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Understanding the metabolic fate of a xenobiotic substance can help inform its
potential health risks and allow for the identification of signature metabolites
associated with exposure. The need to characterize metabolites of poorly studied
or novel substances has shifted exposure studies towards non-targeted analysis
(NTA), which often aims to profile many compounds within a sample using high-
resolution liquid-chromatography mass-spectrometry (LCMS). Here we evaluate the
suitability of suspect screening analysis (SSA) liquid-chromatography mass-
spectrometry to inform xenobiotic chemical metabolism. Given a lack of
knowledge of true metabolites for most chemicals, predictive tools were used to
generate potential metabolites as suspect screening lists to guide the identification
of selected xenobiotic substances and their associated metabolites. Thirty-three
substances were selected to represent a diverse array of pharmaceutical,
agrochemical, and industrial chemicals from Environmental Protection Agency’s
ToxCast chemical library. The compounds were incubated in a metabolically-active
in vitro assay using primary hepatocytes and the resulting supernatant and lysate
fractions were analyzed with high-resolution LCMS. Metabolites were simulated for
each compound structure using software and then combined to serve as the suspect
screening list. The exact masses of the predicted metabolites were then used to
select LCMS features for fragmentation via tandem mass spectrometry (MS/MS). Of
the starting chemicals, 12 were measured in at least one sample in either positive or
negative ionmode and a subset of these were used to develop the analysis workflow.
We implemented a screening level workflow for background subtraction and the
incorporation of time-varying kinetics into the identification of likely metabolites. We
used haloperidol as a case study to perform an in-depth analysis, which resulted in
identifying five known metabolites and five molecular features that represent
potential novel metabolites, two of which were assigned discrete structures
based on in silico predictions. This workflow was applied to five additional test
chemicals, and 15 molecular features were selected as either reported metabolites,
predicted metabolites, or potential metabolites without a structural assignment. This
study demonstrates that in some–but not all–cases, suspect screening analysis
methods provide a means to rapidly identify and characterize metabolites of
xenobiotic chemicals.
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1 Introduction

Chemical risks to public health are assessed by characterizing
inherent hazards, likely exposures, and toxicokinetics (TK–that is,
absorption, distribution, metabolism, and elimination by the body)
(National Research Council, 1983). For many thousands of chemicals
in commerce and the environment, these data are unavailable
(National Academies of Sciences, Engineering, and Medicine, 2017;
Isaacs et al., 2022), with TK information being scarcest (Federal
Insecticide, Fungicide, and Rodenticide Act and Scientific Advisory
Panel, 2014; Wetmore et al., 2015; Bell et al., 2018). Understanding
chemical metabolism is necessary for risk assessment (Wang et al.,
2012): Full mapping of a metabolic schema (linking parent chemicals
to biologically-formed metabolites) allows better understanding of
potentially toxic intermediates and ultimate products (Ioannides and
Lewis, 2004; Guengerich, 2006; Tang and Lu, 2010) and identification
of biomarkers of exposure (Lowry, 1995; Tan et al., 2012; Steckling
et al., 2018).

New and existing chemical legislation in multiple parts of the
world are drivers for faster methods of understanding key aspects of
chemical behavior, including metabolism (Lilienblum et al., 2008;
Wang et al., 2012; Schmidt, 2016; US Congress, 2016). Public
quantitative chemical metabolism data exist for only a few
thousand compounds, mostly characterizing the rate of parent
chemical disappearance (Dawson et al., 2021). The lack of needed
data on xenobiotic metabolism is partly due to the traditional reliance
on costly time-series animal studies (Hope et al., 2008) as well as the
need to develop chemical-specific analysis methods to determine
concentration in experimental samples (Tolonen and Pelkonen,
2015). Though databases linking compounds with the metabolites
formed in different species do exist (Spjuth et al., 2016) they tend to
focus on pharmaceuticals (Piechota et al., 2013) and cover only a few
hundred parent-metabolite relationships (Piechota et al., 2013;
Stanfield et al., 2022).

Though traditional techniques for characterizing metabolism
cannot scale to meet current needs, new approaches under
development that may eventually fill data gaps: commercially
available and open-source metabolism models trained on existing
high-quality TK data for well-studied analytes allow rapid prediction
of metabolites for any selected compound (Mekenyan et al., 2004;
Marchant et al., 2008; Dimitrov et al., 2016; Djoumbou-Feunang et al.,
2019). A significant drawback of these approaches is that they tend to
overpredict, that is, predict more metabolites than actually occur
(Boyce et al., 2022). Alternatively, in vitro studies using
metabolically active cells (Shibata et al., 2002; Gomez-Lechon et al.,
2008) or enzymes (Asha and Vidyavathi, 2010) can generate
metabolites at lower cost than animal studies. These in vitro
studies are limited in that they do not necessarily reproduce all in
vivo metabolic pathways (Gouliarmou et al., 2018) and that the
distribution and therefore concentration of the chemical in vitro
may differ from what would occur in vivo (Gardner et al., 2022).
In vitrometabolism studies are further limited by the requirement the
development of targeted analytical chemistry methods to quantify
each metabolite (Tolonen and Pelkonen, 2015). However, recently
developed non-targeted analysis (NTA) methods now allow for the
simultaneous identification of many chemicals in a given sample
(Sobus et al., 2018). These methods can be used to enhance studies
of xenobiotic metabolism via identification of novel metabolites
(Steuer et al., 2021).

NTA methods are aided by compound screening lists, which may
include existing reference spectra or in silico predicted spectra. These
lists of chemicals anticipated to be present in a sample allow for suspect
screening analysis (SSA). Due to the significant number of features that
can be generated using NTA alone (Tolonen and Pelkonen, 2015), the
process of relating those features to specific metabolites is a
“significant bottleneck in deriving biological knowledge from
metabolomic studies.” (Dunn et al., 2013) Trends between samples
(such as increase/decrease of apparent concentration with time) may
be used to reduce the number of features requiring identification (van
der Hooft et al., 2017). However, even after feature reduction, there
remains ambiguity in chemical identity; a single mass feature may
correspond to one or more chemical formulae, and each formula may
map to numerous chemical structures (McEachran et al., 2017).
Tandem mass spectrometry (MS2) can help with eliminating some
improbable structures associated with the single mass feature by
focusing on features of expected compounds (for example,
metabolites) (Hsieh and Korfmacher, 2009). SSA enhances NTA by
focusing on only those specific features more likely to be of interest
(Sobus et al., 2018). To apply SSA to a metabolism study, one might
use in silico expert systems to reduce the search space of chemicals
from hundreds of thousands of conceivable chemicals (Williams et al.,
2017) to mere hundreds of plausible metabolites per compound
(Boyce et al., 2022).

Recently, Kim et al. (2021) applied NTA to characterize metabolite
formation for the pharmaceutical donepezil (DTXSID8048317) using
samples obtained from in vitro metabolism experiments. Kim and
colleagues observed the formation of known metabolites as well as
novel metabolites characterized by m/z and retention time. The
confirmed detection of a predicted metabolite, or tentative
identification of a novel metabolite, can be used to: 1) better
understand the metabolic pathway of a tested chemical, 2) select
biomarkers of exposure to be used in future metabolic or observational
studies, 3) inform follow-up dose-response studies that focus on
metabolic intermediates or final products, and/or 4) identify
appropriate surrogate chemicals for data poor chemicals via an
approach often called “read-across”. In read-across, the selected
surrogate chemical–also called “suitable analog” (Wang et al., 2012)
and “source analogue” (Helman et al., 2019)—is used to fill data gaps
for the target (data poor) chemical that is expected to behave like the
selected surrogate. Metabolism is a primary principle for identifying
surrogate chemicals (Wang et al., 2012). Read-across techniques are
currently being used by the U.S. Environmental Protection Agency
(EPA) to evaluate new chemicals under the Toxic Substances Control
Act (TSCA) (Patlewicz et al., 2019) and determine Provisional Peer-
Reviewed Toxicity Values (PPRTVs) for contaminants at Superfund
sites (Wang et al., 2012; Lizarraga et al., 2019).

Here we evaluate the suitability of liquid-chromotography mass-
spectrometry (LCMS)-based SSA methods to inform xenobiotic
chemical metabolism across 33 substances. We demonstrate how in
silico tools can be used to prepare a suspect list for SSA and guide the
identification of 33 substances and their metabolites. To generate
metabolites, we incubated chemicals in vitro with suspensions of
cryopreserved primary human hepatocytes (the cells of the liver
that express many of the enzymes responsible for xenobiotic
metabolism) (Shibata et al., 2002). We first report on the
amenability of the evaluated chemicals to SSA via LCMS (that is,
we identify which chemicals and metabolites were suitable for
detection using LCMS). We describe the generation of suspect
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screening lists based on the parent chemical structures and metabolite
prediction software. We further demonstrate a screening level
workflow for background subtraction and the incorporation of
time-varying kinetics into the identification of likely metabolites.
Finally, we present an in-depth analysis of haloperidol as a case
study demonstrating the utility of manual curation. Computational
metabolism predictions, in vitrometabolism assays, and SSA methods
combine to provide a means to rapidly identify and characterize
predicted (and even unanticipated) metabolites of chemicals that
are being reviewed for safety.

