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Problems related to wavelength assignment (WA) in optical communications
networks involve allocating transmission wavelengths for known transmission
paths between nodes that minimize a certain objective function, for example, the
total number of wavelengths. Playing a central role in modern telecommunications,
this problem belongs to NP-complete class for a general case so that obtaining
optimal solutions for industry-relevant cases is exponentially hard. In this work, we
propose and develop a quantum-inspired algorithm for solving the wavelength
assignment problem. We propose an advanced embedding procedure to
transform this problem into the quadratic unconstrained binary optimization
(QUBO) form, having a improvement in the number of iterations with price-to-
pay being a slight increase in the number of variables (“spins”). Then, we compare a
quantum-inspired technique for solving the corresponding QUBO form against
classical heuristic and industrial combinatorial solvers. The obtained numerical
results indicate on an advantage of the quantum-inspired approach in a
substantial number of test cases against the industrial combinatorial solver that
works in the standard setting. Our results pave the way to the use of quantum-
inspired algorithms for practical problems in telecommunications and open a
perspective for further analysis of the use of quantum computing devices.
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1 Introduction

Optimization is a tool with applications across various technologies [1]. However, solving
complex real-world optimization problems is computationally intensive even in the case of
using advanced, specialized hardware. Quantum computers are widely believed to be useful for
solving computationally difficult optimization problems beyond the capability of existing
computing devices to use quantum optimization [2–6]. A general approach consists in encoding
a cost function in a quantum Hamiltonian [7] so that its low-energy state is obtained starting
from a generic initial state. Among existing methods to achieve such dynamics, quantum
annealing offers physical implementations of a non-trivial size [8]. Quantum annealing is by
now explored for analysis of various areas, such as chemistry calculations [9, 10], lattice protein
folding [11, 12], genome assembly [13, 14], solving polynomial systems of equations for
engineering applications [15] and linear equations for regression [15], portfolio optimization
[16–19], forecasting crashes [20], finding optimal trading trajectories [21], optimal arbitrage
opportunities [22], optimal feature selection in credit scoring [23], foreign exchange reserves
management [24], traffic optimization [25–27], scheduling [28–33], railway conflict
management [32, 33], and many others [5]. Advances also include the recent experimental
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demonstration of a super-linear quantum speedup in finding exact
solutions for the hardest maximum independent set graphs [34].

Although quantum optimization algorithms suggest an
intriguing possibility to solve computationally difficult problems
beyond the capability of classical computers, existing conceptual
and technical limitations make it challenging to use it for solving
problems of industry-relevant sizes. Attempts to simulate
quantum computations classically resulted in a new class of
algorithms and techniques known as quantum-inspired
techniques [35, 36]. As soon as these algorithms are compatible
with currently existing (classical) hardware, analyzing their
limiting capabilities and advantages over classical approaches is
required toward their use in practice. Specifically, a way to solve
combinatorial optimization problems via simulating the coherent
Ising machine (SimCIM) has been proposed [35]. The SimCIM
algorithm is able to solve optimization problems that are
formulated in the quadratic unconstrained binary optimization
(QUBO)/Ising form, which can be performed for various
practically relevant cases [7]. The SimCIM approach has
demonstrated capabilities to outperform the bona fide coherent
Ising machine and existing classical methods for certain G-Set
graphs. However, one of the arising questions is related to the
need to tune hyperparameters [35]. For a wide range of the
benchmark of quantum-inspired heuristic solvers for quadratic
unconstrained binary optimization, namely, the D-Wave hybrid
solver service, Toshiba simulated bifurcation machine, Fujitsu
digital annealer, and simulated annealing on a personal
computer, see also [37].

The design of an optical communication network is a specific
industrial avenue, in which combinatorial optimization is ubiquitous.
Examples of tasks include finding optimal transmission and
reservation paths, frequency allocation, network throughput
maximization, and many others [38, 39]. A notable example is
the routing and wavelength assignment (RWA) problem, which
consists in allocating transmission wavelengths and finding
transmission paths between nodes that minimize the total
number of wavelengths. Conventional techniques, such as linear
programming and mixed integer programming, are useful for most
of the cases; however, the combinatorial nature and hardness of the
problems make it extremely challenging to apply these techniques
for large-scale problems. It is then reasonable to assume that the
telecommunication industry may benefit from the use of a quantum-
inspired algorithm in the near-term horizon and quantum
computing in the future [40, 41].

In this study, we consider the variant of the RWA problem. To
explain more precisely, we focus on the wavelength assignment
task for known routes which we further refer to as the wavelength
assignment (WA) problem. This problem is generally NP-hard, so
its solution is computationally challenging for large sizes. We
propose an original way to transform the WA problem to the
QUBO form, which makes it compatible with the quantum-
inspired optimization algorithm and, in principle, quantum
annealing hardware. For solving this problem, we develop a
technique based on the SimCIM quantum-inspired optimization
solver [35] with the use of the Lagrange multipliers for minimizing
the number of hyperparameters. Our numerical results indicate on
an advantage of the quantum-inspired solver in a number of test
cases against the industrial combinatorial solver working on the
standard settings.

2 Wavelength assignment (WA) problem

Let us consider a network connecting a number of endpoints with
optical links (see an example in Figure 1). Several endpoints that are
interconnected by optical links sequentially comprise a path between a
transmitter and a receiver. A single optical link can be shared between
several paths, given that each path is assigned different wavelengths.
Each path is indicated by the path ID, which uniquely identifies a pair
of transmitting/receiving nodes, sequence of interconnecting nodes,
and the wavelength ID.

The WA problem implies allocation of the wavelength IDs for
paths that are pre-computed and known a priori in such a way to meet
the target objective, for example, the number of the used wavelengths
is minimized1. Formally, WA is considered to be correct if and only if
it satisfies the following requirements: 1) each path should use a single
wavelength and 2) several paths sharing the same edge should have
different wavelengths.

