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Several devastating experiences with extreme natural disasters demonstrate that
improving power system resilience is becoming increasingly important. This paper
proposes a pre-disaster transmission maintenance scheduling considering network
topology optimization to ensure the power system economics before disasters and
power system resilience during disasters. The transmission line fragility is
distinguished and considered in the proposed optimization model to determine
the maintenance scheduling of defective lines that minimizes load shedding during
disasters. The proposed model is established as a tri-level optimization problem that
is further reformulated to a bi-level problem utilizing duality theory. The column-
and-constraint generation (C&CG) algorithm is employed to solve the equivalent
robust optimization problem. Finally, the proposed model and its solution algorithm
are implemented on the modified IEEE RTS-79 system. The significant cost savings
and increased resilience illustrate the effectiveness of the proposed model.
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1 Introduction

The power system is an indispensable part of modern society. Ensuring the normal
operation of the power system is an important prerequisite for maintaining social stability
and developing the national economy. In recent years, affected by global climate change, the
frequency of extreme natural disasters such as blizzards, floods, and typhoons has increased
year by year. Extreme natural disasters pose a major challenge to the safe and stable operation of
the power system. In 2016, Typhoon Meranti affected millions of electrical power customers in
Fujian, China, with a direct economic loss estimated to reach up to 21 billion RMB. Typhoon
Laura wreaked havoc on Entergy’s power grid, causing around 600,000 outages and impacting
over 900,000 customers in 2020 (NOAA National Centers for Environmental Information
(NCEI) U.S. 2021). To lessen the associated economic losses, power system operators and
academics are investigating strategies to enhance power system resilience against devastating
disasters.

Previous studies concentrated on three primary areas: resilience-oriented planning,
response, and restoration (Mahzarnia et al., 2020; Force et al., 2022). Resilience-oriented
planning improves power system resilience in the face of extreme weather events by
upgrading the physical structure or enhancing supporting facilities, such as transmission
(and generation) defense expansion (Moradi-Sepahvand et al., 2022) and transmission
defense hardening (Zhang et al., 2022). These approaches can provide favorable situations
for response and restoration during disaster and post-disaster stages. Preventive response
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(e.g., defensive islanding (Panteli et al., 2016)) and emergency
response [e.g., real-time dispatching of generation units (Zhang
et al., 2022) and energy storage units (Hosseini and Parvania 2022)]
are two types of resilience-oriented response. The former one is to
predict extreme weather events and take some measures in advance
to reduce their impact on the power system. It differs from
resilience-oriented planning in the timescale. The latter one is
mainly to take measures against power equipment failures during
disasters to reduce the correlated impact. Resilience-oriented
restoration has three primary steps, namely black-start (W. Sun
et al., 2011), network reconfiguration (Yan et al., 2022), and load
restoration (Jamborsalamati et al., 2020). The objective of the first
two steps is to reestablish the electrical connection between power
equipment. The last step mainly focuses on cold load pickup while
adhering to grid technical limitations. Noteworthy, the
aforementioned steps can be performed concurrently, hence
speeding up the restoration process (L. Sun et al., 2019;
Ganganath et al., 2018).

So far, there are relatively few studies on power system preventive
response. The commonly used preventive response is to predetermine
the appropriate network topology to mitigate the impact of disasters.
Panteli et al. (2016) proposed a defensive islanding strategy against
typhoon disasters. Specifically, it partitions the network into several
stable, self-sufficient islands, isolating components with high failure
probabilities, thereby enhancing power system resilience. In reference
(Huang et al., 2017), some high-risk transmission lines will be taken
out of operation in advance. Xiang et al., (2022) proposed a more
comprehensive defensive islanding framework, which considered the
impact of strong wind while considering the impact of heavy rain
during typhoon disasters.

Besides, the pre-deployment of mobile generation units before
disasters is also an effective measure to improve power system
resilience. Gao et al. (2017) modeled the power generation resource
allocation problem as a stochastic mixed integer non-linear
optimization problem and used a heuristic algorithm to solve it.
The impacts of transportation costs, the initial position of mobile
generation units, and typhoon severity on resource allocation plans
were discussed. The vehicle routing problemwas incorporated into the
power generation resource allocation problem Lei et al. (2018). The
vehicle routing problem and power generation resource allocation
problem were solved through Dijkstra shortest path algorithm and
decomposition algorithm, respectively.

However, the above research does not pay attention to the status of
the component itself. In fact, the health status of components in power
systems is usually different. The defective components are more likely
to fail during disasters than normal components. Thus, pre-disaster
maintenance can be undertaken to reduce component fragility so that
power system resilience can be improved prior to a weather-related
event (Wang et al., 2017). Additionally, the costs of preventive
measures should be taken into account. A satisfactory decision will
be achieved based on a comparison of costs and benefits.
Consequently, some cost-reduction methods need to be adopted.

