assume that, in most cases, underwater images have the most

information on the blue and green channels. Based on a previous

work, we have concluded that the main hue of the image

correlates with the mean of each channel (Lai et al., 2022) and

that, by determining the mean value of the channels, a more

appropriate transmission map can be obtained. On the other
FIGURE 1

Comparison of the histogram equalization (HE), adaptive histogram equalization (AHE), and contrast limited adaptive histogram equalization
(CLAHE) methods.
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hand, the channel with the highest mean value also indicates the

least degree of absorption; therefore, its maximum should be

limited in color correction and the minimum of the other

channels should be increased to better correct the color

deviations of the image.

Previous research has proven the good performance of the

FUSION method in the field of underwater image enhancement

(Ancuti et al., 2012). We therefore assumed that its advantages

can be utilized by fusing the deblurring image and the color

correction image. The methods we applied in this paper included

decomposing the image in the RGB (red, green, blue) color space

and correcting the degradation of the various channels of the

image due to the differential attenuation of light at different

wavelengths in water resulting in varying degrees of degradation

of the image channels. Firstly, we compared the mean values of

the GB channels in order to determine whether the image is

greenish or bluish. For the bluish image, we supposed that only

the transmission map obtained from channel B is more suitable

for the actual underwater imaging model. On the contrary, for

the greenish image, we assumed that only the transmission map

obtained from the G channel is more appropriate. We then

combined the transmission map and the underwater imaging

model to realize image deblurring. Subsequently, we stretched

the contrast of the main hue of the deblurred underwater image

to the maximum limit, while the contrast of the R channel was

also stretched with a minimum increase. Thereafter, we

converted the image to the hue saturation value (HSV) color

space and stretched the SV channels to improve the contrast and

brightness of the image. Finally, deblurring and color correction

of the underwater images were combined based on the image

pyramid to obtain an enhanced underwater image that can

simultaneously achieve deblurring and color correction. The

flowchart of the ACCDF is shown in Figure 2.
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3.1 Adaptive correction of channel
differential for deblurring

The attenuation of light of different wavelengths is different

in water, which results in the blue–green hue of most underwater

images. After a lot of experiments, we found that the dominant

color of the image is directly related to the average size of the

RGB channels.

When the image was bluish, we assumed that the

information of channel B in the underwater image can better

reflect the real information of the target scene.

Bave > Gave (1)

JACCDF x, yð Þ = min
x,yð Þ∈W x,yð Þ

min
C=B

JC x, yð Þ
� �

(2)

~t x, yð Þ = 1 − min
x,yð Þ∈W x,yð Þ

min
C=B

IC x, yð Þ
Ac

� �
(3)

In the equations, C denotes the color channel, W(x,y)

represents a local patch, IC is the input image, JC is the dark

channel, Ac is the global atmospheric light, and ~t is the

transmission of the patch.

The opposite is true when the image is green.

Gave > Bave (4)

JACCDF x, yð Þ = min
x,yð Þ∈W x,yð Þ

min
C=G

JC x, yð Þ
� �

(5)

~t x, yð Þ = 1 − min
x,yð Þ∈W x,yð Þ

min
C=G

IC x, yð Þ
Ac

� �
(6)
A

B C D

FIGURE 2

Flowchart of adaptive correction of channel differential and fusion (ACCDF). (A) Original image. After decomposition, information on the three
channels was extracted. (B, C) Images obtained by deblurring and color correction based on the mean values of each channel. (D) Image
obtained from the fusion of (B, C) using the FUSION algorithm.
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The estimation of channel A also followed the DCP method:

the top 10% brightest points were selected from the

corresponding dark channel, JACCDF . Afterward, the pixels at

the same position as these points in the original image, IC(x,y) ,

were determined and the maximum value taken as the estimated

value of the background light of channel C. Combining the

underwater image and the imaging model, the deblurred

underwater image can be obtained.

To avoid over- and underexposure, a threshold for the

transmission map was set. According to a large number of

engineering experiments, the lower threshold value was set as

0.3 and the upper threshold value as 0.9.

~t x, yð Þ =
0:3, if ~t x, yð Þ < 0:3

~t x, yð Þ, else 

0:9, if ~t x, yð Þ > 0:9

8>><
>>:

(7)

Based on the formulation below, the deblurred underwater

image can be obtained.