The problem of finding correct wavelength allocation under given
constraints is equivalent to the coloring problem [7] in a transformed
graph G = (V, E), where nodes V and edges E represent paths and their
intersections in fibers, correspondingly (two nodes fromV are connected
if and only if the corresponding paths have an intersection within the
optical network). LetNV andNE denote numbers of vertices and edges of
G, respectively. Later, we interchangeably use the terms wavelengths and
colors since the underlying problems are formally identical. The example
of the correspondence of network paths to graph coloring mapping is
shown in Figure 2.

In order to define a particular coloring of a graphGwith at mostW
colors, we introduce two collections of auxiliary variables. The first
variable is x that consists of NVW binary variables:

xvi � 1, if vertex v is assigned wavelength i,
0, otherwise.

{ (1)

The second one, denoted by w, consists of W binary variables:

wi � 1, if i − th wavelength is assigned,
0, otherwise.

{ (2)

Using x and w, the problem of finding a correct allocation with a
minimum number of the used wavelengths not exceeding some
maximal numbers W ≥ 1 can be formulated as an integer
programming (IP) problem of the following form:

∑W
i�1

wi → min , s.t., (3)

∑W
i�1

xvi � 1 ∀v ∈ V, (4)

xui + xvi ≤wi ∀i ∈ 1, . . . ,W{ },∀ u, v( ) ∈ E. (5)
One can see that the constraint Eq. 4 assures that each vertex is
assigned to exactly one wavelength, while the constraint Eq. 5 indicates
that two adjacent vertices are not assigned the same wavelength.

This problem is generally NP-hard, so its solution is
computationally challenging for large sizes. As it is shown in the
following sections, the QUBO reduction makes the problem

1 We note that other objectives for optimization are also possible, such as total
throughput or network resiliency.
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compatible with quantum-inspired algorithms that can shift
tractability boundaries to higher problem sizes. Although such
reduction usually involves additional overheads in the problem size
due to auxiliary variables, the overheads can be compensated by the
computational advantage of quantum-inspired solvers, leading to
better overall results.

3 Results

3.1 Transforming the WA problem to a QUBO
form

In order to make the WA problem compatible with the SimCIM
quantum-inspired optimization algorithm [35], we first consider a
transformation, allowing one to convert the IP problem Eqs 3–5 into a
QUBO form as follows:

sTQs → min (6)
for a certain binary vector s and the symmetric real matrix Q. This
problem is equivalent to finding a configuration of binary-state
particles (“spins”) that minimizes the energy:

H s( ) � sTQs, (7)
where the Ising Hamiltonian H consists of only single-order terms
(energies of individual spins in an external magnetic field) and pair-
wise interactions between spins. Although spin variables usually are
considered to take values ±1, the transition to a binary form is quite
straightforward [13].

A known way [7] to transform a graph coloring problem to the
QUBO form is to set s≔x (here we treat x as a NVW-dimensional
vector) and use the Hamiltonian of the form:

H x( ) � H1 x( ) +H2 x( ), (8)
where

H1 x( ) � ∑NV

v�1
⎛⎝1 −∑W

i�1
xvi

⎞⎠2
, (9)

H2 x( ) � ∑
u,v( )∈E

∑W
i�1

xuixvi. (10)

One can see that H1(x)> 0 in the case where a single node is
assigned with two distinct colors, while H2(x)> 0 when two adjacent
vertices are assigned the same color. If minimization routine provides
some x such that H(x) � 0, then x defines a correct coloring with at

FIGURE 1
Illustration of the approach. A linear network with generated requests and paths consisting of five nodes, four edges, and five traffic paths is considered:
Solid lines represent original edges, and the arrows represent traffic paths. One can reduce the WA problem to a graph coloring problem with a simple graph
transformation (bottom of the figure): each traffic path is now considered a vertex; if two traffic paths share (at least) one fiber, they are connected by an edge.
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most W colors. Therefore, an ability to solve the QUBO problem
corresponding to the Hamiltonian (Eq. 8) guarantees one to solve a
decision problem of whether it is possible to color a graph with at most
W colors. Since it is always possible to color a graph with W = NV

colors, a minimal number of colors can be obtained, for example, by
using a standard binary search with at most � log2(NV)� iterations. We
note that this approach is quite sensitive to possible imperfections of
QUBO problem solutions, especially at first iterations of the binary
search. An alternative way is to decreaseW by a unit at each step that,
however, results in a possible increase of iteration numbers up to
O(Wstart), where Wstart is the initial upper bound for a color number.

3.2 Improving QUBO transformation for
quantum-inspired annealing

We propose an improved approach for solving a graph coloring
problem by developing an alternative transformation into a QUBO
form. In our approach, we pursue two major goals. The first is
decreasing the number of QUBO problems to be solved. The
second is making the whole algorithm robust against the possibility
of finding not optimal, but some suboptimal solutions for a particular

QUBO problem. We note that these points are of particular
importance in the framework of using (quantum-inspired)
annealing for solving QUBO problems.

The main idea of our approach is to consider an extended
NV(W+1)-dimensional binary vector s≔(w, x) and take the target
Hamiltonian in the following form:

H w, x( ) � c0H0 w( ) + c1 H1 x( ) +H2 x( )[ ]
+c2H3 w, x( ), (11)

where

H0 w( ) � ∑W
i�1

wi, (12)

H3 w, x( ) � ∑
u,v( )∈E

∑W
i�1

1 − wi( ) xui + xvi( ), (13)

and ci are positive coefficients satisfying a particular constraint (see
more details in Section 5.1). Minimization of this Hamiltonian
provides us the solution vector (w, x) such that the optimal
number of wavelength is encoded in w by non-zero values. We
note that the term H0(w) grows with the total number of used
wavelengths; H1(x) and H2(x) have the same form as in Eq. 8;

FIGURE 2
Example of a graph coloring problem and its representation to the network graph with requests.
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H3(w, x) is responsible for the relationship wi ≥ xvi, which becomes
positive when the relation is violated. Both termsH2(x) andH3(w, x)
correspond to inequalities in Eq. 5 in the IP form (see Section 5).