2 Methods

Figure 1 summarizes the workflow implemented in this study to
evaluate 33 test chemicals. This workflow can be partitioned into four
overarching steps: i) Suspect List Preparation - for each test chemical, a
unique list of compounds was developed, comprised of metabolites
reported in the literature and/or predicted by in silico models; ii)
Data Generation - test chemicals were metabolized using an
in vitro metabolism assay, and MS1 and MS2 data were
acquired for each sample; iii) Data Processing - observed
HRMS features were aligned, annotated, filtered, and processed
to aid downstream statistical analysis and compound
identification; and iv) Data Analysis - clusters of HRMS
features were identified for selected test chemicals, and these
features were flagged as potential metabolites. Observed MS2

spectra of flagged features were compared to in silico MS2

spectra to support metabolite identification. The sections below
provide further details on each of these steps and offers insights
into the strategies used for initial chemical selection.

2.1 Chemical selection

A total of 33 chemicals were selected for metabolic profiling.
Fourteen chemicals were selected to provide data such that the
methods developed here could be evaluated for utility to inform
read-across. Specifically, three sets of chemical “analogs” were
identified where we expected the metabolism of the mutual analogs
to be similar; among each set of analogs, we expect to see similar
metabolites formed. First, a pair of related compounds–methyleugenol
(DTXSID5025607) and estragole (DTXSID0020575)—were selected
because they are known to have similar metabolism (Rietjens et al.,
2005). Methyleugenol was previously observed by Wetmore et al.
(2015) to metabolize in hepatocyte cell preparations, indicating a high
likelihood of success with our in vitro system. The next set was
composed of 4-methyl-2-pentanol (DTXSID2026781) and three
other analogs: 4-methyl-2-pentanone (DTXSID5021889),
isopropanol (DTXSID7020762), and acetone (DTXSID8021482).
The third set was composed of 3,5-dinitroaniline
(DTXSID0044151) and three analogs: 2-nitroaniline
(DTXSID1025726), 3-nitroaniline (DTXSID6025725), and 4-
nitroaniline (DTXSID8020961).

Next, a pair of related chemicals known to produce related but
distinctly different metabolites were selected—2-nitrotoluene
(DTXSID4025791) and 4-nitrotoluene (DTXSID5023792)
(DeBethizy and Rickert, 1984). 4-nitrotoluene has also been
observed to metabolize in vitro in hepatocytes by Wetmore et al.

(2015). We expected to observe different metabolites being formed by
these two compounds despite their structural similarity.

Starting with the twelve chemicals described above and those with
known metabolism data, (Dalvie et al., 2009; Wang et al., 2010; Cartus
et al., 2012), chemicals were added from those chemicals in the
ToxCast library for which there was either occurrence in consumer
products, high exposure, or biomarker data. Twenty-one additional
chemicals were selected from among the ToxCast chemical testing
library (Richard et al., 2016) based upon the availability of metabolism
data (Dalvie et al., 2009; Wang et al., 2010; Cartus et al., 2012),
availability of exposure biomarker data for the U.S. population
according to the U.S. Centers for Disease Control and Prevention
National Health and Nutrition Examination Survey (NHANES) (U.S.
Centers for Disease Control and Prevention, 2009), predicted high
exposure rates (upper 90th percentile of predicted intake rates in
Wambaugh et al. (2014)), and tentative identification in consumer
products by (Phillips et al., 2018). Chemicals were added
algorithmically, one-by-one to the list of test chemicals. Each
addition was selected such that the fraction of the total list of high
exposure, consumer product, and biomarker chemicals were roughly
90%. The tested chemicals and their physicochemical properties, as
predicted with the OPERA quantitative structure-activity relationship
suite (Mansouri et al., 2018) are listed in Supplementary Table S1 (S1-
ChemicalsTested.xlsx). Chemical structures are provided by
Supplementary Figure S1 (SFig1-ChemStructures.pptx).

2.2 Suspect list preparation

Preparation of the suspect screening list required sourcing
metabolites from both literature and in silico prediction tools. The
methodologies for searching literature and predicting metabolites
have been previously described (Boyce et al., 2022). A summary is
provided in the following sections.

2.2.1 Literature Review
A list of experimentally confirmed metabolites was identified

through literature review for the 33 test chemicals. Relevant
publications were found by searching curated chemical databases,
querying PubMed with Abstract Sifter (v4) (Baker et al., 2017), and
using search engines. Metabolites recorded for this study were sourced
from primary articles and include in vitro and in vivo data generated
from mammalian species (specifically dog, bovine, mouse, rat, and
human). In cases where multiple publications reported replicate
results, the most recent publication with human metabolism data
was recorded as the reference.

Metabolites identified from literature were stored in the EPA’s
DSSTox database (Grulke et al., 2019). Chemicals entered into the
database were assigned chemical identifiers (a substance identifier
[DTXSID], as used earlier in this manuscript to identify specific
substances, and the chemical structure identifier [DTXCID]) and
had successor relationships mapped where a metabolite is linked
to the parent compound. In those cases where experimentally
identified metabolites were represented as a Markush structure,
these ambiguous structures were enumerated to produce their
discrete “child” structures for inclusion in the suspect screening
list. An example of a Markush structure enumerated into its
discrete child structures is provided in the Supplementary
Material S2.
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Mappings between each parent compound’s chemical identifier
(DTXSID) and their respective metabolites’ identifier and associated
SMILES were stored as a .CSV to serve as the suspect screening list
(Supplementary Table S2: metabolite_masterlist.csv).

2.2.2 In silico metabolite predictions
In silico metabolite predictions were generated for each of the

33 test chemicals using a collection of software: BioTransformer

(https://biotransformer.ca) (Djoumbou-Feunang et al., 2019),
Meteor (lhasalimited.org) (Marchant et al., 2008), TIMES
(https://oasis-lmc.org) (Mekenyan et al., 2004), and QSAR
Toolbox (https://qsartoolbox.org) (Dimitrov et al., 2016).
When applicable, three generations of metabolites were
predicted using Phase I and Phase II pathways. The modules
and settings used for each prediction software are provided in the
Supplementary Material S3.

FIGURE 1
Overall workflow of the NTA method developed to identify metabolites using in silico tools to guide data acquisition and analysis. Each colored section
represents a significant step in the analysis workflow and include generation of the suspect screening list from in silico tools and literature review (red section),
MS1 and MS2 analysis of metabolites generated by primary hepatocytes (orange section), processing of the data to clean the data and annotate features (blue
section), and data analysis to characterize features that correspond to metabolites of the parent compound (green section).
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TABLE 1 Summary of reported and predicted metabolites for each parent compound.

Parent compound DTXSID #Reported metabolites Literature sources #Predicted
metabolitesa

BT M T TB

o-Aminoazotoluene DTXSID1020069 7 Samejima et al. (1967) 60 12 1 8

2-Nitroaniline DTXSID1025726 8 Nystrom and Rickert (1987) 14 4 0 5

2-Nitrotoluene DTXSID4025791 0 - 14 7 0 11

Isopropanol DTXSID7020762 2 Slaughter et al. (2014), Nordmann et al. (1973) 0 11 1 7

3,5-Dinitroaniline DTXSID0044151 0 - 9 4 0 4

3-Nitroaniline DTXSID6025725 7 Nystrom and Rickert (1987) 18 7 0 5

Estragole DTXSID0020575 8 Punt et al. (2009) 11 16 10 11

4-Methyl-2-pentanol DTXSID2026781 3 McGinty et al. (2010), McGinty et al. (2010), Gingell
et al. (2003)

2 7 3 5

4-Methyl-2-pentanone DTXSID5021889 2 McGinty et al. (2010), Gingell et al. (2003) 0 5 2 6

4-Nitroaniline DTXSID8020961 6 Nystrom and Rickert (1987) 14 7 0 3

4-Nitrotoluene DTXSID5023792 4 DeBethizy and Rickert (1984) 11 8 0 10

Acetone DTXSID8021482 4 Casazza et al. (1984) 0 32 1 7

Acrylamide DTXSID5020027 10 Fennell et al. (2005), Fuhr et al. (2006) 1 6 1 3

BDE-209 DTXSID9020376 3 Macholz et al. (1982), Huwe and Smith (2007) 0 382 1 6

Benzoic acid DTXSID6020143 2 Abdo et al. (1985), Chidgey and Caldwell (1986),
Chidgey et al. (1986)

