
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Manisha Aggarwal,
Johns Hopkins University,
United States

REVIEWED BY

Liangliang Meng,
Chinese People’s Liberation Army
General Hospital, China
Ashish Verma,
Banaras Hindu University, India

*CORRESPONDENCE

Zhixue Wang

WagZhiXue917@126.com

Jun Zhou

zhoujunzn@126.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 28 October 2022

ACCEPTED 21 December 2022

PUBLISHED 18 January 2023

CITATION

Li J, Wu B, Huang Z, Zhao Y, Zhao S,
Guo S, Xu S, Wang X, Tian T, Wang Z
and Zhou J (2023) Whole-lesion
histogram analysis of multiple diffusion
metrics for differentiating lung cancer
from inflammatory lesions.
Front. Oncol. 12:1082454.
doi: 10.3389/fonc.2022.1082454

COPYRIGHT

© 2023 Li, Wu, Huang, Zhao, Zhao,
Guo, Xu, Wang, Tian, Wang and Zhou.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author
(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 18 January 2023

DOI 10.3389/fonc.2022.1082454
Whole-lesion histogram analysis
of multiple diffusion metrics for
differentiating lung cancer from
inflammatory lesions

Jiaxin Li1†, Baolin Wu2†, Zhun Huang3, Yixiang Zhao4,
Sen Zhao1, Shuaikang Guo1, Shufei Xu1, Xiaolei Wang1,
Tiantian Tian5, Zhixue Wang1* and Jun Zhou6*

1Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China, 2Huaxi
MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan
University, Chengdu, China, 3Department of Radiology, Henan Provincial People’s Hospital,
Zhengzhou, China, 4Department of Critical Care Medicine, The First Affiliated Hospital of Henan
University, Kaifeng, China, 5Department of Radiology, Huaihe Hospital of Henan University,
Kaifeng, China, 6Interventional Diagnostic and Therapeutic Center, Zhongnan Hospital of Wuhan
University, Wuhan, China
Background: Whole-lesion histogram analysis can provide comprehensive

assessment of tissues by calculating additional quantitative metrics such as

skewness and kurtosis; however, few studies have evaluated its value in the

differential diagnosis of lung lesions.

Purpose: To compare the diagnostic performance of conventional diffusion-

weighted imaging (DWI), intravoxel incoherent motion (IVIM) magnetic

resonance imaging (MRI) and diffusion kurtosis imaging (DKI) in differentiating

lung cancer from focal inflammatory lesions, based on whole-lesion volume

histogram analysis.

Methods: Fifty-nine patients with solitary pulmonary lesions underwent

multiple b-values DWIs, which were then postprocessed using mono-

exponential, bi-exponential and DKI models. Histogram parameters of the

apparent diffusion coefficient (ADC), true diffusivity (D), pseudo-diffusion

coefficient (D*), and perfusion fraction (f), apparent diffusional kurtosis (Kapp)

and kurtosis-corrected diffusion coefficient (Dapp) were calculated and

compared between the lung cancer and inflammatory lesion groups.

Receiver operating characteristic (ROC) curves were constructed to evaluate

the diagnostic performance.

Results: The ADCmean, ADCmedian, Dmean and Dmedian values of lung cancer were

significantly lower than those of inflammatory lesions, while the ADCskewness,

Kapp
mean, Kapp

median, Kapp
SD, Kapp

kurtosis and Dapp
skewness values of lung cancer

were significantly higher than those of inflammatory lesions (all p < 0.05).

ADCskewness (p = 0.019) and Dmedian (p = 0.031) were identified as independent

predictors of lung cancer. Dmedian showed the best performance for differentiating
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lung cancer from inflammatory lesions, with an area under the ROC curve of 0.777.

Using a Dmedian of 1.091 × 10-3 mm2/s as the optimal cut-off value, the sensitivity,

specificity, positive predictive value and negative predictive value were 69.23%,

85.00%, 90.00% and 58.62%, respectively.

Conclusions: Whole-lesion histogram analysis of DWI, IVIM and DKI

parameters is a promising approach for differentiating lung cancer from

inflammatory lesions, and Dmedian shows the best performance in the

differential diagnosis of solitary pulmonary lesions.
KEYWORDS

diffusion-weighted imaging, intravoxel incoherent motion, diffusion kurtosis imaging,
magnetic resonance imaging, lung lesions, histogram analysis
Introduction

Lung cancer has been the most common cancer in China,

and is the leading cause of cancer-related deaths in both China

and United States (1). In clinical practice, detection of lung

lesions mainly relies on computed tomography (CT) due to its

short-time scanning and high resolution of density. As a

preferred imaging technique for detecting lung lesions, CT

imaging can capture the important features of lesions in terms

of morphology, boundary, tissue density and enhancement.