The complete algorithm of solving a graph coloring problem (WA
problem) is shown in Algorithm 1. The algorithm uses a subroutine
make_qubo(G,W) that generates the corresponding QUBO matrix
Q with respect to the Hamiltonian (Eq. 11), given the input graph G
and the target number of the wavelengths W. The QUBO problem is
then solved with the subroutine solve_qubo(Q), which finds the
optimal spin vector s = (w, x) using the quantum-inspired SimCIM
approach for the QUBOmatrixQ, as defined in [35]. In order to check
the validness of the obtained solution, we use check_coloring(G, x)
that validates the fulfillment of Eqs 4, 5.

Algorithm 1. Solving graph coloring problem with improved
transformation:

One can see that, if solve_qubo(Q) provides an optimal solution,
then the whole problem is solved in the first iteration. However, even
in the case when the obtained solution is suboptimal, the updated
problemwith the reduced upper boundW becomes easier to solve, and
the algorithm converges with a few numbers of iterations.

3.3 Numerical results

In this study, we solve theWA problem and obtain results with the
use of 1) the proposed technique based on quantum-inspired
optimization SimCIM [35] (with the improved approach, see
Section 5), 2) industry-grade commercial Gurobi optimization
software, and 3) the open-source mixed-integer programming
solver—GLPK. We note that in the case of the quantum-inspired
optimization with SimCIM, we solve the problem in the QUBO form
(Eq. 11), whereas in the case of Gurobi and GLPK, we use the IP
formulation of graph coloring [see (Eqs 3–5)]. Additionally, we
include the results obtained via the largest-degree-first (LDF)
heuristics used as the baseline since it allows one to instantly
produce feasible coloring without numerical optimization. We also
ran the experiments for original QUBO transformation proposed in
[7] and compared them to our proposed QUBO in the Table A1.

Our numerical experiments have been performed on a synthetic
dataset of 900 randomly generated graphs with varying node numbers
and edge probabilities (for details, see Section 5.3). The main
characteristics that we are interested in are time-to-solution (TTS)

and the number of colors in the obtained solution. The total run time
has been limited by 300 s, and the best solutions have been compared.
Results are averaged over 90 runs for each graph size (for details, see
Table 1). For all numerical experiments, we use the same hardware set,
which is based on Xeon E-2288G 3.7 GHz CPU, 128GB RAM, and
GeForce GTX1080 8 GB graphics card.

Our results indicate that the quantum-inspired technique SimCIM
demonstrates a behavior comparable with Gurobi in the case of small
nodes (10–30 nodes). Moreover, the run time of SimCIM is better for
large-scale (90 and 100 nodes) graphs, as it is indicated in Table 2.
Such a trend can be explained. As the number of nodes increases, the
number of inequalities in the ILP formulation of the problem grows
rapidly. The number of inequalities is equal to the product of the
number of edges by the number of colors available for coloring the
vertices of the graph. So, the complexity of the problem for the ILP
solver increases rapidly with the number of nodes. GLPK shows a
stable result up to 30 nodes and becomes unstable further after a
timeout interruption without any solution with more than 10 percent
instances. We note that the comparison between our quantum-
inspired approach and Gurobi is conducted in the common setting,
so its additional tuning for obtaining better results is also possible. At
the same time, we find it interesting that the quantum-inspired
technique shows comparable or superior results in harder,
industry-relevant, combinatorial optimization problem.

3.4 Other potential applications

Although our goal was to demonstrate the applicability of a
quantum-inspired graph coloring algorithm for the wavelength
assignment problem, our approach can be applied to a variety of
problems, in particular from the field of scheduling [42].

Assuming that we have the set of jobs to schedule, every job
requires one time slot and some jobs cannot be executed at the same

TABLE 1 Numerical results obtained with the largest-degree-first (LDF) heuristics,
open-source mixed-integer programming solver (GLPK), Gurobi optimization
software, and SimCIM quantum-inspired optimization on the number of colors
averaged by the number of nodes.

Number of nodes LDF GLPK Gurobi SimCIM

10 4.46 4.34 4.34 4.34

20 6.82 6.36 6.36 6.36

30 9.03 8.03 8.02 8.02

40 10.92 — 9.38 9.39

50 12.80 — 10.88 10.96

60 14.83 — 12.28 12.44

70 16.62 — 13.70 14.01

80 18.41 — 15.34 15.56

90 20.10 — 17.21 17.02

100 22.01 — 19.64 18.54

Average number of colors

(Lower is better)

The best result is highlighted in bold.
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time due to some interference with each other; we need to determine
the minimal time when every job will be finished or how many time
slots they will occupy. One can build the graph so that vertices
correspond to the jobs, and two vertices are connected if these jobs
cannot be executed at the same time. The colors of vertices represent
the time slots to assign; so, a graph has k number of colors if the jobs
can be executed in k time slots.

Using our approach, we take the proposed Hamiltonian in Eq. 11
and redefine its variables so that the following expression is obtained:

xvi � 1, if vertex v is assigned time slot i,
0, otherwise,

{ (14)

and

wi � 1, if i − th time slot is assigned,
0, otherwise.

{ (15)

That way, the job-scheduling problem can be solved using
quantum-inspired annealing analogously to the WA problem.

The same approach can be implemented for tasks from other
fields, such as computer register allocation [43], storage of chemicals
[44], and printed circuit board testing [45].

4 Conclusion

A search for new approaches to solving practically relevant
optimization problems is a clear goal for many industial
applications since even minor improvement on a large scale may
generate serious economic impact. In this domain, much attention is
paid to quantum computing, which is believed to be useful for such
class of problems. At the current technological level, practical
quantum advantage, for example, in optimization is still needed to
be achieved. An interesting part of this research is the understanding
of the physical origin of the potential advantages of quantum
computing technologies. Attempts to simulate quantum
computation classically resulted in a new class of algorithms and

methods known as quantum-inspired methods, which are ready to be
tested for industry-relevant problems.