13 2 1 0

Benzyl acetate DTXSID0020151 9 Abdo et al. (1985), Chidgey and Caldwell (1986),
Chidgey et al. (1986)

15 5 4 4

Benzyl alcohol DTXSID5020152 4 Abdo et al. (1985), Chidgey and Caldwell (1986),
Chidgey et al. (1986)

22 4 5 2

Benzyl butyl phthalate DTXSID3020205 11 Chidgey et al. (1986), Nativelle et al. (1999) 82 21 10 15

beta-Hexachlorocyclohexane DTXSID7020685 10 Feil et al. (1973) 2 2 1 8

Bisphenol A DTXSID7020182 4 Pritchett et al. (2002) 8 2 2 2

Butylated hydroxytoluene DTXSID2020216 0 - 21 9 15 4

Celecoxib DTXSID0022777 4 Paulson et al. (2000) 18 3 8 11

CP-122721 DTXSID9047251 13 Kamel et al. (2006), Colizza et al. (2007) 84 23 7 12

Curcumin DTXSID8031077 13 Ireson et al. (2001), Pan et al. (1999),Prasad et al. (2014) 20 17 6 11

Dapsone DTXSID4020371 8 Zuidema et al. (1986) 16 6 5 1

Dieldrin DTXSID9020453 6 Hutson (1976) 3 1 3 1

Haloperidol DTXSID4034150 7 Johansson et al. (2010) 132 19 7 8

Lindane DTXSID2020686 0 - 6 2 7 10

Methyleugenol DTXSID5025607 12 Cartus et al. (2012) 15 26 10 15

Naphthalene DTXSID8020913 11 Ayala et al. (2015) 25 10 4 7

o,p’-DDT DTXSID6022345 14 Feil et al. (1973) 13 2 1 0

Sulindac DTXSID4023624 6 Swanson and Boppana (1981) 50 8 5 20

Zileuton DTXSID9023752 2 Machinist et al. (1995), Sweeny and Nellans (1995) 14 2 3 5

aMetabolite prediction software are abbreviated as follows:

BT, BioTransformer; M, meteor; T, times; TB, toolbox.
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2.2.3 Suspect list compilation
The results from the literature review and metabolite prediction

software were merged into a single dataset. A total of 2062 metabolites
were included in the suspect list, with 1723 unique metabolites
(Supplementary file: metabolite_masterlist.csv). The structure is
encoded as a SMILES (‘SMILES’ column) with additional
descriptors: monoisotopic mass (‘MW’ column), molecular
formula (‘Formula’ column). Unique identifiers for the
metabolite (“Metabolite_DTXSID” column) and parent
compound (“Parent_DTXSID” column) are also provided, as is
a Boolean column to indicate whether the metabolite is part of a
Markush structure (“Markush” column). Metabolites generated
by prediction software were included as part of the MS2 Data-
Dependent Acquisition (DDA) preferred ions list (as indicated by
the “DDA_Included” column). Finally, the source of the
metabolite (“BioTransformer”, “Meteor”, “Toolbox”, “TIMES”,
and “Reported” columns) was added. InChI Keys were used to
ensure no structures were duplicated in the list (the keys are not
included in the provided table).

For the purpose of assigning a molecular formula during the MS1

analyses, the suspect screening list was reduced to 538 unique
molecular formulae that had a molecular weight greater than 100 Da.

2.3 Data generation

2.3.1 In vitro metabolism assay
Metabolites were generated by incubating test chemicals in vitro

with pooled, cryopreserved human hepatocytes (Shibata et al., 2002;
Gómez-Lechón et al., 2008). This assay has been used to characterize

the rate of parent chemical metabolism for more than a thousand
chemicals in commerce (Breen et al., 2021). Pooled human
cryopreserved hepatocytes (Thermo Fisher, HMCS10) were
prepared at a concentration of 1 × 106 cells/mL using William’s E
Medium (Gibco, Cat#: A1217601) supplemented with Maintenance
Supplement Kit (Gibco, Cat#: CM400). Dosage solutions for each of
the selected chemicals outlined in Section 2.1 were prepared at 20 μM
by diluting 20 mM stock solutions of the respective chemical in
dimethyl sulfoxide (DMSO) (Thermo Fisher, 043998.M1) with cell
media. Equal volumes of the cells suspension and dosage solutions
were aliquoted into 96-well plates (Greiner Bio-One, Cat#: 650261)
and incubated on an orbital shaker at 5% CO2 and 37°C for 0, 1, or
4 h. After the incubation period, the plates were sealed and
transferred to a −80°C freezer to terminate the reaction and
lyse the cells. Each time point was prepared in triplicate across
three separate plates. Additionally control plates were
incorporated into the assay: a DMSO vehicle blank, where the
dosage solution contained only DMSO; and cell-free controls,
where no cells were added to the well.

After at least 18 h at −80°C, the plates were thawed and
centrifuged. Supernatant was removed from each well and
partitioned into two equal aliquots. One aliquot was returned as is
to −80°C. The other aliquot was deconjugated by treating with an equal
volume of reaction mixture containing purified >5 U/mL β-
glucuronidase buffered to pH ~5 (Abalonase®+, Ango Life
Sciences). The treated samples were incubated at 45°C–65°C for at
least 2 h, then the reaction was terminated by adding an equal volume
of acetonitrile (ACN) (Thermo Fisher, 043166.AK). A summary of the
metabolism assay and the total samples generated from this workflow
are outlined in the Supplementary Material S1.

FIGURE 2
Venn diagram displaying concordance between (A) all predicted metabolites and the in silico tools that generated the prediction, and (B) all metabolites
reported in literature and in silico tools that generated those predictions. Numbers indicate how many metabolites match the conditions of each ellipse. For
example, among the predicted metabolites in (A) there were 28 metabolites predicted by both TIMES (https://oasis-lmc.org) (Mekenyan et al., 2004), and
QSAR Toolbox (https://qsartoolbox.org) (Dimitrov et al., 2016) but not by the other predictionmethods. Among themetabolites reported in the literature
in (B), only 8 of the 28 predicted by only TIMES and ToolBox were previously reported.
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2.3.2 Sample preparation
Each well of the 96-well plates used as part of the in vitro

metabolism assay were treated with 100 μL of dichloromethane
(DCM) containing several internal standards: 1,4-dichlorobenzene-
D4 (DTXSID30959416), naphthalene-D8 (DTXSID10894058),
acenaphthene-D10 (DTXSID40893473), phenanthrene-D10

(DTXSID60893475), chrysene-D12 (DTXSID00893474) and perylene-
D12 (DTXSID60934397). Samples were then manually transferred to
2.0 mL autosampler vials, where the DCM layer was removed for use in
a GC-MS analysis, which is not covered in this publication. The samples
were then diluted with water by a factor of three and spiked with 100 μL of
methanol containing 3-phenoxybenzoic acid-13C6 (DTXSID101028020)
and diisopropyl methylphosphonate-D14 (DTXSID201348522), which
were used as internal standards for negative and positive ion modes,
respectively. Each standard used for LCMS analysis was added at a
concentration of 100 ppb.

2.3.3 Acquiring LCMS1 and MS2 data
All samples and controls were analyzed via LCMS using an Agilent

1,290 Infinity high performance liquid chromatograph (HPLC) coupled to
an Agilent 6,540 Ultra High Definition (UHD) quadrupole time-of-flight
(Q-TOF) mass spectrometer. A detailed outline of the experimental
conditions, instrument parameters, and injection order are provided in
the Supplementary Material S3. Each set of triplicate preparations was
measured using full scan mode (MS1) with a single injection (20 μL) for
each ionization mode. The final replicate for each triplicate set was injected

an additional time (with a DDA method to collect MS2 spectra, where
charged monoisotopic masses ([M + H] for positive ion mode and [M-H]
for negative ion mode). DDA was performed independently of the suspect
screening list; after review of theMS-level data, potential detections from the
suspect screen included as a preferred-ions list that were not selected for
fragmentation via DDA were targeted for fragmentation in an additional
injection.

2.3.4 MS2 spectra library preparation
In silico MS2 spectra were generated for each structure stored in

the suspect screening list using the freely available CFM-ID
2.0 algorithm (Allen et al., 2015). The SMILES strings in the
suspect list were used as the input for the CFM-ID algorithm
(https://sourceforge.net/projects/cfm-id), and predictions were
generated using the settings for electrospray ionization, both
positive and negative ion mode, using three collision energies (10,
20, and 40 eV). Predicted spectra were linked to structure metadata
(for example, DTXCID, molecular formula, and monoisotopic mass)
and stored as a database (hereafter referred to as the CFM-ID
database) (McEachran et al., 2019).