This paper proposes a preventive transmission maintenance
scheduling (TMS) model against extreme weather events. The
proposed model is formulated as a tri-level robust defender-
attacker-defender (DAD) optimization problem. Both power system
economics during pre-disaster maintenance and power system
resilience during disasters are considered in the proposed model.
According to previous research (Fisher et al., 2008; Heidarifar and

Ghasemi 2016; Li et al., 2019), network topology optimization (NTO)
can be used to ensure the secure and economical operation of the
power system. Thus, NTO is incorporated into the maintenance
problem to improve power system economics in the first level.
Then, considering that the lines may still be damaged by disasters
after maintenance, the defective lines and normal lines are
distinguished by setting different attack resource consumption
during disasters in the second level. Further, the tri-level
optimization problem is converted into an equivalent bi-level
mixed integer linear programming by transforming the max-min
structure existing in the second and third levels into a single-level
optimization problem. A highly efficient algorithm called the column-
and-constraint generation (C&CG) algorithm (Zeng and Zhao 2013)
is employed to derive the optimal maintenance decision.

The major contributions of our work are as follows:

1) A novel tri-level DAD optimization model is proposed to
select defective lines and schedule their maintenance periods.
The proposed model can distinguish the fragility of different
lines during disasters so that the obtained decision is more
practical.

2) NTO is employed in pre-disaster transmission maintenance to
improve power system economics due to its ability to adjust power
flow to increase the utilization of some important lines.

The remainder of this paper is organized as follows. Section 2
describes the mechanism of NTO. Section 3 establishes the proposed
tri-level robust optimization problem. Section 4 reformulates the
problem into a bi-level problem and introduces the C&CG
algorithm. The results and analysis for the modified IEEE RTS-79
system are discussed in Section 5. Section 6 concludes the paper.

2 Mechanism description of NTO

High-voltage substations are essential infrastructures that transfer
electrical power of different voltage levels from the side of the power
source to the side of the customers. NTO is employed to modify the
connection positions of different components by changing the circuit
breaker (CB) status inside the substations. As shown in Figure 1, take
the breaker-and-a-half substation arrangement as an example to
illustrate the mechanism of NTO.

FIGURE 1
Breaker-and-a-half substation arrangement.
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There are two busbars normally energized in the breaker-and-a-
half arrangement. Three CBs in a bay are employed to electrically
connect these two busbars, and a circuit exists between each two CBs.
In this configuration, three CBs are utilized for two independent
circuits and each circuit shares the same center CB. It is equivalent to a
circuit with one and a half CBs (Council 2012). All CBs are activated in
typical circumstances. Switching a line requires two CBs to be open.
To switch line 1, for instance, CB2 and CB3 must be opened. While
splitting busbars requires at least one CB in each bay to be open. For
example, opening CB2, CB5, and CB8 at the same time can achieve the
purpose of splitting the busbars. In this way, transformer 1, line 2, and
line 4 are connected to busbar I, while transformer 2, line 1, and line
3 are connected to busbar II.

Based on the analysis mentioned above, a generalized substation
model is created, as presented in Figure 2. Further, the mathematical

model can be formulated based on the generalized substation model.
In Figure 2, the generators, transmission lines, and loads can be
connected to either busbar I or busbar II in each substation. Note
that the connection positions of these components are determined by
the introduced binary variables. The specific mathematical model will
be introduced in Section 3.

3 Mathematical formulation

In this Section, a tri-level model is proposed as shown in Figure 3. The
objective is to minimize the operation costs and load shedding/
overgeneration penalty costs during transmission maintenance and
under the worst-case scenario. The first level is to make TMS
decisions and determines the network topology during the
maintenance period, i.e., the status of transmission lines, and the
connection positions of various components at each timestamp. In the
second level, the damaged transmission lines that lead to the worst-case
scenario are identified. Only the worst-case scenario is considered here
since accurately predicting extreme weather events is usually not easy. It is
acceptable to consider the worst-case situation when the specific disaster
scenario is difficult to estimate. The third level is to re-dispatch generators
to minimize the operation costs and load shedding/overgeneration
penalty costs due to the failure of transmission lines in the second level.

The overall proposed mathematical model is presented as follows.
The first-level problem is to make TMS decisions and determine

the network topology, improving the economics during maintenance
and mitigating the risk under the worst-case scenario, as presented in
the objective function (1).

min
x∈X

Cpre x( ) + AP x( ),
withCpre x( ) � ∑

t∈Tpre

∑
g∈G

cgP
pre
g,t + cOG,preg

~P
pre

g,t( ) + ∑
t∈Tpre

∑
i∈I

cprei
~P
pre

i,t ,

(1)

FIGURE 2
Generalized substation model.

FIGURE 3
Framework of the proposed tri-level optimization model.
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where the superscript pre refers to pre-disaster, the same below,
cg, c

OG,pre
g , cprei represent the marginal cost of generator g, the

penalty cost for overgeneration of generator g, and load shedding
of load connected to bus i, respectively, ~P

pre
g,t and ~P

pre
i,t represent the

overgeneration of generator g at timestamp t, and load shedding of
load connected to bus i, respectively.