In this work, we have considered the industry-relevant problem
in the field of telecommunications. We have demonstrated a way to
make it compatible with the quantum and quantum-inspired
techniques. Interestingly, our numerical results have indicated
on an advantage of the quantum-inspired solver in a number of
test cases against the industrial combinatorial solver working on
the standard settings.

One may expect that the additional tuning of the industry-
grade commercial optimization solver may result in a substantial
improvement of its performance. At the same time, studying the
origins of the advantages of the quantum-inspired approach,
which are largely beyond the scope of the present proof-
of-concept demonstration, would allow its further progress
as well.

We would like to note that our comparison is limited by the upper
bound of 100 nodes since it allows us to run all solvers in equivalent
hardware setup using the CPUmode on a single core. Further analysis
of larger graphs requires running the SimCIM solver on a GPU card,
which gives the significant acceleration factor not directly available in
conventional MIP algorithms, which are heavily dependent on graph-
processing routines. As for the multi-core CPU execution
environment, some MIP solvers can benefit from such a set-up by
running various optimization strategies and hyperparameters
simultaneously. Such speed up quickly reaches the saturation point
at the level of 8–16 cores (with around 2x improvement in accordance
with Gurobi experiments, see slide 26 [46]) and demonstrates no
substantial improvement at higher concurrency levels. On the other
hand, a quantum-inspired approach exploits parallelism on the level of
starting optimization points, which demonstrates slower, but stable
performance increase at the higher levels of concurrency (100 ~
1,000 parallel units of execution). Thus, we conduct our
benchmarks exclusively using the CPU mode on a single core to
avoid bias toward either the solution approach. In order to maintain
fairness of comparison for larger graphs, our benchmark routine
should be further revised to account for heterogeneous (CPU/CPU
multi-core vs. GPU/multi-GPU) computing environments.

5 Methods

5.1 Hamiltonian of the wavelength
assignment problem

The main step in solving an optimization problem using the
quantum and quantum-inspired annealing method is to map the
problem of interest to the energy Hamiltonian (so-called Ising
Hamiltonian) so that the quantum device could find the ground
state that corresponds to the optimum value of the objective
function. In this study, we formulate a mapping of the graph
coloring problem into the QUBO form given by Eq. 6. There is a
well-known transformation of the graph G = (V, E) coloring decision
model [7] that shows the possibility of coloring with a constant
number of colors W, but we represent novel QUBO transformation
that could minimize the number of colors and implement the original
problem statement (Eqs 3–5).

The objective function ∑W
i�1wi could be exactly mapped to the

QUBO form:

TABLE 2 Mean solution time depending on the number of nodes for GLPK,
Gurobi, and SimCIM. The best result is highlighted in bold.

Number of nodes GLPK Gurobi SimCIM

10 1.77 .002 .19

20 103.97 .02 .45

30 195.39 .12 4.95

40 — .79 8.90

50 — 14.63 16.82

60 — 38.89 28.51a

70 — 66.01 61.58a

80 — 102.14 69.00a

90 — 144.23 79.87

100 — 127.33 123.13

Average time (seconds)

(Lower is better)

aCases, where the average number of colors is higher.
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H0 w( ) � ∑W
i�1

wi, (16)

where w = (w1, ..., wW) is a binary vector indicating colors used in
coloring. The constraint ∑W

i�1xvi � 1 for every v ∈ V after mapping
takes the form

H1 x( ) � ∑NV

v�1
1 −∑W

i�1
xvi

⎛⎝ ⎞⎠2
, (17)

where NV is the number of nodes in G.
The situation with the second constraint xui + xvi ≤ wi for every i ∈

{1, ..., W} and (u, v) ∈ E appears to be more complicated. One can see
that it involves three variables and thus cannot be directly embedded
into a two-bodyHamiltonian. However, we can use the following trick.
One can easily check that for arbitrary a, b, c ∈ {0, 1}, the following
equivalence holds:

a + b≤ c5
ab � 0,
1 − c( ) a + b( ) � 0.

{ (18)

This fact allows us to embed the conditions xui + xvi ≤ wi into two
Hamiltonians:

H2 x( ) � ∑
u,v( )∈E

∑W
i�1

xuixvi, (19)

H3 w, x( ) � ∑
u,v( )∈E

∑W
i�1

1 − wi( ) xui + xvi( ). (20)

The resulting Hamiltonian consists of all components’ sum:

H w, x( ) � c0H0 w( ) + c1 H1 x( ) +H2 x( )[ ]
+c2H3 w, x( ), (21)

where c0, c1, and c2 are positive constants standing for a positive
penalty value. We note that the sum H1(x) +H2(x) is exactly
matched with the classical decision problem [7] and responsible for
the correct coloring of the graph. Therefore, H1(x) and H2(x) are
grouped with the same penalty coefficient c1. Coefficients c0, c1, and c2
should be set manually using the following criteria: the penalty value c1
should be high enough to the keep the final solution from violating
constraints. At the same time, a very big penalty value can overwhelm
the target function, making it difficult to distinguish solutions of
different qualities. We establish inequalities for constraint
coefficients that show the equivalence of IP and QUBO models of
a problem.

5.1.1 Proposition (QUBO penalty coefficient
selection)

Consider an IP problem given by Eqs 3–5 for a maximal color
numberW and a graph G = (V, E) withNE edges. If the IP problem has
a solution, then the corresponding QUBO problem, given by
Hamiltonian (Eq. 21) with penalty coefficients satisfying

c1 > 2NEWc2 +Wc0, (22)
c2 >Wc0, (23)

has a solution, equivalent to the solution of the IP problem.

5.1.2 Proof
First, let us rewrite the Hamiltonian (Eq. 21) in the following form:

H w, x( ) � c0A w( ) + c1B x( ) + c2C w, x( ), (24)
where

A w( ) ≔ H0 w( ),
B x( ) ≔ H1 x( ) +H2 x( ),

C w, x( ) ≔ H3 w, x( ).
(25)

Note that A, B, and C can take non-negative integer values only. Let
(wI, xI) and (wQ, xQ) be solutions of the IP and QUBO problems
correspondingly. Our goal is to prove the following: (i)

B xQ( ) � C wQ, xQ( ) � 0, (26)
i.e., (xQ, wQ) defines a correct coloring, and (ii)

A wQ( ) � ∑W
i�1

wI( )i, (27)

i.e., the solution of the QUBO problem coincides with the one of the IP
problem.