2.4 Data processing

TheMS1 data were processed using a series of steps with increasing
scrutiny to filter the data into relevant features. The initial pass of the

FIGURE 3
Preliminary survey of MS1 data to prioritize data processing and analysis of parent compounds. EIC of the parent compounds were used to assess (A)
whether the parent compound was detectable and the quantity of potential metabolites within that dataset, and (B) the fold-change of the parent compound
over the course of the experiment. Parent compounds that were detectable, had relatively high potential metabolite counts, and decreased over the course of
the experiment were prioritized for metabolite identification.
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MS1 data was used to determine whether compounds within the
suspect screening list were present in a parent chemical’s dataset.
Parent chemicals that were both amenable to LCMS and hepatocyte
metabolism were selected for subsequent analysis, where more precise
feature extraction was performed, and custom chemical libraries were
used to annotate those features. Data cleaning steps were used to
further reduce the list of features and calculate relevant statistics.
Finally, MS2 spectral libraries were used to support the annotation of
select features. Data are summarized in Supplementary Table S3: S3-
Hepatocyte_Results_LC_Parents_and_Metabolites.xlsx.

As part of data processing, the quality of theMS1 were evaluated by
tracking the retention time andmass error of each internal standard. A
description of how the quality measurements were recorded and a
summary of the quality data are provided in the Supplementary
Material S8.

2.4.1 Identification of amenable chemicals
Agilent’s Qualitative Analysis software (v. 10.0) was used to

automate the extraction and integration of feature peaks in the
MS1 data as part of the initial evaluation to identify parent
chemicals amenable to the experiment. Features were selected using
a 50 ppm mass window and either [M + H]+ ions for positive-ion

mode or [M-H]- ions for negative-ion mode. Extracted ion
chromatograms (EICs) were manually evaluated and features
present across multiple samples of a single test chemical but absent
in the DMSO vehicle and other samples were flagged as potential
metabolites. Parent chemicals that were not detected by LCMS or
failed to have potential metabolites were excluded from subsequent
analysis.

Parent chemicals undergoing transformations were identified by
calculating the relative change in signal between the 0 h and 4 h time
points. For these calculations, the signal for the 0 h and 4 h time
points is the average peak area of triplicate wells. A subset of six
test chemicals were selected to develop an analysis workflow for
the identification of metabolites. These chemicals were selected
using three criteria: 1) the parent chemical was detected by LCMS
analysis, 2) potential metabolites were present within the dataset,
and 3) a range of metabolic responses were represented by these
test chemicals (that is, these chemicals range between high to low
relative changes over the course of the experiment). The final list
of selected chemicals was: celecoxib (DTXSID0022777), CP-
122721 (DTXSID9047251), curcumin (DTXSID8031077),
dapsone (DTXSID4020371), haloperidol (DTXSID4034150),
and sulindac (DTXSID4023624).

FIGURE 4
Heat map of features identified in the haloperidol dataset. Each row represents a single feature extracted from the MS1 and standardized across all
experimental conditions. Features were annotated using either Agilent’s molecular formula generator, a list of metabolites common to human blood plasma,
or a list of metabolites related to haloperidol (including the parent structure). The annotation source for each feature is outlined by the right-most column.
Features were also clustered into 15 groups (left-most column) based on their distribution across the experimental conditions via a K-means clustering
algorithm.
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2.4.2 Feature extraction and alignment
Agilent’s MassHunter Profinder software (v. B.08.00) was used to

align and recursively extract molecular features from MS1 data. Each
of the six selected test chemicals were processed in batches, where a
single batch included all time points (for example, 0, 1, and 4 h) and
conditions (for example, supernatant, cell pellet, and β-glucuronidase
treated) for the test chemical, as well as the DMSO vehicles measured
across each condition. Triplicate preparations were grouped together
as part of the analysis, and molecular features were extracted if found

in two of the three replicates. Settings for the analysis are provided in
Supplementary Material S4. Lists of extracted features were stored
as.CEF files and used for subsequent analysis.

2.4.3 Molecular formula identification
Extracted features were processed by Agilent’s Mass Profiler

Professional (MPP, v. 15.1), which assigned molecular formula
using two Personal Compound Database Libraries (PCDL) applied
successively (identification settings provided in Supplementary

FIGURE 5
Summary of the structural assignments for each candidate feature selected from the analysis of haloperidol. Confidence in metabolite identification was
assigned using three levels of confidence derived from Schymanski et al. (2014).
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Material S5). The first PCDL was a subset of unique molecular
formulae pulled from the suspect screening list associated with the
parent chemical being processed. The second PCDL was a list of
unique formulae identified in human blood plasma derived from
EPA’s CompTox Chemicals dashboard (https://comptox.epa.gov/
dashboard/chemical-lists/HUMANBLOOD) (Williams et al., 2017).
Features identified by the human blood plasma PCDL were considered
endogenous to the sample and not a transformation product of the
dosed test chemicals, therefore, these features were excluded from
subsequent analysis. Features not annotated by PCDLs were assigned
theoretical formulas using Agilent’s molecular formula generation
algorithm (Supplementary Material S5). Lists of annotated features

and their respective abundance values were exported as ‘peak list’ data
in a.csv format.

2.4.4 Data cleaning
Peak list data were processed using adjusted source code from the

EPA’s NTA WebApp (https://github.com/quanted/nta_app). The
adjusted source code is hosted on GitHub (https://github.com/
USEPA/CompTox-ExpoCast-SSAMetabolism) and performed the
following data cleaning steps: 1) separate data into individual
conditions and time point pairings, 2) remove duplicate features, 3)
calculate summary statistics, 4) remove irreproducible features, 5) flag
adducts, and 6) combine results into summary files. An expanded

FIGURE 6
Summary of identified and unidentified features extracted from the MS1 and MS2 data for celecoxib, dapsone, CP-122721, curcumin, and sulindac. Boxes
surrounding individual structures denote the level of confidence in that assignment as described in Section 2.5.4, and the black line indicates that no features
were identified to correspond to the respective row and column. Because SSA is not optimized for any one compound, our workflow relied on occurrence of
chemical signals in replicate samples and time-correlated changes in signal to filter the signals. In some cases, real chemical detections may have been
lost. For example, no features were identified that corresponded to the sulindac parent structure but multiple isomeric sulindac metabolites are represented
with a Markush structure. Unidentified features include the molecular weight (MW) and formula annotation.
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explanation of the script and data cleaning steps are provided in the
Supplementary Material S6.

2.4.5 In silico MS2 spectra library matching
Positive and negative ion mode MS2 data collected as.d files were

converted into mascot generic files (.mgf) to facilitate in silico library
matching. Features extracted from the MS2 data were compared to the
features-of-interest derived from theMS1 analysis workflow, and the subset of
overlapping features between the datasets were queried against the CFM-ID
database. Comparisons betweenmonoisotopicmasseswere based on an error
window of 10 ppm. Each candidate structure returned from the database
included CFM-ID spectra predicted at 10, 20, and 40 eV collision energies
(CE). Similarity scores were calculated between the experimental MS2 spectra
and each collision energy using a composite dot product (Stein and Scott,
1994), and the resulting scores were summed into a single aggregate value
(Chao et al., 2020). MS2 feature filtering, database querying, and similarity
calculationswere handledusing python scripts hosted on aGitHub repository
(https://github.com/USEPA/CompTox-ExpoCast-SSAMetabolism); a
summary of these scripts are provided in the Supplementary Material S7.

2.4.6 Matched spectra Ranking
Candidate structures for each MS2 feature were ranked using

quotient scores, which were calculated by normalizing all similarity
scores of a candidate feature to the highest similarity score assigned to
that feature (Chao et al., 2020). Quotient scores range from 0 to 1 and
provide a relative comparison across all candidate compounds (having
in silico MS2 spectra) with a precursor mass matching that of a MS1

feature of interest. Matches with a quotient score <.75 were removed
from the data prior to candidate prioritization.

2.5 Data analysis

2.5.1 Statistical analysis
Custom Jupyter notebooks were used to perform additional data

processing steps (for example, data imputation and standardization)

and cluster analysis to select a subset of features suspected to be
metabolites of the test chemical. These notebooks are hosted on a
public GitHub repository (https://github.com/USEPA/CompTox-
ExpoCast-SSAMetabolism). Each script performed a series of steps:
1) remove all features flagged as potential adducts, 2) remove features
that failed to show a fold-change increase beyond a set threshold, 3)
cluster similarly behaving features, and 4) export a list of features
suspected to be metabolites of the parent chemical.

Adduct removal was performed by eliminating all features flagged
with a ‘1’ value in the ‘Is_Adduct_or_Loss’ column. Fold-change
calculations were performed on the reduced feature list to
determine the relative change in abundance between the 0 h
timepoint and later time points (1 h and 4 h) for each test
condition. Data imputations were performed if no abundance
values were measured at a time point: if no values were measured
for the 0 h time point, the maximum measured fold-change for that
condition was imputed for the 1 or 4 h time point. If no abundance was
measured for the 1 h or 4 h time point, the minimum measured fold-
change for that condition was imputed at that time point. Features
were removed from the data if they were not measured in at least two
replicates of a condition and failed to have a fold-change ≥1.5 for one
of those replicates.