Its feasible region can be summarized
as X � x | (2) − (28),∀t ∈ Tpre{ }:

There are mainly four maintenance scheduling constraints that
should be considered (Marwali and Shahidehpour 1999; Liu et al.,
2018; Zhang et al., 2022).

xij ≥xij,t, (2)
∑

t∈Tpre

xij,t � TM
ij , (3)

xij ,t+1 − xij ,t ≤ xij ,t+τ , τ � 2, 3, ..., TM
ij , (4)

∑
i,j( )∈LM

xij ,t ≤Xt
max, (5)

where xij is a binary variable representing whether line (i, j) is
maintained or not, 0 if not, otherwise 1, xij,t is a binary variable
representing the operating status of line (i, j) at timestamp t, 0 if line (i,
j) works normally, otherwise 1, TM

ij represents the time required for
maintenance of line (i, j), LM represents the set of defective
transmission lines, Xt

max represents the maximum number of
concurrent transmission maintenance at timestamp t.

Constraint (2) indicates the transmission lines only can be
disconnected for maintenance. Constraint (3) states the time
required for the maintenance of each transmission line. The
continuity of maintenance is guaranteed by constraint (4). It
indicates that maintenance activity can only stop when it is
completed. Constraint (5) limites the number of lines that can be
disconnected for maintenance at the same time.

0≤Ppre
g,t,1 ≤Pg

max 1 − hg,t( ), (6)
0≤Ppre

g,t,2 ≤Pg
maxhg,t, (7)

Ppre
g,t � Ppre

g,t,1 + Ppre
g,t,2, (8)

0≤ ~P
pre

g,t,s ≤P
pre
g,t,s, (9)

where Ppre
g,t,s represents the power generation of generator g connected

to busbar s (s = I or II) at timestamp t, Pg
max represents the power

generation capability of generator g; hg,t is a binary variable
representing the connection position of generator g at timestamp t,
0 if it is connected to busbar I, otherwise busbar II. Constraints (6), (7),
and (8) determine the connection position, and power generation of
the generator g. Constraint (9) limits the over-generation of each
generator.

Ppre
i,t,1 � 1 − hd,t( )Ppre

i,t , (10)
Ppre
i,t,2 � hd,tP

pre
i,t , (11)

0≤ ~P
pre

d,t,s ≤P
pre
d,t,s, s � 1, 2, (12)

~P
pre

i,t � ~P
pre

i,t,1 + ~P
pre

i,t,2, (13)
where Ppre

i,t,s represents the load connected to busbar s (s = I or II) of bus
i at timestamp t, Ppre

i,t represents the power demand of load connected
to bus i; ~P

pre
i,t,s represents the load shedding of load connected to busbar

s (s = I or II) of bus i at timestamp t, ~P
pre
i,t represents the load shedding

of load connected to bus i at timestamp t, hd,t is a binary variable

representing the connection position of load d at timestamp t, 0 if it is
connected to busbar I, otherwise busbar II. Constraints (10) and (11)
determine the connection position of loads. Constraint (12) and (13)
limit the amount of load shedding.

− 1 − xij,t( ) 1 − hij,e,t( )Pij
max ≤Ppre

ij,e,t,1 ≤ 1 − xij,t( ) 1 − hij,e,t( )Pij
max, (14)

− 1 − xij,t( )hij,e,tPij
max ≤Ppre

ij,e,t,2 ≤ 1 − xij,t( )hij,e,tPij
max, (15)

Ppre
ij,t � Ppre

ij,e,t,1 + Ppre
ij,e,t,2,∀e, (16)

where Ppre
ij,t,s represents the power flow of line (i, j) connected to busbar

s (s = I or II) at timestamp t, Ppre
ij,e,t,s represents the power flow of line (i,

j) whose end side e (e = i or j) connected to busbar s (s = I or II) at
timestamp t, Ppre

ij,t represents the power flow of line (i, j) at timestamp t,
Pij

max represents the rated capacity of transmission line (i, j), hij,e,t is a
binary variable representing the connection position of the end side e
of line (i, j) at timestamp t, 0 if it is connected to busbar I, otherwise
busbar II. Constraints (14) and (15) determine the connection position
of both side of each transmission line. Constraint (16) determines the
power flow through each transmission line.

−hij,e,tθM ≤ θpreij,e,t − θpreij,e,t,1 ≤ hij,e,tθ
M, (17)

− 1 − hij,e,t( )θM ≤ θpreij,e,t − θpreij,e,t,2 ≤ 1 − hij,e,t( )θM, (18)
−M 1 − hi,t( )≤ θprei,t,1 − θprei,t,2 ≤M 1 − hi,t( ), (19)

where θM represents the maximum phase angle difference, θpreij,e,t

represents the phase angle of end side e (e = i or j) of line (i, j) at
timestamp t, θpreij,e,t,s represents the phase angle of line (i, j) whose end
side e (e = i or j) connected to busbar s (s = I or II) at timestamp t.
Constraints (17) and (18) indicate the phase angles of bus-bars are
associated with the lines connected. Constraint (19) indicates the
phase angles are not constrained when the busbar is splitting.