First, let us see that Eq. 22 assures B(xQ) � 0. The proof of this
part is by a contradiction. Let us suppose that B(xQ)≥ 1. Consider the
difference of energy functions:

ΔH ≔ H wQ, xQ( ) −H wI, xI( )
� c0 A wQ( ) −A wI( )[ ] + c1 B xQ( ) − B xI( )[ ]

+c2 C wQ, xQ( ) − C wI, xI( )[ ]. (28)

The correctness of the IP solution implies B(xI) � 0, and so
B(xQ) − B(xI)≥ 1. The differences in terms with A and C can be
lower-bounded by the corresponding extreme values:

A wQ( ) −A wI( )≥ −W, (29)
C wQ, xQ( ) − C wI, xI( )≥ − 2NEW. (30)

In this way, Eq. 28 transforms into the following:

ΔH≥ − c0W + c1 − 2c2NEW> 0, (31)
given constraint (Eq. 22). However, this result contradicts with the fact
that (wQ, xQ) provides the minimal energy. Therefore, B(xQ) � 0, and

H wQ, xQ( ) � c0A wQ( ) + c2C wQ, xQ( ). (32)
We then prove that C(wQ, xQ) is zero as well. Indeed, if

C(wQ, xQ)≥ 1, then

ΔH � c0 A wQ( ) −A wI( )[ ]
+c2 C wQ, xQ( ) − C wI, xI( )[ ]
≥ − c0W + c2 > 0,

(33)

provided C(wI, xI) � 0 and the second constraint (Eq. 23). Thus,
H(wQ, xQ) � c0A(wQ).

Finally, A(wQ) � A(wI) since otherwise, either there exists a
solution for the QUBO problem that is better than (wQ, xQ) or (xI,
wI) is not the true solution for the IP problem.

Therefore, the optimal solution to the QUBO problem appears to
be equivalent to the optimal solution to the corresponding IP problem.

5.2 Wavelength assignment QUBO
transformation

In this study, we demonstrate how to construct an operator matrix
Q of our QUBO model for the WA problem. Recall that we take the
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binary vector of the QUBO problem in the form s = (w, x),
i.e., enumerate K = (NV+1)W and binary variables sk and link
them to our model variables as follows:

sk � wk, k � 1, . . . ,W,
xui, k � uW + i,

{ (34)

where u = 1, . . . , NV, i = 1, . . . , W.
The goal is tofind the vector s thatminimizes the quadratic form sTQs,

andwe show that it is equivalent tominimizing energy of theHamiltonian
(Eq. 11). Let us denote A the adjacency matrix of the network graph G =
(V, E) so that auv = 1 if (u, v) ∈ E, and auv = 0 otherwise. We note that the
sum of the vth column ofA equals the degree of the vertex v, and the sum
of all vertex degrees is 2NE. We rewrite the operator (Eq. 11) terms
H0(w), H1(x),H2(x), and H3(w, x) as follows:

H0 w( ) � ∑W
i�1

w2
i , (35)

H1 x( ) � ∑NV

v�1
1 −∑W

i�1
xvi

⎛⎝ ⎞⎠2

� ∑NV

v�1
∑W

i�1xvi( )2

− 2∑W
i�1

xvi
⎛⎝ ⎞⎠ +NV

� ∑NV

v�1
∑W
i,j�1

xvixvj − 2∑W
i�1

x2
vi

⎛⎝ ⎞⎠ +NV,

(36)

H2 x( ) � ∑
u,v( )∈E

∑W
i�1

xuixvi � ∑NV

u,v�1
∑W
i�1

auvxuixvi, (37)

H3 w, x( ) � ∑
u,v( )∈E

∑W
i�1

1 − wi( ) xui + xvi( )

� ∑W
i�1

1 − wi( )∑NV

v�1
dvxvi

� −∑NV

v�1
∑W
i�1

dvwixvi +∑NV

v�1
dv ∑W

i�1
xvi.

(38)

In expanding the expression for H1(x), we exploit the fact that since
xvi is binary, then x2

vi � xvi. Also, we note that if H1(x) � 0, then the
last term in H3(w, x) equals 2NE.

Considering the equalities (Eqs 35–38) for Hamiltonian terms
H0(x),H1(x),H2(x) andH3(w, x), we construct a QUBO operator as
a block matrix as follows:

Q � Q11 Q12

Q21 Q22
( ), (39)

where

Q11 � c0EW, (40)
Q12 � −c2

2
D ⊗ EW, Q21 � QT

12, (41)
Q22 � c1ENV ⊗ IW − 2EW( ) + c1A ⊗ EW. (42)

Here, EW denotes the identity matrix of size W, IW denotes a
matrix with all elements equal to 1 of those of size W, and D �
(d1, ..., dNV) is a row vector of graph vertex degrees. We also employ
the fact that the terms of the form

∑NV

u,v�1
∑W
i,j�1

cuvhijxuixvj, (43)

for some coefficients cuv = cvu and hij = hji can be represented by a
quadratic form defined by the Kronecker product C ⊗ H, where C and
H are matrices of cuv and hij, respectively. Matrix Q is constructed so
that the Q11 submatrix corresponds to the term H0(x) of the
Hamiltonian (Eq. 11), the Q12 submatrix is for H3(w, x), and Q22

is for H1(x) +H2(x).
It is worth emphasizing that it is the structure of the encoding

problem parameters into the spin vector, given by Eq. 34, that allows
us to represent submatricesQ12,Q21, andQ22 in the form of Kronecker
products. This feature of QUBO submatrices significantly speeds up
their assembly using standard mathematical packages, e.g., numpy
and scipy.