However, given that lung cancer and some benign lesions (e.g.,

inflammatory lesions) usually have overlapped features on CT, it

is occasionally difficult to distinguish lung cancer from benign

lesions. Although CT-guided transthoracic lung biopsy has been

widely used for pathologic diagnosis of lung lesions, this

technique is invasive and not suitable for patients with poor

lung function. Thus, it is essential to develop non-invasive and

valuable tools for the accurate diagnosis of lung lesions. Early

diagnosis and differentiation of pulmonary lesions will help to

select the optimal therapeutic strategy and avoid some

unnecessary treatments.
In recent years, diffusion-weighted imaging (DWI), a non-

invasive magnetic resonance imaging (MRI) technique, has shown

potential diagnostic value for lung lesions. Previous studies have

demonstrated that the apparent diffusion coefficient (ADC), a

parameter calculated from DWI data based on a mono-

exponential model, can be used to distinguish malignant and

benign pulmonary lesions (2, 3), and may also help characterize

the subtype of lung cancer (2). However, the ADC value is also

affected by tissue microcirculation perfusion. Compared with

conventional DWI, intravoxel incoherent motion (IVIM) MR

imaging allows separate calculation of diffusion and perfusion

parameters based on a bi-exponential model (4). Additionally,

another advanced diffusion model, diffusion kurtosis imaging

(DKI), has been a new topic of growing interest in radiology and
02
enables characterization of non-Gaussian water diffusion behavior

(5). Considering that analyses using mono- and bi-exponential

DWI models and DKI model provide information on different

aspects of tissue microstructure, it is necessary to explore and

compare their roles in the differentiation of solitary pulmonary

lesions, and thus helping to select the optimal imaging parameter

for lesion diagnosis. In fact, several studies have been conducted to

address this issue (3, 6, 7), but did not yield consistent and

conclusive results. It should be noted that most of previous

studies analyzed the diffusion MR imaging parameters based on

single-section (usually selected the slice with the largest diameter of

lung lesions) regions of interest (ROIs) rather than whole-lesion

volumes. Traditional single-section ROI analysis cannot capture the

heterogeneity within the whole lesions, whichmay lead to subjective

bias and possible sampling error of measurement.

Whole-lesion histogram analysis, a method that can provide

comprehensive microstructural information of lesions by

calculating additional quantitative metrics (such as skewness

and kurtosis), has been increasingly applied in cancer imaging

researches. This volumetric analysis can address internal lesion

heterogeneity, and has better interobserver reproducibility and

higher diagnostic accuracy compared with single-section ROI

analysis (8, 9). Quantitative whole-lesion histogram analysis has

been used to differentiate histological grades of rectal cancer (10)

and gastric cancer (11), to distinguish benign and malignant

breast lesions (12), and to assess response to combined

chemotherapy and radiation therapy (CRT) in patients with

rectal cancer (8). However, to our knowledge, studies using

whole-lesion histogram analysis of mono- and bi-exponential

DWI and DKI for differentiation of lung lesions are limited.

Thus, the present study aimed to evaluate the diagnostic

performance of conventional ADC, IVIM and DKI metrics in

differentiating primary lung cancer from focal inflammatory

lesions, by using histogram analysis derived from whole-

lesion volumes.
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Materials and methods

Study population

This prospective single-center study was approved by the

Institutional Review Board of The First Affiliated Hospital of

Henan University. Written informed consent was obtained from

each patient prior to inclusion. From February 2022 to

September 2022, consecutive patients who met the following

inclusion criteria were recruited: (1) pulmonary solitary lesions

detected by initial CT examinations, and the maximum diameter

of the lesion was greater than or equal to 15 mm; (2) the

pulmonary lesions could be clearly visualized on subsequent

MR imaging; (3) the solid component accounted for more than

50% of the whole lesion; and (4) no radiochemotherapy or

targeted drug therapy was performed prior to MRI

examinations. The exclusion criteria were: (1) CT images

showed ground glass foci; (2) poor physical condition that led

to intolerance to MRI examinations; (3) contraindication to MR

scanning, such as claustrophobia and placement of artificial

cardiac pacemaker; and (4) poor MR imaging quality that

made it impossible to perform data post-processing.

CT-guided transthoracic needle biopsy or surgery was

performed within 10 days after MRI examinations. Diagnosis

of primary lung cancer was confirmed by pathological results,

while diagnosis of inflammatory lesions was confirmed by either

pathological results or radiological follow-up more than one

month after anti-inflammatory treatment (manifested as the

disappearance or obvious regression of the lesions).