Ppre
g,t − Ppre

g,t−1 ≤RU
g , t ∈ Tpre, (20)

Ppre
g,t−1 − Ppre

g,t ≤RD
g , t ∈ Tpre, (21)

∑
g∈Gi

Ppre
g,t,s − ~P

pre

g,t,s( ) − ∑
i,j( )∈LFi

Ppre
ij,t,s + ∑

i,j( )∈LTi

Ppre
ij,t,s � Pi,t,s − ~P

pre

i,t,s, (22)

−Mxij,t ≤ bij θprei,t − θprej,t( ) − Ppre
ij,t ≤Mxij,t, (23)

where RU
g and RD

g represent the ramp-up and ramp-down rates limit of
generator g, respectively, M is a sufficiently large constant, bij is the
susceptance of transmission line (i, j). θprei,t represents the phase angle
of bus i at timestamp t. Constraints (20) and (21) limit the ramping up
and down rates of each generator, respectively. Constraint (22)
denotes the power balance should be guaranteed at each bus.
Constraint (23) indicates the relationship between maintenance
decision and power flow.

hi,t − 1 + hg,t ≤ 0, (24)
hi,t − 1 + hd,t ≤ 0, (25)
hi,t − 1 + hij,e,t ≤ 0, (26)
∑

i,j( )∈LM
xij,t + hi,t ≥ 1, (27)

∑
i

1 − hi,t( )≤ n, (28)

where hi,t is a binary variable representing the state of busbar of bus i at
timestamp t, 0 if bus-bar is splitting, otherwise 1. Constraints
(24)–(26) indicate the generators, loads, and lines are forced to
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connect to Busbar 1 by default when no busbars are splitting.
Constraint (27) indicates the busbars can only be split when the
line is undergoing maintenance. Constraint (28) limits the number of
busbars that can be split at the same time.

The second-level problem regards extreme weather events as
attackers to power systems. It mainly involves choosing the
transmission lines to destroy, which is related to the variables xij

at the first level. As shown in Eq. 29, the objective is to maximize the
disruption, which is quantified by the operation costs and penalty costs
after re-dispatching.

AP x( ) � max
y∈Y

DRP x, y( ), (29)

Its feasible region can be summarized as Y � y | (30) − (33){ }:
∑
i,j( )∈L

S1ijy
1
ij + ∑

i,j( )∈L
S2ijy

2
ij ≤Y, (30)

y0
ij + y1

ij + y2
ij � 1, (31)

y1
ij � 0,∀ i, j( ) ∈ L\LM( ), (32)

zij � y0
ij + xijy

1
ij, (33)

where S1ij and S2ij represent the attack resource consumption for
damaging defective and normal lines, respectively, y0

ij, y
1
ij and y2

ij

represent it will destroy line (i, j) in the way that the attack resource
consumption is 0, S1ij; S

2
ij, respectively, Y is the total amount of preset

attack resources, it is highly related to the weather severity; zij
represent the state of line (i, j) during disaster.

Constraint (30) limits the number of lines that can be attacked.
Constraint (31) indicates that each line must be attacked in some way
during extreme weather events. Here, different attack ways are
classified according to the amount of attack resource consumption.
It should be noted that if a line is attacked with an attack resource
consumption of 0, it will continue to function normally. A defective
line will fail while a normal line keeps working when the attack
resource consumption is S1ij. If the attack resource consumption is S2ij,
the line will be outage regardless of its condition. In the worst-case
situation, attacking normal lines in the way that the attack resources
consumption is S1ij will not be performed because attacking in this way
will only consume attack resources. Hence, constraint (32) guarantees
that this attack way will not be executed on normal lines. Based on
constraints (30)–(32), the ability of defective lines and normal lines to
withstand extreme weather events can be distinguished. The
transmission line status during extreme weather events is
determined by constraint (33). If a defective line is maintained, it
will not be destroyed easily during disasters. For example, when
xij � 1, it only fails when y2

ij � 1. Otherwise, the defective line only
keeps normal when y0

ij � 1.
The response to the attack is formulated by the third-level

optimization problem DRP(x, y) in (34–47). Based on the
decisions obtained in the first-level problem and the second-level
problem, the power generation is re-scheduled to keep operation costs
and penalty costs as low as possible.

DRP x, y( ) � min
p∈P x,y( )C

dur p( )
withCdur p( ) � ∑

t∈Tdur

∑
g∈G

cgP
dur
g,t + cOGg ~P

dur

g,t( ) + ∑
t∈Tdur

∑
i∈I

cduri
~P
dur

i,t ,

(34)
where the superscript dur refers to during disaster, the same below.