5.3 Dataset generation

We generate datasets that are used in binomial graphs [47], or
Erdös–Rényi graphs, which have two parameters for generation: the
number of nodes NV and the probability of an edge occurrence p. Each
of possible N = NV · (NV −1)/2 edges is chosen with probability p. The
number of edges NE is drawn randomly from the binomial distribution:

P NE � x( ) � N
x( )px · q N−x( ). (44)

To take into account sparse and dense graphs, various probability
p options from .1 to .9 with an interval of .1 have been chosen; the
number of graph nodes has been varied 10 to 100 with a step of 10. For
each pair (n, p), 10 connected graphs have been generated with
different seed parameters. We note that disconnected graphs are
not included the dataset. The overall characteristics of the dataset
are given in Table 3.

5.4 Setting penalty values

Optimal penalty values guarantee the fulfillment of constraints for
an optimal solution, but large values of c1 and c2 reduce the
contribution of the initial objective function to the total energy and

TABLE 3 Characteristics of the graph coloring dataset; the total number of
instances is 900.

Number of nodes Number of edges QUBO matrix size

Min Max Min Max

10 9 43 44 110

20 23 176 84 315

30 39 399 124 589

40 74 714 205 943

50 118 1,123 255 1,377

60 168 1,625 366 1,891

70 231 2,209 426 2,556

80 301 2,879 486 3,321

90 372 3,652 546 4,004

100 470 4,501 707 4,848
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significantly increase the time to find the optimal solution. Our
approach to solve this problem is as follows:

1. Set the minimum possible penalty values c1 and c2 using trial runs
so that the contribution of the objective function is sufficient.

2. Use all SimCIM iterations to select feasible solutions.
3. Take the feasible solution with the lowest energy.

The following penalty values were set for the tests:

c0 � 1, c1 � 10 + pNV, c2 � 2.5. (45)

5.5 Quantum-inspired annealing using
SimCIM

SimCIM [35] is an example of a quantum-inspired annealing
algorithm, which works in an iterative manner. SimCIM can be used
for sampling low-energy spin configurations in the classical Ising
model, and the Hamiltonian can be written as follows:

H � ∑
i

hisi + ∑
<i,j>

Jijsisj, (46)

where J represents the spin–spin interaction, h represents the
external field, and si are the individual spins on each of the
lattice sites. The Ising Hamiltonian can be directly transformed
to a QUBO problem [13], and then, quantum annealing can be
applied to any optimization problem, which can be expressed into
the Quadratic Unconstrained Binary Optimization (QUBO) form.
The SimCIM algorithm treats each spin value as a continuous
variable si ∈ [−1, 1]. Each iteration of the algorithm starts with
calculating the mean field of the following form:

Φi � ∑
j≠i

Jijsj + hi, (47)

which acts on each spin by all other spins. Then, the gradients for the
spin values are calculated as follows:

Δsi � ptsi + ζΦi +N 0, σ( ), (48)
where pt is a dynamic parameter dependent on the SimCIM annealing
process, the overall feed forward factor is ζ, and N (0, σ) is a random
variable sampled from the Gaussian distribution with zero mean
and standard deviation σ. Then, the spin values are updated
according to si ← ϕ(si+Δsi), where ϕ(x) is the activation function:

ϕ x( ) � x for |x|≤ 1;
x/|x|, otherwise.{ (49)

After multiple updates, the spins will tend to either −1 or +1, and the
final discrete spin configuration is obtained by taking the sign of each si.

In our implementation, we added several improvements to the
SimCIM algorithm defined in the original paper [35]. In particular, we
normalized the value of the Gaussian noise to a gradient norm and
introduced gradient quantization, which made the solver more stable
near optimum points.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed to
the corresponding authors.

Author contributions

The development of a quantum-based algorithm to solve the RWA
problem was made by AB and SU. Also, an improved embedding
procedure for this problem in the form of quadratic unbounded binary
optimization (QUBO) was implemented by AS, MU, and GS. In
addition, the part of this work related to the analysis of the
quantum-inspired optimization algorithm was made by AM, EK,
and AF. All authors made a significant contribution to the work
on obtaining the results and writing the article.

Funding

The part of this work related to the analysis of a quantum-inspired
optimization algorithm was supported by the Russian Science
Foundation (19-71-10092).

Acknowledgments

The authors acknowledge the use of Gurobi for this work; the
views expressed are those of the authors and do not reflect the official
policy or position of Gurobi.

Conflict of interest

Owing to the employments and consulting activities of authors,
the authors have financial interests in the commercial applications of
quantum computing. The authors do not have any non-financial
competing interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or those
of the publisher, the editors, and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its manufacturer, is
not guaranteed or endorsed by the publisher.

Supplementary Material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2022.1092065/
full#supplementary-material

Frontiers in Physics frontiersin.org09

Boev et al. 10.3389/fphy.2022.1092065

https://www.frontiersin.org/articles/10.3389/fphy.2022.1092065/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.1092065/full#supplementary-material
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1092065


References

1. Paschos VT. Paradigms of combinatorial optimization. 2nd ed. London: Hoboken:
John Wiley & Sons (2014). ISTE.

2. Farhi E, Goldstone J, Gutmann S, Sipser M. Quantum
computation by adiabatic evolution (2000). Available at: https://arxiv.org/abs/
quant-ph/0001106.

3. Das A, Chakrabarti BK. Colloquium: Quantum annealing and analog
quantum computation. Rev Mod Phys (2008) 80:1061–81. doi:10.1103/
RevModPhys.80.1061

4. Albash T, Lidar DA. Adiabatic quantum computation. Rev Mod Phys (2018) 90:
015002. doi:10.1103/RevModPhys.90.015002

5. Fedorov AK, Gisin N, Beloussov SM, Lvovsky AI. Quantum computing at the
quantum advantage threshold: A down-to-business review (2022). Available at: https://
arxiv.org/abs/2203.17181.

6. Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm
(2014). Available at: https://arxiv.org/abs/1411.4028.