After these initial filtering steps, the remaining features were
analyzed using the median background-subtracted values calculated
as part of the data cleaning step (Section 2.4.4). Features that were not
detected at individual time points were imputed with the peak height
threshold used for feature extraction (10,000). The background-
subtracted values were log2-transformed then z-normalized.
Similarly behaving features were clustered using a K-means
clustering algorithm available in the scikit-learn Python package
(Pedregosa et al., 2011). The number of clusters (k) were optimized
for each dosed chemical using the inertia metric (elbow method) and
ranged from 15—20. Clusters that included one or more features
annotated as a metabolite from the suspect screening list were pooled
into a list of features-of-interest. These features represent a
combination of candidate metabolites and unidentified features that

FIGURE 7
Venn diagrams showing the distribution and similarity of metabolites identified from different sources. Numbers indicate how many metabolites match
the conditions of each ellipse. (A) Similarity of metabolites are compared between features measured using the NTAmethod outlined in this work, reported in
literature, and predicted by in silico tools. (B) Metabolites identified as part of the NTA were separated based on the source of the structure (a black line
indicates nometabolites were identified via the NTA). Taking Haloperidol for example, fourmetabolites were reported in the literature, predicted in silico,
and observed. Another four metabolites were reported and predicted, but not observed. One previously unreported metabolite was predicted and observed.
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exhibited similar behavior across the sample conditions and time
points.

2.5.2 Candidate structure prioritization and
assignment

Custom Jupyter notebooks were used to compare structural
assignments between the CFM-ID spectra match and metabolites
in the suspect screening list. Intersecting structures were identified
by looking up InChI keys between the two lists, and the features were
assumed to be a metabolite if a match was found. If no structures were
assigned to a feature of interest through spectra matching, the MS1

level data (for example, accurate monoisotopic mass) were compared
against the suspect screening list.

2.5.3 Manual review of identified structures and
formulae

EICs of each feature of interest were prepared using Agilent’s
Qualitative Analysis software. These chromatograms were manually
reviewed to ensure no degenerate features were included as part of the
reported potential metabolites.

2.5.4 Assign confidence of identified structures and
formulae

Recalling that we only matched features observed to demonstrate
intensity changes over time as incubated with hepatocytes, metabolite
identification was assigned using three levels of confidence derived
from Schymanski et al. (2014): level 2b, a probable structure is
assigned based on favorable matching between the experimental
MS2 spectrum and predicted CFM-ID spectra; level 3, a candidate
structure is assigned based on matches between the structures on the
suspect screening list (that is known or possible metabolites) and the
mass pulled fromMS1 data; and level 5, a feature’s exact mass is known
and a candidate molecular formula was assigned using the molecular
formula generator. 2a was not possible because no metabolites were
present in the reference libraries (i.e., Agilent PCDLs). We note that
our level 3 designations might reasonably be level 4, since that is (by
definition) a match at the formula level; the experimental evidence
supporting a level 3 distinction here depends on the observation of a
time-changing signal for a formula corresponding to a predicted
metabolite in the media where a known parent chemical was
metabolized.

3 Results

3.1 Preparation of a suspect screening list
using in silico tools and literature

The suspect screening list was prepared by combining metabolites
originating from two sources: theoretical metabolites predicted by in
silico tools, and experimentally confirmed metabolites reported in the
literature. Table 1 summarizes the metabolite counts for each parent
compound used in this study and the sources from which those
metabolites were extracted. The metabolites used for the suspect
screening list are provided as a supplementary file (Supplementary
Table S2: S2-metabolite_masterlist.csv), which maps chemical
descriptors for each metabolite (that is, SMILES, formula,
monoisotopic mass) to their parent compound’s substance
identifier (DTXSID). Additional metadata are included for each

metabolite: the source of the metabolite (literature and/or
prediction tool), whether the metabolite is represented as a
Markush structure in literature, and whether the metabolite was
included as part of the MS2 DDA preferred-ions list.

3.1.1 Generation of metabolites using in silico tools
Table 1 summarizes the number of predictions generated for each

parent compound using four in silico tools: BioTransformer, Meteor,
TIMES, and QSAR Toolbox. These models simulated reaction
pathways including Phase I metabolism (oxidative, reduction, and
hydrolysis) and Phase II transformations (including glucuronidation,
glutathione conjugation, sulfation, and N-acetylation). The QSAR
Toolbox and TIMES models include over 600 biotic and abiotic
reactions commonly seen in xenobiotic metabolism.
BioTransformer predicted the greatest number of metabolites (827),
followed by Meteor (714), the Toolbox (316), then TIMES (132). Of
the 1989 total predicted metabolites, 1,668 of these structures were
unique with 581 predictions (~30% of total predictions) overlapping
between the different models. Figure 2 shows the number of
overlapping predictions between each software application. The
information presented in Figure 2 can be used to assess similarity:
721 (87%) of BioTransformer’s predictions were not replicated by
other software, whereas Meteor, Toolbox, and TIMES predicted 540
(76%), 126 (40%), and 21 (7%) unique metabolites, respectively.
BioTransformer and Meteor were the most dissimilar models, with
the majority of predictions being unique to their respective models.
TIMES and the Toolbox showed the greatest overlap, with 62% of
TIMES’s predicted metabolites (82 in total) overlapping with those of
Toolbox. The similarity between these software applications is
unsurprising, as they share a common knowledge base developed
by the Laboratory ofMathematical Chemistry (LMC, University “Prof.
As. Zlatarov”, Bourgas, Bulgaria). Comparisons between the different
models used in this study are in concordance with previous efforts
comparing the performance of in silico metabolite predictions tools
(Boyce et al., 2022). Using several prediction models to prepare the
suspect screening list expands the chemical space being monitored for
each test chemical. By prioritizing chemical coverage, we limit the
possibility of missing identifications from the in vitro analysis. As
such, all predicted metabolites were included in the suspect screening
list prior to the MS2 DDA.

3.1.2 Curating metabolites reported in literature
Table 1 summarizes the distribution of metabolites identified in

the literature for each of the dosed compounds. A total of
234 metabolites were extracted from literature, with
225 represented as discrete structures and the remaining 9 reported
as Markush representations. These Markush structures were
enumerated and mapped to 43 discrete child structures prior to
incorporation into the suspect screening list. Unique identifiers
(DTXSIDs) were generated for each reported metabolite and the
Markush children were given the same DTXSID to maintain their
relationship to a common parent structure. Metabolites identified by
in vitro and in vivo human metabolism studies were always prioritized
for inclusion into the suspect screening list; however, metabolites
identified by in vitro or in vivo studies using rats, mice, or dogs were
included if no human data were available. Of the 33 parent compounds
investigated in this study, no reported metabolites were included for 2-
nitrotoluene, 3,5-dinitroaniline, butylated hydroxytoluene, or lindane.
While there are studies that identify metabolites for lindane (Fitzloff
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et al., 1982), 2-nitrotoluene (DeBethizy and Rickert, 1984) and
butylated hydroxytoluene (Conning and Phillips, 1986), these
articles were not identified by the authors prior to generation of
the MS2 spectra suspect screening library.

3.1.3 Combining metabolite data and summary of
the suspect screening list

Figure 2 summarizes the overlap between metabolites reported in
literature with those predicted by software, in which 75 (32%) of
reported metabolites were predicted by some combination of in silico
tools. Conversely, these data show that there were 159 metabolites
previously observed in the literature, not counting individual Markush
children, that were not predicted in silico. The literature metabolites
were added to the suspect screening list to augment the in silico
predictions. As previously noted in Section 2.2.3, metabolites reported
in literature were not included as part of the DDA preferred-ions list;
therefore, these 159 metabolites were only available for identification
in MS1 data.

3.2 Identifying parent compounds
undergoing in vitro metabolization by human
hepatocytes

MS1 data collected for each of the starting chemicals were analyzed
to examine the extent of metabolization over the course of the 4-h
study. Representative spectra for each chemical are provided via
GitHub at https://github.com/USEPA/CompTox-ExpoCast-
SSAMetabolism/blob/main/Data/Hepatocyte_Mass_Spectra_LC.
pptx. Of the starting chemicals, only 12 were measured in at least one
sample in either positive or negative ion mode. The relatively low
number of measured parent ions is unsurprising, as these chemicals
were selected to represent a broad range of physicochemical properties
and cover regions not commonly amenable to LC-ESI-MS. These
properties include relatively high vapor pressure (for example,
acetone, isopropanol, 4-methyl-2-pentone) or a lack of strong
intramolecular dipole (for example, BDE-209), which are both
correlated to poor electrospray ionization efficiency (Kiontke et al.,
2016). GCMS analysis was used as an orthogonal method to analyze
features not amenable to LCMS, and the full analysis of these data is
pending.