Its feasible region can be summarized as � p | (35) − (47){ } :
~P
dur

i,t ≥ 0, Pdur
g,t ≥ 0, ~P

dur

g,t ≥ 0, (35)
Pi,t − ~P

dur

i,t − ∑
g∈Gi

Pdur
g,t − ~P

dur

g,t( ) + ∑
i,j( )∈LFi

Pdur
ij,t − ∑

i,j( )∈LTi

Pdur
ij,t � 0

α1i,t( ), (36)
θi

min − θduri,t ≤ 0 α2i,t( ), (37)
θduri,t − θi

max ≤ 0 α3i,t( ) (38)
~P
dur

i,t − Pdur
i,t ≤ 0 α4i,t( ), (39)

−bij θduri,t − θdurj,t( ) + Pdur
ij,t −M 1 − zij( )≤ 0 β1ij,t( ), (40)

bij θduri,t − θdurj,t( ) − Pdur
ij,t −M 1 − zij( )≤ 0 β2ij,t( ), (41)

−Pij
maxzij − Pdur

ij,t ≤ 0 β3ij,t( ), (42)
Pdur
ij,t − Pij

maxzij ≤ 0 β4ij,t( ), (43)
Pdur
g,t − Pg

max ≤ 0 γ1g,t( ), (44)
Pdur
g,t − Pdur

g,t−1 − RU
g ≤ 0 γ2g,t( ), (45)

Pdur
g,t−1 − Pdur

g,t − RD
g ≤ 0 γ3g,t( ), (46)

~P
dur

g,t − Pdur
g,t ≤ 0 γ4g,t( ). (47)

The parameters and variables in these formulas are similar to those
in Eqs 6–28, but here they focus on power system operation during
disasters. Hence, they will not be repeated here. Constraint (35)
indicates that load shedding and power generation are non-
negative. Constraint (36) ensures the power balance in each bus.
Constraints (37) and (38) limit the size of the phase angle. Constraint
(39) indicates the load shedding cannot exceed the load demand.
Constraints (40) and (41) indicate the relationship between
transmission line power flows and phase angles. Constraints (42)
and (43) limit the amount of transmission line power flows.
Constraints (44)–(46) denote the power generation of generators
cannot exceed their technical limit, including the maximum
generation, ramping up, and down rate. Constraint (47) restricts
the amount of overgeneration of generators.

The non-linear constraints (14) and (15) resulting from the
multiplications of two binary variables should be linearized.
They can be linearized in a same way due to their similar
structure. New binary variables need to be introduced. As an
illustration, the linearization process of constraint (14) is
presented as follows:

φ1
l,e,t ≤ 1 − xl,t, (48)

φ1
l,e,t ≤ 1 − hl,e,t, (49)

φ1
l,e,t ≥ 1 − xl,t − hl,e,t, (50)

−φ1
l,e,tPl

max ≤Ppre
l,e,t,1 ≤φ

1
l,e,tPl

max. (51)

4 Solution method

4.1 Problem reformulation

It is a popular method to utilize Karush-Kuhn-Tucker (KKT)
conditions to transform the max-min problem into a single-level. In
constraints (36)–(47), the variables enclosed in parenthesis at the end
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of each constraint are the dual variables corresponding to the
constraints. Hence, the Lagrangian equation is written as follows:

L � ∑
t∈Tdur

∑
g∈G

cgP
dur
g,t + cOGg ~P

dur

g,t( ) + ∑
t∈Tdur

∑
i∈I

cduri
~P
dur

i,t

+ ∑
t∈Tdur

∑
i∈I

α1i,t Pdur
i,t − ~P

dur

i,t − ∑
g∈Gi

Pdur
g,t − ~P

dur

g,t( ) + ∑
i,j( )∈LFi

Pdur
ij,t − ∑

i,j( )∈LTi

Pdur
ij,t

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
+ ∑

t∈Tdur

∑
i∈I

α2i,t θi
min − θduri,t( )

+ ∑
t∈Tdur

∑
i∈I

α3i,t θduri,t − θi
max( )

+ ∑
t∈Tdur

∑
i∈I

α4i,t ~P
dur

i,t − Pdur
i,t( )

+ ∑
t∈Tdur

∑
i,j( )∈L

β1ij,t −bij θduri,t − θdurj,t( ) + Pdur
ij,t −M 1 − zij( )( )

+ ∑
t∈Tdur

∑
i,j( )∈L

β2ij,t bij θduri,t − θdurj,t( ) − Pdur
ij,t −M 1 − zij( )( )

+ ∑
t∈Tdur

∑
i,j( )∈L

β3ij,t −Pij
maxzij − Pdur

ij,t( )
+ ∑

t∈Tdur

∑
i,j( )∈L

β4ij,t Pdur
ij,t − Pij

maxzij( )
+ ∑

t∈Tdur

∑
g∈G

γ1g,t Pdur
g,t − Pg

max( )
+ ∑

t∈Tdur

∑
g∈G

γ2g,t Pdur
g,t − Pdur

g,t−1 − RU
g( )

+ ∑
t∈Tdur

∑
g∈G

γ3g,t Pdur
g,t−1 − Pdur

g,t − RD
g( )