JACCDFFdeblurred  x, yð Þ = IC x, yð Þ − AC

~t x, yð Þ + AC (8)

As can be seen, the first line of Figure 3 shows that both the

DCP (Figure 3B) and the ACCDF method (Figure 3C) can

produce a clearer image compared to the original image

(Figure 3A). However, the image processed using the DCP

method had serious blue distortion, which caused the

background to appear unclear. On the other hand, the ACCDF

method that estimates the transmission map by considering the

dominant hue channel significantly and partially eliminated the

color distortion of the underwater image. The second line of
Frontiers in Marine Science 05
Figure 3 displays a comparison of the details for selected parts of

the first line. In Figure 3D, the fish is not clear because of the

foggy blur, and the background and the fish texture are not clear,

as if they are hidden. Although the outline of the fish and the

background in Figure 3E after DCP processing became clear, the

details of the texture on the fish were not obvious because

the overall color was blue. Figure 3F shows the elimination of

the overall foggy blur of the image after our method processing,

and the image does not appear as a blue color cast, showing

bright colors and clear details, especially the black stripes on the

fish body that were well reproduced.

Figure 4 shows that the estimated transmission map of the

ACCDF method was obviously different from that of the DCP

method. The transmission map corresponding to the stone part

had a clearer texture, reflected in the processing results shown in

Figure 4D. The color of the stone part in the image processed

using the ACCDF method was clearer and the textural detail

richer. In particular, the red boxes were obviously different,

which also contributed to the better visual effect of the ACCDF

method in the comparison of the processed image background

details shown in Figure 3.
3.2 Correcting channel differential for
correction of the color cast

In underwater images, the pixel values of the R channel are

mostly distributed in a relatively small range. As mentioned in

Section 3.1, underwater images will show the dominant blue or

green color, and the pixel values of the dominant color are usually

distributed in the range of large pixel values. For the remaining
A B C

D E F

FIGURE 3

(A–C) Images are comparison of the deblurred image based on dark channel prior (DCP) and adaptive correction of channel differential and
fusion (ACCDF), respectively. (D–F) are the details of (A–C).
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channels corresponding to the non-dominant colors, due to the

attenuation of the blue and green lights in the underwater

environment being smaller than that of red light, the pixel values

of these channels corresponding to the non-dominant colors are

mostly distributed in the middle (Figure 5A).

We take Figure 5 as an example to show the stretching

process of our channels, with the stretching formula as follows:
Frontiers in Marine Science 06
yellow

pout   =   pin − Ominð Þ Dmax−Dmin
Omax−Omin

� �
+ Dmin

(9)

where pin and pout are the input and output pixels,

respectively; O denotes the intensity of the original image, and

D is the intensity limited by our method.
A

B

FIGURE 5

(A) image is the original underwater image and it's histogram of the RGB (red, green, blue) channels. (B) image is the enhanced image and it's
histogram of the RGB (red, green, blue) channels.
A B

C D

FIGURE 4

Comparison of the transmission maps. (A, B) images are the transmission map estimated using the dark channel prior (DCP) and the adaptive
correction of channel differential and fusion (ACCDF) method, respectively. (C, D) images are the details of (A, B).
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The dominant color of the image (Figure 5A) is green, the

average value of channel G is Gmean=171.19 , the average value of

channel B is Bmean=103.67 , and Gmean>Bmean . Therefore, we

l imited the maximum value of the G channel to

255*0.95=242.5≈242 and used the CLAHE method to stretch

the image within [0,242]. The minimum value of the R channel

was also limited to 255*0.05=12.75≈13 and CLAHE method

used to stretch the image within [13,255]. For channel B, the

CLAHE method was used to stretch the image within the range

of [0,255]. The stretched image is recorded as IS(x,y).

IS x, yð Þ = Stre  Jdeblur x, yð Þð Þ (10)

where Stre() denotes stretching the limited range of the RGB

channels of the image using the CLAHE stretching method. The

stretched image is defined as I(x,y).
3.3 Image fusion based on the image
pyramid

For underwater images, we have implemented deblurring

and color correction based on the imaging model and pixel

processing, respectively. Unfortunately, the color-corrected

image will again lose a part of the textural detail, even if it has

been previously deblurred. Considering that there are a lot of

details in the deblurred image, we used the image pyramid fusion

method to recover the details from the deblurred image after

color correction.

OutputImage x, yð Þ = Fusion JCdeblur x, yð Þ, I(x, y)CS
� �

(11)

where Fusion denotes the image pyramid fusion method.