Potential metabolites were identified for 17 of the starting
compounds, which included all 12 of the parent compounds that
were measurable by LCMS. The increase in the number of samples
with possible metabolites (17) relative to measurable parents (12) is
expected, as the metabolism of xenobiotic substances often increases
the polarity of the substance which improves ionization efficiency for
MS detection. The subset of parent chemicals with potential
metabolites are outlined in Figure 3A.

The depletion of the parent chemicals over the course of the
in vitro assay was evaluated by comparing the fold-change difference
in peak area between the start and end of the experiment (Figure 3B).
Fold-change calculations for the cell pellet and supernatant involve
both the metabolism and partitioning of the parent chemical between
the two conditions. The total abundance (sum of the peak intensities
for the cell pellet and supernatant samples) was calculated to provide a
generalized readout of overall metabolism without the need to account
for partitioning. The parent chemicals that were both measurable by
LCMS analysis and had potential metabolites were ranked by their

degree of depletion, from least to most depleted: 2-amino-5-
azotoluene (DTXSID1020069), dapsone (DTXSID4020371),
sulindac (DTXSID4023624), CP-122721 (DTXSID9047251),
zileuton (DTXSID9023752), haloperidol (DTXSID4034150), 3,5-
dinitroaniline (DTXSID40210803), bisphenol A (DTXSID7020182),
benzyl butyl phthalate (DTXSID3020205), curcumin
(DTXSID8031077), and celecoxib (DTXSID0022777) (Figure 3B).
Of these compounds, dapsone and 2-amino-5-azotoluene exhibited
total abundance values >1 (1.05 and 1.75, respectively). The increase in
signal of 2-amino-5-azotoluene is accompanied by high relative
standard deviations for intra-condition measurements, exceeding
110% for the 0-h cell pellet sample. Manual inspection of these
data confirmed the presence of aberrant peaks in at least one of
the replicates of the 0-h samples; however, peak shapes improved at
later time points and were the cause for the increase in relative
abundance over the course of the experiment.

3.3 Developing an analysis workflow to
identify metabolites: Haloperidol as a case
study

Metabolite identification was performed by: 1) processing the MS1

data to extract and annotate molecular features, 2) filtering the data to
remove features that are unlikely to be metabolites of parent
compounds, 3) analyzing remaining features to identify clusters
that correspond to metabolites (known or predicted) of the parent
compounds; and 4) comparing MS2 spectra of the clustered features
against an in silico MS2 library to assign probable structures. Many
decisions had to be made throughout the analysis workflow. For
example, the parameters for feature selection and annotation, the
criteria for removal of irrelevant features, and choice of k-means
cluster optimization. Due to this complexity, a candidate compound
was needed to develop the analysis methodology before application to
other dosed compounds. Haloperidol was selected as the candidate
compound due to its highest observed number of potential metabolites
in the initial survey of MS1 data (Figure 3A). Haloperidol also exhibits
a moderate degree of metabolism (~35% decrease of parent
compound) over the 4-h incubation (Figure 3B).

3.3.1 Feature extraction and annotation
Recursive feature extraction of the samples treated with

haloperidol MS1 data found 697 features in positive ion mode and
1,164 features in negative ion mode. Eleven features were annotated as
potential matches to structures in the suspect screening list—seven in
positive mode and four in negative mode. Of these annotations,
C21H23ClFNO2 (haloperidol) was reported in positive mode and
only one feature—C27H31ClFNO8 (glucuronidated haloperidol)—
was reported in both ionization modes. The remaining eight
features had unique molecular formulae assigned to them.

Cleaning the data removed duplicate and irreproducible features,
as well as features flagged as adducts, and reduced the total of features
to 529 when summed across both the positive- and negative-ion mode.
The cleaning process removed one feature that had been annotated as
a suspected metabolite of haloperidol, leaving ten remaining features
annotated as either haloperidol or an associated metabolite. Figure 4
displays a heat map of all the features in which each row represents a
single feature extracted from the MS1 data. The large number of non-
parent or metabolite features in Figure 4 likely stem from changes in

Frontiers in Toxicology frontiersin.org13

Boyce et al. 10.3389/ftox.2023.1051483

https://github.com/USEPA/CompTox-ExpoCast-SSAMetabolism/blob/main/Data/Hepatocyte_Mass_Spectra_LC.pptx
https://github.com/USEPA/CompTox-ExpoCast-SSAMetabolism/blob/main/Data/Hepatocyte_Mass_Spectra_LC.pptx
https://github.com/USEPA/CompTox-ExpoCast-SSAMetabolism/blob/main/Data/Hepatocyte_Mass_Spectra_LC.pptx
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2023.1051483


the expression of endogenous metabolites between hepatocytes dosed
with either the vehicle control or haloperidol. Analysis of endogenous
metabolites is outside the scope of this research; however,
identification of these features could provide insights to the
relationship between xenobiotic exposure and downstream
metabolic pathways.

3.3.2 Additional filtering to remove features with
aberrant behavior

Metabolites of haloperidol were expected to increase with time. As
such, features that failed to show an increase in abundance over the
course of the experiment (relative to the 0-h timepoint) were
incongruent with the expected behavior of a haloperidol
metabolite. Features that were not annotated by the PCDL
associated with haloperidol metabolites were removed from the
data if they failed to meet two criteria: 1) have a fold-change
increase, relative to the 0-h time point, greater than or equal to
1.5 in at least one time point, and 2) be detected in at least two
time points across the time series. A total of 170 features met these
criteria, with six of these features annotated by haloperidol’s
suspect list.

3.3.3 K-means cluster analysis to identify groupings
of potential metabolites

Features that exhibited similar trends across time and conditions
were grouped into 15 clusters using the k-means clustering algorithm.
The cluster assignment, annotation source, and standardized signal for
each feature are visualized in Figure 5. Features annotated by the
Human Blood Plasma PCDL were removed from subsequent
identification steps, as these features were annotated as endogenous
metabolites and not a transformation product of haloperidol. The
feature annotated as haloperidol was present in cluster 9, and five
features annotated as haloperidol metabolites were partitioned
between clusters 8 and 13. Five additional features annotated with
molecular formula and not associated with known or predicted
metabolites of haloperidol were also included in clusters 8 and 13.
Clusters 2 and 5 contained features that were predominantly measured
in the cell pellet, while clusters 4, 10, and 12 contained features that
were predominantly measured in the β-glucuronidase-treated
samples. Interestingly, features present in clusters 2 and 4 were not
detected at t = 0, which suggests these features are metabolic products
that developed over the course of the experiment.

3.3.4 Structure assignment using an in silico library
of MS2 spectra and suspect screening list

Eleven features were selected as candidate features because they
were: 1) annotated by the suspect list and labeled as either haloperidol
or a metabolite of haloperidol, or 2) exhibited similar distributions
across samples as the annotated metabolites of haloperidol,
determined through the cluster analysis. Ten of these features
associated with metabolites of haloperidol and one feature was
annotated as haloperidol itself. These candidate features were
carried forward as features-of-interest for MS2 spectral matching.

The precursor masses of the eleven haloperidol candidate features
were queried against the in silico MS2 library to identify matching
spectra. Of the eleven queried masses, eight were present as precursor
ions in the database and returned 469 candidate structures. Spectral
comparisons were performed between each match and candidate
structures were ranked according to their quotient scores. The

highest ranked match for each feature that corresponded to
haloperidol-related compounds within the suspect screening list
was assigned as the probable structure for that feature. In all cases
of structure assignment, the structures were congruent with the
formula annotations assigned by the MS1 analysis and each
annotation was provided using the suspect screening list. No
isomers were present within the list of haloperidol-related
substances, so these assignments represent discrete structures.
Structural assignments using the MS2 library represent the highest
degree of confidence provided by this analysis and correspond to a 2b
confidence level (probable structure) intended to be consistent with
the confidence communication guidelines suggested by Schymanski
et al. (2014). Four structures were assigned using this approach:
n-dealkylated haloperidol (C11H14ClNO2), reduced haloperidol
(C12H23ClFNO2), haloperidol (C12H25ClFNO2), and glucuronidated
haloperidol (C27H31ClFNO8).