+ ∑
t∈Tdur

∑
g∈G

γ4g,t ~P
dur

g,t − Pdur
g,t( ) (52)

whose optimality occurs at

zL
z~P

dur

i,t

� cduri − α1i,t + α4i,t ≥ 0, (53)

zL
zPdur

g,t

� cg − α1i,t + γ1g,t + γ2g,t − γ2g,t+1 + γ3g,t+1 − γ3g,t − γ4g,t ≥ 0, (54)

zL
z~P

dur

g,t

� cOGg + α1i,t + γ4g,t ≥ 0, (55)

zL
zθduri,t

� −α2i,t + α3i,t + ∑
i,j( )∈L i,·( )

bij β2ij,t − β1ij,t( ) + ∑
i,j( )∈L ·,i( )

bij β1ij,t − β2ij,t( )
� 0,

(56)
zL
zPdur

ij,t

� α1i,t − α1j,t + β1ij,t − β2ij,t − β3ij,t + β4ij,t � 0, (57)

α1i,t free, a
2
i,t, α

3
i,t, α

4
i,t ≥ 0, β1ij,t, β

2
ij,t, β

3
ij,t, β

4
ij,t ≥ 0, γ

1
g,t, γ

2
g,t, γ

3
g,t, γ

4
g,t ≥ 0.

(58)
By using the optimality condition, we can reformulate original

max-min problem as follows.

max
y∈Y

min
p∈P

∑
t∈Tdur

∑
g∈G

cgP
dur
g,t + ∑

t∈Tdur

∑
i∈I

cduri
~P
dur

i,t

� max ∑
t∈Tdur

∑
i∈I

α1i,tP
dur
i,t + α2i,tθi

min − α3i,tθi
max − α4i,tP

dur
i,t( )

− ∑
t∈Tdur

∑
i,j( )∈L

M 1 − zij( ) β1ij,t + β2ij,t( ) + Pij
maxzij β3ij,t + β4ij,t( )( )

− ∑
t∈Tdur

∑
g∈G

γ1g,tPg
max + γ2g,tR

U
g + γ3g,tR

D
g( )

, (59)

s.t. (30)–(33), (53)–(58).
There are bilinear terms in the objective function (59). We replace

M(1 − zij)β1ij,t with λ1ij,t, and introduce the following two additional
constraints.

λ1ij,t ≥Mβ1ij,t −Mzij ∀ i, j( ) ∈ L,

λ1ij,t ≥ 0 ∀ i, j( ) ∈ L,
{ (60)

Similarly, M(1 − yij)β2ij,t is replaced with λ2ij,t.

λ2ij,t ≥Mβ2ij,t −Mzij ∀ i, j( ) ∈ L,

λ2ij,t ≥ 0 ∀ i, j( ) ∈ L,
{ (61)

We replace yijβ
3
ij,t with λ3ij,t.

λ3ij,t ≥ β
3
ij,t −M 1 − zij( ) ∀ i, j( ) ∈ L,

λ3ij,t ≥ 0 ∀ i, j( ) ∈ L,

⎧⎨⎩ (62)

Similarly, yijβ
4
ij,t is replaced with λ4ij,t.

λ4ij,t ≥ β
4
ij,t −M 1 − zij( ) ∀ i, j( ) ∈ L,

λ4ij,t ≥ 0 ∀ i, j( ) ∈ L,

⎧⎨⎩ (63)

Therefore, the objective function (59) can be further modified as
follows.

max ∑
t∈Tdur

∑
i∈I

α1i,tP
dur
i,t + α2i,tθi

min − α3i,tθi
max − α4i,tP

dur
i,t( )

− ∑
t∈Tdur

∑
i,j( )∈L

λ1ij,t + λ2ij,t( ) + Pij
max λ3ij,t + λ4ij,t( )( )

− ∑
t∈Tdur

∑
g∈G

γ1g,tPg
max + γ2g,tR

U
g + γ3g,tR

D
g( )

. (64)

In this way, the proposed tri-level optimization model is
reformulated as a bi-level optimization model.

4.2 Solution algorithm

The bi-level optimization model can be further decoupled into a
master problem and a subproblem. The master problem selects the
defective transmission lines and schedules their maintenance. The
subproblem identifies the line failures that result in the maximum
operation costs. The C&CG algorithm is a common-used method to
solve the bi-level robust optimization. The main principle of C&CG
algorithm is to repeatedly add the worst damage scenarios from
subproblem and relevant variables to the master problem in each
iteration until the optimal solution is obtained. To illustrate the
detailed steps of the C&CG algorithm, the compact notation of the
master problem considering the worst damage scenarios Ŷ �
ŷk, k � 1, ..., m{ } can be written as follows.

min
x∈X,ps∈P x,ŷs( )C

pre x( ) + ξ. (65)

subject to

ξ ≥Cdur pk( ),∀k ∈ 1, ..., m, (66)
Apk + Bx + Dŷk ≤ E, (67)

where A, B, D, and E are coefficient matrices used to describe
constraints (35)–(47). ξ is a scalar variable introduced to guarantee
that the master problem dominates the included worst damage
scenarios.