According to the multi-scale Laplacian pyramid

decomposition of the input picture, the Laplacian contrast

weights, local weight contrast weights, brightness weights, and

exposure weights are obtained. These weights are normalized to

get �W , and the output image is obtained by fusing the inputs

with �W at every pixel.
Frontiers in Marine Science 07
R(x, y) =oL
l
�Wl(x, y)Il(x, y)

In this paper, although there are a variety of fusion methods,

we chose the original fusion method (Ancuti et al., 2012) to

verify our adaptive correction method and validate the

performance of our method. The flowchart of the fusion

framework is shown in Figure 6.
4 Experiment and analysis

In order to ensure effectiveness, we used the Raws dataset

from the UIEB (Li et al., 2019) and the EUVP dataset (Islam

et al., 2020) for the experiment. The experimental results were

compared with the original images, ground truth images, and the

images processed by the DCP, CLAHE, RGHS, underwater light

attenuation prior (ULAP), FUSION, and deep learning image

formation model (DL-IFM) methods (Chen et al., 2021). The

comparison comprised two parts: direct visual effect comparison

and image quality evaluation index comparison, with the

evaluation indices including MSE, SSIM, and underwater color

image quality evaluation (UCIQE).
4.1 Datasets and evaluation index

The UIEB dataset included two sub-datasets: the Raws

dataset and the Challenge dataset. The Raw dataset included

890 underwater images, each of which has a corresponding high-

quality image as a reference, while the Challenge dataset

contained 60 challenging underwater images, but without

reference standards. Therefore, in this paper, we used the

Raws dataset for the experiment. The EUVP dataset has three

sub-datasets: Underwater Dark, Underwater ImageNet, and

Underwater Scenes. We used the Underwater Dark dataset,

which included 5,550 training images and 570 verification

images. Each image had a corresponding ground truth as

a reference.
FIGURE 6

Flowchart of fusion processing. The output image is obtained by fusing the inputs with weight map at every pixel, where weight map is obtained
by decomposing the input image into multi-scale of the Laplacian pyramid.
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In the comparison of the image quality evaluation index, we

used MSE, SSIM, and UCIQE. MSE compared the errors

between the processed image and the ground truth. The

smaller the error, the closer the generated image is to the

ground truth. SSIM (Wang et al., 2004) evaluated the

similarity of two images by comparing their luminance,

contrast, and structure. The SSIM value range was [0,1]. The

larger the value, the smaller the image distortion. UCIQE (Yang

and Sowmya, 2015) is a combination of the color concentration,

saturation, and contrast. The higher the UCIQE value, the better

the visual quality of the image.
4.2 Comparison and analysis

In order to observe the differences of the various methods

more intuitively, we divided the experimental results into several

parts for elaboration. The experimental results of the Raws

dataset are shown in Figure 7. It can be clearly seen that the

image quality with the use of the ACCDF method was

significantly improved compared with that of the original

image. The CLAHE method also performed very well in terms

of color correction, but lacked deblurring ability. The deblurring

ability of the DCP method was good, but its color correction was

low. Some images processed using the DCP method appeared

red or even black, resulting in the loss of detail of the color

distortion parts. Similarly, FUSION performed well, except for

the abnormal color in the first image. The DL-IFM method

showed mediocre performance as a deep learning method, even
Frontiers in Marine Science 08
weak at deblurring. The overall performance of RGHS was good.

Although its color correction ability was stronger than that of

CLAHE, its deblurring ability was slightly worse than that of

ACCDF. There will be obvious “mosaics” when the original

image is fuzzy. Except for its better performance shown in

Figures 7A, H, the ULAP method showed abnormal red light

in other figures, which may have been caused by incorrect red

channel processing.

In Figure 7A, the image quality of the ACCDF, DCP, and

RGHS methods had been significantly improved. The images

processed using these methods showed an obvious deblurring

effect, and the texture of the underwater stones, gravel, and wood

had been significantly enhanced. In the upper left corner of the

original image, i.e., Figure 8, it can be seen that the stone texture

of the DCP image is lost, the images by FUSION, DL-IFM, and

ULAP are severely distorted, and the deblurring effect of the

RGHS is not obvious. Compared with that of CLAHE, the image

processed using ACCDF has a clearer texture.

Figure 7B shows that the deblurring effect of ACCDF was

obviously better than that of the other methods. On the premise

of a similar deblurring effect, the color correction ability of

ACCDF was better than that of CLAHE, RGHS, FUSION and

DL-IFM. Although we sacrificed the brightness of the shadow by

limiting the stretch range of the red channel, the overall color of

the image, especially the color saturation of coral, became better

and more visually comfortable.