7. Lucas A. Ising formulations of many NP problems. Front Phys (2014) 2:5. doi:10.3389/
fphy.2014.00005

8. King AD, Raymond J, Lanting T, Isakov SV, Mohseni M, Poulin-Lamarre G, et al.
Scaling advantage over path-integral Monte Carlo in quantum simulation of
geometrically frustrated magnets. Nat Commun (2021) 12:1113. doi:10.1038/s41467-
021-20901-5

9. Streif M, Neukart F, Leib M. Solving quantum chemistry problems with a d-wave
quantum annealer. In: Feld S, Linnhoff-Popien C, editors. Quantum Technology and
optimization problems. Cham: Springer International Publishing (2019). p. 111–22.

10. Chermoshentsev DA, Malyshev AO, Esencan M, Tiunov ES, Mendoza D, Aspuru-
Guzik A, et al. Polynomial unconstrained binary optimisation inspired by optical
simulation (2021). 2106.13167.

11. Perdomo-Ortiz A, Dickson N, Drew-Brook M, Rose G, Aspuru-Guzik A. Finding
low-energy conformations of lattice protein models by quantum annealing. Scientific Rep
(2012) 2:571. doi:10.1038/srep00571

12. Babej T, Ing C, Fingerhuth M. Coarse-grained lattice protein folding on a quantum
annealer (2018). 1811.00713.

13. Boev AS, Rakitko AS, Usmanov SR, Kobzeva AN, Popov IV, Ilinsky VV, et al.
Genome assembly using quantum and quantum-inspired annealing. Scientific Rep (2021)
11:13183. doi:10.1038/s41598-021-88321-5

14. Sarkar A, Al-Ars Z, Bertels K. QuASeR: Quantum Accelerated de novo DNA
sequence reconstruction. PLOS ONE (2021) 16:e0249850. doi:10.1371/journal.pone.
0249850

15. Chang CC, Gambhir A, Humble TS, Sota S. Quantum annealing for systems of
polynomial equations. Scientific Rep (2019) 9:10258. doi:10.1038/s41598-019-46729-0

16. Orús R,Mugel S, Lizaso E. Quantum computing for finance: Overview and prospects.
Rev Phys (2019) 4:100028. doi:10.1016/j.revip.2019.100028

17. Mugel S, Kuchkovsky C, Sanchez E, Fernandez-Lorenzo S, Luis-Hita J, Lizaso E, et al.
Dynamic portfolio optimization with real datasets using quantum processors and
quantum-inspired tensor networks (2020). 2007.00017.

18. Grant E, Humble TS, Stump B. Benchmarking quantum annealing controls with
portfolio optimization. Phys Rev Appl (2021) 15:014012. doi:10.1103/PhysRevApplied.15.
014012

19. Herman D, Googin C, Liu X, Galda A, Safro I, Sun Y, et al. A survey of quantum
computing for finance (2022). Available at: https://arxiv.org/abs/2201.02773.

20. Orús R, Mugel S, Lizaso E. Forecasting financial crashes with quantum computing.
Phys Rev A (2019) 99:060301. doi:10.1103/PhysRevA.99.060301

21. Rosenberg G, Haghnegahdar P, Goddard P, Carr P, Wu K, de Prado ML. Solving the
optimal trading trajectory problem using a quantum annealer. IEEE J Selected Top Signal
Process (2016) 10:1053–60. doi:10.1109/JSTSP.2016.2574703

22. Rosenberg G. Finding optimal arbitrage opportunities using a quantum annealer
(2016). Available at: https://1qbit.com/.

23. Andrew Milne MR, Goddard P. Optimal feature selection in credit scoring
and classification using a quantum annealer (2017). Available at: https://
1qbit.com/.

24. Vesely M. Application of quantum computers in foreign exchange reserves
management (2022). Available at: https://arxiv.org/abs/2203.15716.

25. Neukart F, Compostella G, Seidel C, von Dollen D, Yarkoni S, Parney B. Traffic flow
optimization using a quantum annealer. Front ICT (2017) 4:29. URL. doi:10.3389/fict.
2017.00029

26. Inoue D, Okada A, Matsumori T, Aihara K, Yoshida H. Traffic signal optimization
on a square lattice with quantum annealing. Scientific Rep (2021) 11:3303. doi:10.1038/
s41598-021-82740-0

27. Hussain H, Javaid MB, Khan FS, Dalal A, Khalique A. Optimal control of traffic
signals using quantum annealing. Quan Inf Process (2020) 19:312. doi:10.1007/s11128-
020-02815-1

28. Venturelli D, Marchand DJJ, & Rojo G Quantum annealing implementation of job-
shop scheduling (2016). 1506.08479.

29. Ikeda K, Nakamura Y, Humble TS. Application of quantum annealing to
nurse scheduling problem. Scientific Rep (2019) 9:12837. doi:10.1038/s41598-019-
49172-3

30. Sadhu A, Zaman S, Das K, Banerjee A, & Khan F Quantum annealing for solving a
nurse-physician scheduling problem in Covid-19 clinics (2020).

31. Stollenwerk T, Michaud V, Lobe E, Picard M, Basermann A, Botter T, Image
acquisition planning for Earth observation satellites with a quantum annealer (2020).
2006.09724.

32. Domino K, Koniorczyk M, Krawiec K, Jałowiecki K, & Gardas B Quantum
computing approach to railway dispatching and conflict management optimization on
single-track railway lines (2021). 2010.08227.

33. Domino K, Koniorczyk M, Krawiec K, Jałowiecki K, Deffner S, Gardas B, Quantum
annealing in the nisq era: Railway conflict management (2021). 2112.03674.