Solving the master problem based on a set of scenarios obtained by
the subproblem can yield maintenance decision xk and a lower bound
(LB) of the original optimization model. Based on xk, the subproblem
described in (64) subjecting to constraints (30)–(33) (53)–(58), and
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(60)–(63) can be solved which determines the worst damage scenario.
Further, the optimal value of the subproblem plus the operation costs
during transmission maintenance of the corresponding maintenance
decision xk gets an upper bound (UB) of the original optimization
model. An optimal solution can be obtained by performing the
aforementioned steps repeatedly until the difference between the
UB and LB is less than the predefined optimality gap.

The key steps of the C&CG algorithm are outlined in Algorithm 1.
Note that the master problem is solved assuming all the lines work in
the first iteration.

Step 1: Initialization: Set all lines in operation, LB = −∞,

UB = ∞, k = 1, and optimality gap ε = 10−6.

Step 2: Master Problem Optimization: Solve master problem

and get the first-level optimal solution xk and LB =

Cpre(xk) + ξk.

Step 3: Subproblem Optimization: Solve subproblem for the

current maintenance decision xk to obtain the

worst-case damage scenario yk and UB = min

{UB, Cpre(xk) + Cdur(pk)}.
Step 4: Termination: If UB − LB≤ ε, stop. Current xk is the

optimal transmission maintenance scheduling.

Otherwise, k = k + 1, add constraints corresponding

to the new worst damage scenario to master problem and

go to Step 2.

Algorithm 1 The C&CG algorithm

5 Case study

In this section, numerical experiments are carried out to
demonstrate the effectiveness of the proposed method. The
proposed MILP model is established with YALMIP toolbox
(Lofberg 2004) and solved by Gurobi solver in Matlab.

5.1 Test system and data

The modified IEEE RTS-79 system (Subcommittee 1979) is
employed as the test system. The load data of the 28th week is
utilized. The rated capacities of lines 25, 26, and 27 are restricted to
0.35 p. u. The capacities of the remaining branches are limited to
0.6 p. u. Assume that the busbars at buses 9 and 21 have the ability to
split. The penalty costs for overgeneration and load shedding in the
maintenance period are both set at 200$/MWh and those during
disasters are both set at 500$/MWh (Du et al., 2018). The former is
lower than the latter because the overgeneration and load shedding

in the maintenance period are planned, and the impact on power
users is relatively light. The defective transmission lines are
presented in Table 1. Additionally, destroying a defective line
requires 1 attack resource, and destroying a normal line requires
2 attack resources, that is S1ij � 1, and S2ij � 2. The marginal costs of
generators can be found in (Nemati et al., 2018). Finally, the period
of preventive maintenance is assumed to be 3 days, and the disaster
time is assumed to be 1 day.

5.2 Calculation result

The following instances are studied to investigate the effectiveness
of the proposed method. The uncertainty budget Y in all cases is set to
be 5.

TABLE 1 Maintenance data of defective transmission lines.

Line no. Starting bus End bus Maintenance duration (hour)

6 3 9 18

16 12 23 24

18 14 16 24

25 17 18 30

TABLE 2 Scheduled transmission maintenance periods in case 2 and case 3.

Line no. Scheduled maintenance periods

Case 2 Case 3

6 32–49 27–44

16 1–24 47–70

18 26–49 3–26

25 2–31 42–71

FIGURE 4
Calculation results of three cases.
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Case 1: Do not consider maintaining any defective transmission
lines.
Case 2: Only TMS is considered.
Case 3: NTO can be utilized during transmission maintenance.
Note that NTO can only be employed when the transmission line is
maintained.

The lines 6, 16, 18 and 25 are selected for maintenance in both
Case 2 and Case 3. However, there is a difference between the
scheduled maintenance periods in the two cases, as listed in Table 2.

The in-disaster and pre-disaster costs of the three cases are presented in
Figure 4. According to the results, Case 1 has the greatest in-disaster cost,
whereas Case 2 and Case 3 have the same in-disaster cost. Case 1 does not
maintain any defective transmission lines, leading to more lines will be
destroyed under the set uncertainty budget. Specifically, if lines 6, 16, 17,
and 18 are destroyed together in the disaster, it would incur an in-disaster
cost of $3.0547 million in Case 1. But in Case 2 and in Case 3, all defective
lines are selected for maintenance, and the worst case will happen when
lines 5, and 9 are interrupted. In this situation, the in-disaster cost is only
$1.4899 million. The results show the effectiveness of pre-disaster
transmission maintenance in disaster prevention.

Furthermore, the pre-disaster operation cost increase in Case 2 and
Case 3 compared to Case 1 can be regarded as the cost of taking preventive
measures against disasters. It can be found that the pre-disaster operation
cost increased by 24.02% from $1.5609million in Case 1 to $1.9359million
in Case 2. However, the cost increment is reduced by 16.62% if NTO is
considered during transmissionmaintenance. The discrepancy between the
pre-disaster operation costs of Case 2 and Case 3 can be regarded as the
benefits of utilizing NTO. In other words, NTO can significantly reduce the
cost increase due to transmission maintenance.