In Figure 7C, the original image tone is gray and the image

has a gray fog blur. However, the ACCDF, CLAHE, RGHS, and

FUSION methods achieved good deblurring effects. In the upper
A

B

C

D

E

F

G

H

FIGURE 7

Experimental results of the comparison of the Raws dataset. Image (A–G) are eight images selected from the Raws dataset. From left to right
are the original image, the ground truth image and the image processed by ACCDF, CLAHE, DCP, RGHS, FUSION, DL-IFM and ULAP methods.
And the red box indicates the advantages of ACCDF over other methods.
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right corner of Figure 7C, i.e., Figure 9, it can be seen that the

color correction ability of ACCDF was better than that of

CLAHE and RGHS, even if the original image is fuzzy.

Furthermore, the outline of the small fish in the ACCDF

image was clearer than in others.

In Figures 7D–F, it can be seen that the blue background of

the three pictures is quite large and that the deblurring effect of

the other methods is not very good, especially in the blue

background. Due to the adaptive processing of different

channels, the ACCDF method was much better at deblurring

compared to the other methods, and the textural detail was more

obvious. Compared with the reef in the lower part of Figure 7D,

the ACCDF method was more effective than the other methods

at deblurring, and the features of the texture of the reef were also

strengthened. The top left of the picture, i.e., the detailed
Frontiers in Marine Science 09
Figure 10, shows that the deblurring effect of the ACCDF

method was better than that of others; furthermore, because

the color correction was more reasonable, this made the

swimmers in the red box clearer, and it can even be seen that

they are wearing red life jackets.

Looking at the lower part of Figure 7E, it can be seen that,

due to adaptive color correction, the ACCDF method makes the

colors of the coral and the reef closer to reality. On the top right

of the picture, i.e., the detailed Figure 11, it can also be seen that

ACCDF has a better deblurring effect. In terms of color

correction, because we have limited the stretching range of the

different channels, the coral processed by the ACCDF method

appeared more colorful. The background of ACCDF was

brighter than that of DCP and more saturated than that

of ALCHE.
FIGURE 9

Detail comparison of Figure 7C.
FIGURE 8

Detail comparison of Figure 7A.
FIGURE 10

Detail comparison of Figure 7D.
FIGURE 11

Detail comparison of Figure 7E.
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Figure 7F displays the excellent deblurring effect of the

ACCDF method. The reef at the bottom left of the picture

does not appear overexposed, unlike that of RGHS and DL-IFM,

and the blue ocean background is clearer than that of the other

methods. At the top right of the image, i.e., the detailed

Figure 12, due to the stretching range of the red channel being

limited, the color of the life jacket in the ACCDF image is

perfectly restored and brighter than that of the other methods. It

can be said that the image processed using the ACCDF method

is almost the same as the ground truth.

In order to further examine the effect of the ACCDFmethod,

we compared the histogram of the original image with that of the

processed image (Figure 13). The RGB histogram of the original

image was concentrated in the range [100,160], with the blue and
Frontiers in Marine Science 10
green areas overlapping seriously, which made the image gray

and the color distinction not obvious, what we call a “fog.” After

stretching, the “fog” of the image was obviously eliminated, and

the blue and green became obvious, with the red

also strengthened.

In the original image of Figure 7G, not only was “fog”

present but also the scattering of sunlight penetrating the

water surface and suspended particles. The ACCDF and DCP

methods had obvious deblurring effects. However, the image

color of the DCP method was red, and the upper right corner

had missing information. The ACCDF, ALCHE, RGHS, and DL-

IFM methods showed good color correction effects, but the

ALCHE, RGHS, and DL-IFM methods retained a layer of “mist”

in the image.
FIGURE 12

Detail comparison of Figure 7F.
FIGURE 13

Histogram comparison of Figure 7F.
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The original image in Figure 7H is an extremely challenging

one. The image showed extremely heavy “fogging.” Except for

the fish close to the lens, the overall image hardly displayed other

useful information. Surprisingly, all of the methods extracted the

ground and fish information in the background from the poor

original image. However, the ALCHE method did not remove

the blur very well, while the DCP and ULAP methods showed

color distortions of green and red. By comparing the details in

Figure 14, we found that the RGHS and FUSION methods

showed very obvious feature enhancement effects. The feature of

the fish and reef in the background were very noticeable, but the

image appeared as a mosaic, which means that the deblurring

ability was slightly weaker. In addition to removing the fog from

the original image, the ACCDF image made the fish and the

rocks in the upper right corner of the image appear sharper.
Frontiers in Marine Science 11
Furthermore, adaptive color channel processing of the ACCDF

method made the two fish colors closer to the ground truth.