34. Ebadi S, Keesling A, Cain M, Wang TT, Levine H, Bluvstein D, et al. Quantum
optimization of maximum independent set using rydberg atom arrays. Science (2022) 376:
1209–15. doi:10.1126/science.abo6587

35. Tiunov ES, Ulanov AE, Lvovsky AI. Annealing by simulating the coherent ising
machine. Opt Express (2019) 27:10288–95. doi:10.1364/oe.27.010288

36. Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd S. Continuous-
variable quantum neural networks. Phys Rev Res (2019) 1:033063. doi:10.1103/
PhysRevResearch.1.033063

37. Oshiyama H, Ohzeki M. Benchmark of quantum-inspired heuristic solvers for
quadratic unconstrained binary optimization. Scientific Rep (2022) 12:2146. doi:10.1038/
s41598-022-06070-5

38. Resende MGC. Combinatorial optimization in telecommunications. In: Applied
optimization. New York: Springer US (2003). p. 59–112. doi:10.1007/978-1-4613-0233-
9_4

39. Vesselinova N, Steinert R, Perez-Ramirez DF, Boman M.
Learning combinatorial optimization on graphs: A survey with applications
to networking. IEEE Access (2020) 8:120388–416. doi:10.1109/ACCESS.2020.
3004964

40. Martin V, Brito JP, Escribano C, Menchetti M, White C, Lord A, et al. Quantum
technologies in the telecommunications industry. EPJ Quan Tech (2021) 8:19. doi:10.1140/
epjqt/s40507-021-00108-9

41. Harwood S, Gambella C, Trenev D, Simonetto A, Bernal Neira D, Greenberg D.
Formulating and solving routing problems on quantum computers. IEEE Trans Quan Eng
(2021) 2:1–17. doi:10.1109/tqe.2021.3049230

42. Marx D. Graph colouring problems and their applications in scheduling. Periodica
Polytechnica Electr Eng (Archives) (2004) 48:11–6.

43. Chaitin GJ, Auslander MA, Chandra AK, Cocke J, Hopkins ME, Markstein PW. Register
allocation via coloring. Computer languages (1981) 6:47–57. doi:10.1016/0096-0551(81)90048-5

44. Ott J, Tan D, Loveless T, Grover WH, Brisk P. Chemstor: Using formal methods to
guarantee safe storage and disposal of chemicals. J Chem Inf Model (2020) 60:3416–22.
doi:10.1021/acs.jcim.9b00951

45. Garey M, Johnson D, So H. An application of graph coloring to printed
circuit testing. IEEE Trans circuits Syst (1976) 23:591–9. doi:10.1109/tcs.1976.
1084138

46. Glockner G. Parallel and distributed optimization with gurobi optimizer (2015).
Available at: https://assets.gurobi.com/pdfs/2015-09-21-Parallel-and-Distributed-
Optimization-with-the-Gurobi-Optimizer.pdf.

47. Batagelj V, Brandes U. Efficient generation of large random networks. Phys Rev E
(2005) 71:036113. doi:10.1103/PhysRevE.71.036113

Frontiers in Physics frontiersin.org10

Boev et al. 10.3389/fphy.2022.1092065

https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1103/RevModPhys.90.015002
https://arxiv.org/abs/2203.17181
https://arxiv.org/abs/2203.17181
https://arxiv.org/abs/1411.4028
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1038/s41467-021-20901-5
https://doi.org/10.1038/s41467-021-20901-5
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/s41598-021-88321-5
https://doi.org/10.1371/journal.pone.0249850
https://doi.org/10.1371/journal.pone.0249850
https://doi.org/10.1038/s41598-019-46729-0
https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.1103/PhysRevApplied.15.014012
https://doi.org/10.1103/PhysRevApplied.15.014012
https://arxiv.org/abs/2201.02773
https://doi.org/10.1103/PhysRevA.99.060301
https://doi.org/10.1109/JSTSP.2016.2574703
https://1qbit.com/
https://1qbit.com/
https://1qbit.com/
https://arxiv.org/abs/2203.15716
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.1038/s41598-021-82740-0
https://doi.org/10.1038/s41598-021-82740-0
https://doi.org/10.1007/s11128-020-02815-1
https://doi.org/10.1007/s11128-020-02815-1
https://doi.org/10.1038/s41598-019-49172-3
https://doi.org/10.1038/s41598-019-49172-3
https://doi.org/10.1126/science.abo6587
https://doi.org/10.1364/oe.27.010288
https://doi.org/10.1103/PhysRevResearch.1.033063
https://doi.org/10.1103/PhysRevResearch.1.033063
https://doi.org/10.1038/s41598-022-06070-5
https://doi.org/10.1038/s41598-022-06070-5
https://doi.org/10.1007/978-1-4613-0233-9_4
https://doi.org/10.1007/978-1-4613-0233-9_4
https://doi.org/10.1109/ACCESS.2020.3004964
https://doi.org/10.1109/ACCESS.2020.3004964
https://doi.org/10.1140/epjqt/s40507-021-00108-9
https://doi.org/10.1140/epjqt/s40507-021-00108-9
https://doi.org/10.1109/tqe.2021.3049230
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1021/acs.jcim.9b00951
https://doi.org/10.1109/tcs.1976.1084138
https://doi.org/10.1109/tcs.1976.1084138
https://assets.gurobi.com/pdfs/2015-09-21-Parallel-and-Distributed-Optimization-with-the-Gurobi-Optimizer.pdf
https://assets.gurobi.com/pdfs/2015-09-21-Parallel-and-Distributed-Optimization-with-the-Gurobi-Optimizer.pdf
https://doi.org/10.1103/PhysRevE.71.036113
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1092065


Appendix

TABLE A1 Comparison of the proposed QUBO transformation for the graph coloring problem to original QUBO transformation described in [7].

Number of nodes Original QUBO transformation Proposed QUBO transformation

Number of colors Run time Number of colors Run time

10 4.34 .28 4.34 .19

20 6.47 .62 6.36 .45

30 8.24 7.67 8.02 4.95

40 10.31 14.22 9.39 8.90

50 12.41 26.28 10.96 16.82

60 14.53 42.01 12.44 28.51

70 16.52 63.89 14.01 61.58

80 18.03 98.50 15.56 69.00

90 19.74 106.61 17.02 79.87

100 20.65 140.41 18.54 123.13

Average result

(Lower is better)

Experiments were performed on the same dataset of 900 randomly generated graphs with the use of SimCIM. Results show that the proposed QUBO runs faster, giving on average lower or the same

number of colors.
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