Having assigned identities with level 2b confidence to 4 of
11 haloperidol candidate features, there remained seven candidate
features that were not assigned structures using the in silico library. For
these seven features no precursor masses were present in the library
within the 10 ppmmass error window of the candidate structures. It is
important to note that the suspect screening list was updated with
structures reported in literature after the generation of the in silico
spectra library. This discrepancy can lead to structures annotated by
the suspect list but not identified via MS2 spectral matching.
Annotated formulae of the features missing from the in silico
library were cross-referenced against the list of haloperidol-related
compounds as a follow-up to identify candidate structures. No
structural isomers were present within the suspect list, so these
assignments are represented by discrete structures. Reliance on MS1

data and the suspect screening-list limits the confidence of these
assignments to tentative structures. We determined that these
assignments correspond to a confidence level of 3. We justify this
assignment on the basis that 1) the masses match to known or
predicted metabolites and 2) we have required that the features
increase with time. We believe that these two lines of evidence
provide orthogonal experimental confirmation of identity. Two of
the candidate features had formulae that were captured in the suspect
list—pyridinium haloperidol (C21H24ClFNO2

+), and reduced
haloperidol with a piperidine ring (C21H20ClFNO2

+). The
pyridinium metabolite was annotated by the suspect screening list
during the initial MS1 analysis, whereas the reduced metabolite with
piperidine ring was annotated using Agilent’s molecular formula
generator.

Having assigned identities with level 3 confidence to two
haloperidol candidate features, there remained five candidate
features that were not assigned structures using MS1 or MS2 data.
While these features have formula annotations, these annotations were
generated by Agilent’s molecular formula generator. It is unclear the
degree of confidence that can be assigned these annotations, so these
formulae are considered tentative and correspond to a confidence level
of 5. A summary of the annotated structures, confidence levels, and
sample distributions are provided in Figure 5.

3.4 Analysis of additional compounds

A subset of additional test chemicals was selected to evaluate the
application of the above methodology to other test cases. These
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compounds were selected from the test chemicals outlined in
Figure 3B, with the additional criteria of requiring the parent
chemicals to exhibit varying degrees of metabolites to ensure the
method is extensible to chemicals undergoing both high and low
degrees of metabolism. Celecoxib (DTXSID0022777), curcumin
(DTXSID8031077), and CP-122721 (DTXSID9047251) provide
representative examples of chemicals that undergo varying degrees
of metabolism. Dapsone (DTXSID4020371), and sulindac
(DTXSID4023624) show little to no metabolism of the parent
chemical. These chemicals were used evaluate whether metabolites
can be identified for poorly metabolized parent chemicals. Figure 6
summarizes the structural assignments and confidence levels
identified as part of this analysis. Parent structures for four of the
starting compounds were identified via MS2 spectra. Results for each
compound are summarized below.

3.4.1 Celecoxib
Nine candidate features were extracted from the MS1 dataset with

one feature annotated as the parent compound and one feature
annotated as a suspected metabolite of celecoxib. Comparisons of
the MS2 spectra corroborated the identification of the parent
compound; however, no identifications were found for the
remaining MS2 features based on the screening list. The formula of
the suspected metabolite was queried against the suspect screening list,
and one structure was returned: celecoxib after carboxylation of the
toluene moiety. The remaining seven features were unidentified.

3.4.2 Dapsone
One candidate feature was extracted from the MS1 dataset, which

corresponded to the parent compound. Identification of this feature
was corroborated by comparison against the MS2 spectra.

3.4.3 CP-122721
Three candidate features were extracted from the MS1 dataset,

which include a feature annotated as the parent compound and one
annotated by the suspect screening list. MS2 comparisons confirmed
the parent compound, but no suspected metabolites were identified for
the suspected metabolite. Only a single candidate structure was
returned by the library, and it was not a valid metabolite of CP-
122721. Queries against the suspect list were used to assign a tentative
structure: N-dealkylation of CP-122721.

3.4.4 Curcumin
Though (Lou et al., 2015) found that curcumin and many of its

metabolites are detectable with LCMS, our SSA workflow only
confirmed presence of the parent compound. Several curcumin
metabolites were included in the suspect list. There were two LCMS
signals reported specific to the curcumin sample set with the same
molecular formula as the parent. One of the potential metabolites in the
suspect screen list had the same molecular formula as the parent so it
was plausible one is the parent, and one is a metabolite. There were four
signals reported as matching the metabolite list and specific to the
curcumin sample set. There was one signal noted as specific to the
curcumin sample set but not on the suspect screen list. However, the
standardized workflow used here filtered out signals that did not to
change with respect to time. Some known curcumin metabolites were
present at time zero and the signal (concentration) did not change with
time. Other knownmetabolites were detected at one and 4 h at the same
concentration, possibly indicating metabolism faster than 1 h. Only

curcumin itself passed the checks of our workflow and was extracted
from the MS1 dataset. Comparisons of MS2 spectra corroborated the
identity of this structure.

3.4.5 Sulindac
Five candidate features were extracted from the MS1 dataset of

sulindac: one feature was annotated as a suspected metabolite via
sulindac’s PCDL, and the remaining were annotated via Agilent’s
molecular formula generator. No structures were assigned via MS2

structural comparisons; however, querying the molecular formula of
the suspect metabolite (C20H17FO5S) against the suspect screening list
identified 44 potential isomers. Of note, this structure corresponds to
the occurrence of two oxidation events, which has not been reported in
literature but was predicted by in silico tools. The Markush
representation is provided in Figure 6.

3.5 Comparison of metabolites identified
in vitro to those reported in literature and
predicted by in silico tools

Figure 7A highlights the similarity between the candidate
metabolites extracted via the SSA method described in this work
and metabolites that were reported by literature or predicted by in
silico tools. In all cases except celecoxib, which had six level 5 features
potentially unrelated to the parent (see Figure 6), the total number of
metabolites reported in literature were greater than the candidate
features identified by this study. This is particularly true of curcumin
and dapsone, where no metabolites were identified. These results
suggest that the methodology outlined in this work is less sensitive
than those summarized in literature. Afterall, the analytical techniques
used were not optimized for a single family of chemicals but were kept
general to emphasize analysis throughput across a wide range of
chemical space. Eight candidate features were assigned structures
that overlapped with literature and/or in silico predictions, with
two structures not previously reported in literature: reduced
piperidine haloperidol, and doubly oxidized sulindac. Of the eight
assigned structures, there were no instances where metabolites were
reported in literature but not predicted by in silico tools.

The distribution of assigned metabolites across the in silico tools are
outlined in Figure 7B. BioTransformer predicted structures for five of
the candidate features, with one feature (reduced piperidine
haloperidol) predicted solely by BioTransformer. Meteor had the
highest number of structural assignments, six, with one assignment
(n-dealkylated CP-122721) predicted by no other in silico tools. TIMES
and the Toolbox predicted five and four structures, respectively, with
neither identifying metabolites unique to that software.

4 Discussion

The public is potentially exposed to thousands of chemicals that
are present in commerce and the environment (National Academies of
Sciences, Engineering, and Medicine, 2017). Many of these chemicals
have yet to be investigated for health effects. Once inside the body,
both the chemicals themselves as well as any xenobiotic metabolites
formed have the potential to alter health; but in most cases we do not
know what metabolites may occur. Metabolite prediction tools can
suggest plausible metabolites that might be formed but these tools
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have a tendency to predict more metabolites than occur (Boyce et al.,
2022). In vitro methods allow for the generation of new data on the
formation of metabolites but have typically been limited by the need
for targeted chemical analysis to quantify the presence of specific
metabolites, slowing the discovery of novel metabolites. NTAmethods
have the potential to enhance in vitro metabolism studies but require
methods to assign structures/identities to the observed chemical
features given that no chemical data may currently exist for novel
metabolites. When applied to metabolism studies, NTA has the
potential to identify multiple previously unknown metabolites
simultaneously, but because we have data gaps in all these steps,
we need a discovery-oriented workflow with the goal of identifying
potential health risks.

Chemicals in commerce and the environment can require
metabolic data regardless of whether those chemicals are amenable
to a particular measurement methodology. The LCMS analysis
reported here was conducted in parallel with a yet unreported gas-
chromotography mass-spectrometry (GCMS) analysis. The
33 chemicals were selected to provided representative coverage of
the range of chemicals potentially of interest such that limitations in
the methodology were clearly illustrated.

Here we have developed an SSAmethod to characterize xenobiotic
metabolite formation using in vitro metabolism assays. The methods
outlined in this study are intended to provide a framework for using in
silico prediction tools to identify xenobiotic metabolites. We
investigated 33 test chemicals using LCMS SSA and demonstrated
how in silico tools can be used to guide the identification of
metabolites. We first report on the amenability of the test
chemicals to LCMS (that is, we identify which test chemicals were
detected by LCMS and whether possible metabolites were also
detected in those samples). The NTA features were first limited to
a suspect screening list generated with in silico metabolism predictors
informed by the parent chemical structures. We then implemented a
data processing workflow that aligned spectra, annotated features as
suspected metabolites, and removed duplicate or highly variable
features. The remaining features were clustered on time-varying
kinetics, and clusters containing suspected metabolites were
selected for spectral comparisons against a library of predicted MS2

spectra. We demonstrated the development of this workflow using
haloperidol as a case study, then applied this method to five additional
test chemicals with varying metabolic behaviors: celecoxib, curcumin,
CP-122721, dapsone, and sulindac.