In order to further examine the effect of the ACCDFmethod,

we compared the histogram of the original image with that of the

processed image (Figure 15). The histogram of the original

image was sparsely distributed, and the red and blue channel

pixels were within the range [60,100], making the image dark as

a whole. After stretching using the ACCDF method, the pixel

distribution of the RGB channels turned uniform, which allowed

the information of the image to be reproduced.

The experimental results of the EUVP dataset are shown in

Figure 16. Since the images in this dataset have been seriously

attenuated, the original color of the image cannot be restored by

non-deep learning methods; therefore, in this part, we mainly

compared the deblurring ability of each method.
FIGURE 14

Detail comparison of Figure 7H.
FIGURE 15

Histogram comparison of Figure 7H.
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Figure 16A presents the better deblurring effects of the

ACCDF, CLAHE, and FUSION methods compared to the

other methods. The contour of the sea cucumber in

the middle of the ACCDF image was clearer, while the sea

cucumber in the middle of the DL-IFM image turned blurred.

Externally, it can be seen that the texture of the gravel in the

ACCDF image was more obvious and the outline clearer by

comparing the background part of the image. The background

texture of the DCP, RGHS, DL-IFM, and ULAP images was

blurred, especially in the upper left corner of the image.

In Figure 16B, the images processed using DCP and RGHS

are shown to be almost the same as the original pictures. Details

were missing in the upper left corner of the DL-IFM and ULAP

images. CLAHE had a good deblurring effect, but compared with

the ACCDF method, especially in the texture comparison

between the sea anemone in the middle of the image and the

coral in the upper left corner, the enhancement ability for the

textural features was slightly weaker.

In Figure 16C shows that the ACCDF, CLAHE, and

FUSION methods removed most of the blue cast in the

original image, resulting in obvious image details. The ULAP

method removed most of the blue cast and had good visual

effect, but lost some textural details on the lobster head in the

middle of the image. The ACCDF image showed not only

enhanced details of the lobster head but also enhanced ground

texture of the image background.
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In Figures 16D, E, although the ACCDF and FUSION

images had abnormal colors compared with the ground truth

images, the details of the image were enhanced. For example, in

Figure 16D, the seaweed contour of the ACCDF method was

clearer than that of the other methods, while the FUSION image

showed a mosaic-like blur despite its high contrast. The pattern

of the turtle shell in the ACCDF image in Figure 16E had higher

contrast and is clearer than that of the other methods. The sand

and stone on the bottom of the DL-IFM and ULAP images were

partially exposed and became blurred, while the sand and stone

texture in the ACCDF image was clearer.

We combined the image quality evaluation indices for

analysis. The quality evaluation of Figure 7D is shown in

Table 1. CLAHE and DL-IFM performed slightly poorly in the

quality evaluation because of their slightly weaker deblurring

ability. DCP and ULAP has unusually large MSE values due to

severe color distortion and loss of detail in the processed

pictures. The overall performance of ACCDF and FUSION

was good. The MSE values of ACCDF were the smallest, while

those of SSIM and UCIQE were relatively large. As displayed in

Figure 7D, ACCDF and FUSION provided the best deblurred

and color-corrected images. However, compared with FUSION,

ACCDF had a warmer color orientation; hence, the image details

were more easily observed. This has no relevance in the image

quality metrics evaluation, but it has resulted in a better

visual experience.
A

B

D

E

C

FIGURE 16

Image (A–E) are five images selected from the EUVP dataset. From left to right are the original image, the ground truth image and the image
processed by ACCDF, CLAHE, DCP, RGHS, FUSION, DL-IFM and ULAP methods.
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The quality evaluation of Figure 7F is shown in Table 2.

Based on its evaluation index, the FUSION method performed

very well. It can also be seen in the picture that the FUSION

method performed well in deblurring and color correction. The

CLAHE, RGHS, and DL-IFM methods performed well in the

evaluation criteria, but a layer of “mist” can still be seen in

the image, which results in slightly poor visual performance. The

DCPmethod performed poorly in the evaluation criteria because

the images lost a lot of information. Surprisingly, the ACCDF

method had the largest MSE value, which did not correspond to

the visual perception of the image, probably because the method

removed bubbles from the image during the deblurring process.