5.3 Analysis of the effect of NTO

To explore the effect of NTO, we set up a controlled numerical
experiment, called Case 4. In this case, the scheduled maintenance
period setting is the same as that of Case 3 but NTO is not considered
during the period. The total cost of Case 4 is $3.4623million, which is a
little higher than that of Case 2. Further, we define the branch
utilization rate μij,t as the ratio of the power flow on the branch (i,

j) to the rated capacity of the branch at timestamp t, the specific
calculation is presented as Eq. 68. Finally, the utilization rate of each
branch of Case 3 and Case 4 when line 18 is under maintenance is
presented using the form of the heat map in Figure 5. Figure 5A shows
the situation without NTO, while Figure 5B is the opposite.

μij,t �
Pij,t

Pij
max

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ × 100%. (68)

It can be seen that the distribution of power flow is adjusted
through NTO. Compared to Case 4, some transmission lines in Case
3 have higher utilization rates. For instance, the utilization rate of lines
20–26 has changed significantly. Generators located on buses 18, 21,
and 22 cost relatively less than other generators, and lines 20, 21, 25,
and 26 are important lines that transmit power from these generators.
Hence, the increased utilization of these lines can be helpful to
decrease operation costs. The results indicate that NTO can
effectively improve the power system economics during maintenance.

5.4 Analysis of the uncertainty budget

To investigate the impact of weather severity on the maintenance
plan based on the proposed model, we conduct experiments with
different uncertainty attack budgets that are highly related to weather
intensity. Table 3 shows the pre-disaster cost with maintenance, in-
disaster cost with and without maintenance, and scheduled line for
maintenance under different attack budgets.

Generally, pre-disaster transmission maintenance is always
advantageous. Note that, such a benefit is modest when the attack
budget Y is low. It can be noticed that the in-disaster costs are the same
with and without maintenance when Y equals 1. In this situation, the
worst case occurs when line 18 is destroyed. However, if line 18 is
selected for maintenance, the increase in pre-disaster cost will be
slightly greater than the reduction in in-disaster cost, making it likely
not an optimal decision. When lines 6 and 25 are selected for
maintenance, the pre-disaster cost does not increase but decreases.
It also shows the positive effect of NTO on transmission maintenance.

As Y increases, the gain of pre-disaster transmission maintenance
becomesmore significant. Noteworthy, for the cases of Y = 6 and Y = 7,
although the worst-case scenarios are different, the resulting in-

FIGURE 5
The utilization of each branch during scheduling maintenance periods 3–26 h. (A) Without NTO, (B) with NTO.
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disaster costs are the same. However, it does not mean that the
maintenance plans of these two cases will be the same. As a
comparison, we set the maintenance plan in the case of Y = 7 to
the maintenance plan in the case of Y = 6, and the in-disaster cost at
this time is equal to the in-disaster cost without maintenance. This
makes the maintenance of other defective lines less meaningful.

To sum up, the decision-makers should select an appropriate
maintenance plan to achieve their desired trade-off between cost and
benefit. On the other hand, the maintenance plan is highly correlated
with the value of the attack budget. Therefore, it is necessary to predict
the weather intensity as accurately as possible to make the value of Y
more reasonable. Otherwise, we cannot properly derive an effective
maintenance plan.

6 Conclusion

This paper proposes an innovative model to schedule transmission
maintenance against extreme weather events. A tri-level optimization
model is established to comprehensively consider the economics of pre-
disaster transmission maintenance and power system resilience during a
disaster. The first level is to make TMS decision and determine the
transmission network topology during maintenance. The second level is
to select the transmission lines whose outages will result in the worst
scenarios. The third level is to re-dispatch the power generation tominimize
operation costs in the worst scenarios. Themodified IEEERTS-79 system is
used for case studies. The following are the findings from the case studies.

1) Appropriate pre-disaster transmission maintenance can effectively
enhance power system resilience, thereby reducing load shedding
during extreme weather events.

2) The optimization of network topology during the maintenance
period can adjust the power flow and consequently improve power
system economics during transmission maintenance.

3) The maintenance plan is significantly associated with the value of
the attack budget. It means that an effective maintenance plan is
based on accurate prediction of extreme weather events.
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TABLE 3 The results under different attack budgets.

Y Pre-disaster cost (×106$) In-disaster cost (×106$) Scheduled line for maintenance

With maintenance Without maintenance

1 1.5118 0.7369 0.7369 6, 25

2 1.6509 0.7369 1.0544 6, 16, 25

3 1.8736 0.7369 1.3006 6, 16, 18, 25

4 1.6509 1.4899 3.0406 6, 16, 25

5 1.8736 1.4899 3.0547 6, 16, 18, 25

6 1.6509 3.0406 4.5180 6, 16, 25

7 1.8736 3.0406 4.5180 6, 16, 18, 25
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