The metabolic assay examined here (suspension of primary
human hepatocytes pooled from multiple donors) is just one of
many in vitrometabolism methods available (Moreau et al., 2022).
However, primary hepatocyte suspensions are a well
characterized method (Shibata et al., 2002; Gouliarmou et al.,
2018; Bowman 2019). Both pharmaceutical companies and
regulatory agencies have made extensive use of this assay
(Hewitt et al., 2007; Breen et al., 2021). Therefore, the
limitations of the assay are well known (Gouliarmou et al.,
2018). Limitations include a short period of time for
measurement (thus reducing accuracy for compounds with
slow metabolism) and the lack of metabolic pathways such as
those present in more tissue-like (confluent) conditions. But
perhaps the greatest limitation is common to most metabolic
assays: the need to develop a chemical analysis method sensitive
to each parent chemical and metabolite (Tolonen and Pelkonen,
2015). That is, while the hepatocyte suspension in vitro assays

themselves are relatively high throughput, the chemical analysis is
not. A hope for the application of SSA methods to data generated
from these assays was that we might address chemical analysis
limitations.

If the chemical analysis method is well matched to detect both the
parent chemical as well as most of its metabolites then it works, as
shown with haloperidol. However, we have clearly demonstrated that
there is no “one-size-fits-all” approach to SSA metabolism studies given
the limitations of the particular method (for example, LCMS is unlikely
to detect volatile compounds) (Vinayavekhin and Saghatelian, 2010;
Dunn et al., 2013). As shown by Figure 3, we observed cases where
decrease in the parent was detected, but no metabolites were observed
and where metabolites were detected, but not the parent chemical
itself–ideally, we need both. Of the 33 starting chemicals, only
12 were measured by LCMS in at least one sample in either positive
or negative ion mode, and 17 produced measurable metabolites. The
absence of detectable species can stem from several causes: low
metabolite concentrations due to poor metabolic activity, limited
detection due to poor ionization efficiency or incompatibility with
LCMS detection, or poor retention of the species using the outlined
chromatographic method. The formation of reactive metabolites will
also limit the detection of metabolic products, as these species are often
short lived and readily bind to macromolecules. Without the use of
reactive metabolite scavengers (Ma and Subramanian, 2006), these
molecules will go undetected using the outlined SSA method.

As applications of NTA continue to grow, spectral libraries will need
to be expanded to include commonly occuring xenobiotic chemicals and
their metabolites. Existing metabolic information tends not to be
organized for informatics, that is, made available in a machine
readable, database format, (for example: Maurer et al. (2008);
Hodgson (2012)). The methodology developed in this study was
applied to a selection of parent chemicals that showed a variable
range of metabolism. Twenty-five potential metabolites were selected
for six of the starting compounds, including twenty not previously
reported. Novel or poorly characterized chemicals are often absent from
spectral libraries due to a lack of reference spectra. The combination of
in silicometabolism predictors and SSA facilitated the detection of these
potentially novel metabolites. The chemicals identified are intended to
provide a first step toward generating the sorts of information needed to
make NTA more useful to regulatory science.

The hepatocytes used in the in vitro assay were pooled from multiple
donors to provide typical levels of expression across the enzymes found in
the liver (as verified by the vendor, Thermo Fisher). The in vitro system is
an imperfect representation of in vivo hepatic metabolism: the expression
level of metabolizing enzymes in hepatocytes vary depending on
individual genetics, chemical exposure history, and location of the
hepatocyte within the liver acinus. Beyond the liver, extra-hepatic
metabolic pathways exist and would not be captured by the in vitro
system used. Therefore, it is to be expected that some metabolites formed
in vivo would not be observed using in vitro hepatocytes and other
metabolites observed in vitro may be overrepresented relative to those
formed bymechanisms that are not present in the assay system used here.

The confirmed detection of a predicted metabolite, or tentative
identification of a novel metabolite, can inform both the metabolic
pathways and biomarkers of effect. Here we have focused onmetabolic
pathways because we 1) wished to identify groups of chemical analogs
that form similar metabolites and 2) made use of an in vitro system
(primary hepatocytes) that, while biologically relevant, does not cover
all relevant toxicological adverse outcome pathways. The
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identification of chemical surrogates, potentially based on
toxicokinetic similarity, helps address large data gaps in public
health risk assessment. For example, TK is one of three aspects
considered by the Wang et al. (2012) chemical read-across
framework for screening-level risk assessment of Superfund
chemicals. Metabolic pathways have also been considered when
selecting surrogate chemicals for read-across (Wang et al., 2012;
Patlewicz et al., 2019), as similar metabolic pathways indicate
similar detoxification processes.

Rapid identification of metabolites for xenobiotic substances
might be used to help fill data gaps in risk assessment. Our tested
chemicals included four test cases with the potential to inform
chemical read-across based on metabolites. Unfortunately, most
of the chemicals initially intended to serve as chemical analogs to
each other were not detected using this methodology. One
collection of analogs included 3,5-dinitroanline, 2-nitroaniline,
3-nitroaniline, and 4-nitroaniline. The parent compounds 3,5-
dinitroaniline and 4-nitroaniline were detected, but not the 2-
nitroaniline and 3-nitroaniline. Metabolite features were detected
for 2-nitroaniline and 3-nitroaniline, but manual review of these
data could not identify predicted metabolites that corresponded
to the observed features and the data were not analyzed further.
For the other three cases with expected similar (or divergent)
metabolism we ran into methodological challenges both with
amenability of compounds to in vitro metabolism assay
(volatility) and amenability to chemical analysis method
(LCMS). No comparisons were possible for the other three sets
of chemicals. The parent compound was not detected with LCMS
for either methyleugenol or estragole, and no metabolites for
estragole. Neither the parent nor any metabolites were detected
for 2-nitrotoluene and 4-nitrotoluene. Neither parent nor any
metabolites were detected for any of 4-methyl-2-pentanol, 4-
methyl-2-pentanone, isopropanol, and acetone. These results
highlight the difficulty of measuring small molecules
(<100 MW) and molecules without polar moieties via LCMS
and emphasize the need to include orthogonal methods for
detection of a wider chemical space.

GCMS analysis was used as an orthogonal method to analyze
features not amenable to LCMS, and further analysis of these data are
pending. The preliminary GC data suffered from multiple limitations:
First, GC is less sensitive in general than LC (for example–we only
inject 1 µL of sample versus 20 µL on LC). Second, the GC-
amenable chemicals tend to be more volatile. We assume that
this volatility makes it more likely that there was greater loss of
these compounds throughout the experimental process. For
example. The GC-amenable chemicals may have partially
outgassed during the in vitro metabolism assays. In some
cases, there is evidence of evaporation between the
performance of the in vitro metabolism assays and the analysis
of the samples. If one was to repeat this work and target GC-
amenable compounds, an increase in the parent concentration
plus storage using sample containers designed to minimize
volatile losses should be considered (Speen et al., 2022).

Among the compounds that were amenable to LCMS, the in vitro
metabolism of haloperidol has been well characterized in human liver
microsomes (Fang et al., 2001). Six primary metabolic intermediaries
or endpoints are known: glucuronidated haloperidol (G-HP),
n-dealkylated haloperidol (4-(4-chlorophenyl)-4-hydroxypiperidine,
CPHP), haloperidol tetrahydropyridine (HPTP), haloperidol

piperidine (HPP+), reduced haloperidol (RHP), and reduced
haloperidol piperidine (RHPP+). Four of these chemicals (HPP+,
RHPP+, and HTPT) have been shown to have increase affinity
towards serotonin transporters as compared to the parent chemical
(Wright et al., 1998). One pharmacologically relevant species (HPP+)
was identified as part of the SSA, and an intermediate to RHPP+
(HRP) was also identified. Of five additional chemicals analyzed in
depth, suspected metabolites were identified for celecoxib, CP-122721,
and sulindac.

This study demonstrates that SSAmethods can provide a means to
rapidly identify and characterize metabolites of xenobiotic chemicals if
the SSA methods used are well matched to the parent chemical and its
key metabolites. Initial selection of the study chemicals prioritized a
wide range of physiochemical properties and did not account for
LCMS compatibility. Here we have highlighted the difficulty of
applying a generalized analytical method for the characterization of
a wide chemical space. However, improvements can be made to refine
the approach used here to make it more flexible and applicable for the
evaluation of industrial and environmentally relevant chemicals. For
example, incorporating additional methods of detection, such as
GCMS, would improve the coverage of measurable species. Using
amenability models for the chemical analysis method being employed
(for example Lowe et al. (2021)), if available, would improve future
studies by increasing the fraction of the tested chemicals and their
metabolites that are compatible.
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