Comparison of the SSM and UCIQE values indicated that the

ACCDF method performed well. It can be seen that the image

color saturation of ACCDF in Figures 7F, 12 was higher and the

textural detail clearer compared to the other images.

Comparison of the quality evaluation indicators in

Figure 16C is shown in Table 3. The MSE value of ULAP was

the lowest, and the image processing results also showed that the

image color using this method was the closest to the ground

truth. The SSIM and the UCIQE value of the RGHS and the DL-

IFM method, respectively, was the largest. The evaluation index
Frontiers in Marine Science 13
of the ACCDF method was average due to the original image

having been seriously attenuated, and the non-machine learning

method cannot accomplish restoration. The ACCDF method

focused on the blue dominant tone of the image to stretch the

histogram, which resulted in color distortion. However, when

the textural features were examined closely, it was found that, in

the ACCDF image, the details of the lobster head were obviously

enhanced, and the textural contrast of the ground sand and stone

at the edge of the image was higher and the outline clearer.
5 Conclusion

In this paper, we proposed an adaptive color correction and

deblurring method for underwater images with different color

casts. This method adaptively deblurs the dark channel and

stretches the histogram by perceiving the main hue of the image.

It then fuses the images processed by the two techniques into a

better image. The results of the experiment showed that this

method can handle underwater images in different green and

blue distortions and has better deblurring and color correction

capabilities compared to other classical algorithms. We also
TABLE 3 Quality evaluation of Figure 14C.

ACCDF CLAHE DCP DL-IFM FUSION RGHS ULAP

MSE 95.25 82.054 127.7532 76.2379 92.6004 82.8455 64.9118

SSIM 0.745 0.8411 0.8891 0.9525 0.8487 0.9732 0.8335

UCIQE 0.5922 0.5916 0.6047 0.6115 0.5998 0.5971 0.6043
frontie
MSE, mean square error; SSIM, structural similarity; UCIQE, underwater color image quality evaluation; ACCDF, adaptive correction of channel differential and fusion; CLAHE, contrast
limited adaptive histogram equalization; DCP, dark channel prior; DL-IFM, deep learning image formation model; RGHS, relative global histogram stretching; ULAP, underwater light
attenuation prior. Bold indicates good performance.
TABLE 1 Quality evaluation of Figure 7D.

ACCDF CLAHE DCP DL-IFM FUSION RGHS ULAP

MSE 15.1173 62.8496 185.4159 84.3816 23.7198 100.2109 60.3795

SSIM 0.8664 0.7766 0.8065 0.8652 0.9366 0.8996 0.6302

UCIQE 0.6376 0.5102 0.7238 0.5602 0.6515 0.6545 0.473
MSE, mean square error; SSIM, structural similarity; UCIQE, underwater color image quality evaluation; ACCDF, adaptive correction of channel differential and fusion; CLAHE, contrast
limited adaptive histogram equalization; DCP, dark channel prior; DL-IFM, deep learning image formation model; RGHS, relative global histogram stretching; ULAP, underwater light
attenuation prior. Bold indicates good performance.
TABLE 2 Quality evaluation of Figure 7F.

ACCDF CLAHE DCP DL-IFM FUSION RGHS ULAP

MSE 90.2184 46.3438 243.7132 75.5761 23.4494 67.1776 46.7848

SSIM 0.8784 0.7586 0.2474 0.8495 0.9386 0.8888 0.4997

UCIQE 0.6771 0.5047 0.5482 0.5731 0.6587 0.6677 0.4977
MSE, mean square error; SSIM, structural similarity; UCIQE, underwater color image quality evaluation; ACCDF, adaptive correction of channel differential and fusion; CLAHE, contrast
limited adaptive histogram equalization; DCP, dark channel prior; DL-IFM, deep learning image formation model; RGHS, relative global histogram stretching; ULAP, underwater light
attenuation prior. Bold indicates good performance.
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found that the images processed using this method had warmth,

which made the visual experience better, especially with a

severely attenuated red. In addition, this method enhanced

the textural detail extremely well, finding more hidden

details and effectively improving the quality of the blurred

underwater image.

On the other hand, when the color of the image has been

seriously attenuated, the ACCDF method performed poorly in

terms of color correction. This scenario is more suitable for color

filling using deep learning methods. In the future, we will

consider using a deep learning algorithm to supplement and

correct the color of images, adding it to the fusion framework to

make it stronger.
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