Seventy-four consecutive patients were included in this study,

and 15 patients were excluded due to the following reasons: (1)

other types of space-occupying lung lesions, including low-grade
Frontiers in Oncology 03
mucoepidermoid carcinoma (n = 1), atypical hyperplasia (n = 1),

low-grade intraepithelial neoplasia (n = 1), lymphoma (n = 1), and

hamartoma (n = 2); (2) contraindication to MR scanning (n = 4);

and (3) poor imaging quality (n = 5). Thus, the MR imaging data of

lung lesions in the remaining 59 patients (27 males and 32 females;

mean age 57.8 ± 9.9, range from 39 to 79 years) were used for

final analyses.
MRI data acquisition

Within one week after the lesions were detected by CT, all

patients underwent MR imaging using a 1.5-T MRI scanner

(MAGNETOM Sempra, Siemens Healthcare, Erlangen,

Germany) with a 13-channel body coil. First, conventional

axial T1-weighted, as well as axial and coronal T2-weighted

imaging sequences were acquired. Then, conventional DWI,

IVIM and DKI images were obtained using multiple b-values.

Detailed MR imaging parameters are shown in Table 1.
Image analysis

MRI data analysis was performed using the Medical Imaging

Interaction Toolkit (MITK) Workbench. Multiple b-values DWI

data were post-processed using mono-exponential (b-values = 0

and 800 s/mm2), bi-exponential IVIM (b-values = 0, 10, 20, 30,

50, 80, 150, 300, 500, 800, and 1000 s/mm2) and DKI (b-values =

0, 500, 1000, 1500, and 2000 s/mm2) models. Subsequently, the

values of the ADC, IVIM parameters [true molecular diffusion

coefficient (D), pseudo-diffusion coefficient (D*), and perfusion

fraction (f)] and DKI parameters [apparent diffusional kurtosis
TABLE 1 MR imaging parameters.

Parameter Axial T1WI Axial T2WI
Coronal
T2WI Axial DWI Axial IVIM Axial DKI

Imaging technique 3D VIBE BLADE HASTE SE-EPI SE-EPI SE-EPI

Respiratory com-
pensation

Breath
holding

Respiratory-
triggered

Breath
holding

Free
breathing Free breathing Free breathing

TR/TE (ms) 2.6/0.92 4000/74 1100/51 5300/67 3000/76 4200/91

FOV (mm2) 380 × 285 380 × 380 380 × 380 380 × 310 380 × 310 380 × 310

Matrix 224 × 224 240 × 240 256 × 230 128 × 128 128 × 128 128 × 128

Section thickness (mm) 5 5 5 5 5 5

Section gap (mm) 1 1 1 1 1 1

No. of sections 10 10 30 10 10 10

b-values (s/mm2) … … … 0 and 800
0, 10, 20, 30, 50, 80, 150, 300, 500,

800, and 1000
0, 500, 1000, 1500,

and 2000
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; 3D-VIBE, three-
dimensional volumetric interpolated breath-hold examination; HASTE, half-Fourier acquisition single-shot turbo spin echo; SE-EPI, spin-echo echo-planar imaging; TR, repetition
time; TE, echo time; FOV, field of view.
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(Kapp) and kurtosis-corrected diffusion coefficient (Dapp)] were

calculated. The calculation equations and the meanings for

ADC, IVIM and DKI parameters have been described in detail

in previous studies (3, 13).

For further histogram analyses, ROIs were manually

delineated layer by layer on ADC maps by referring to the

conventional axial T2-weighted images, and areas with vessels,

cavity and necrosis within the lesions were excluded, thus

generating a three-dimensional volume of interest (VOI). The

ROIs were automatically copied from the ADC maps to the

corresponding IVIM and DKI parametric maps. Then,

histogram analyses of these quantitative MR parameters were

performed based on the information extracted from each voxel

within the entire VOI. The calculated histogram parameters

included: (1) mean; (2) median; (3) standard deviation (SD); (4)

skewness, which measures the degree of histogram asymmetry

around the mean; and (5) kurtosis, which measures the

histogram sharpness.

Two of the authors (JXL and BLW, radiologists with five and

seven years of experience in chest imaging, respectively) who

were blinded to the histopathological results independently

performed data analysis.
Statistical analysis

Statistical analyses were performed using SPSS version 21.0

(IBM Corp, Armonk, NY) and MedCalc version 19.2.0

(MedCalc, Mariakerke, Belgium) software. Between-group

differences in demographic and clinical data, as well as in all

histogram parameters were determined using chi-square test,

two-sample t-test and Mann-Whitney U-test. We calculated the

intraclass correlation coefficient (ICC) by using a two-way

random-effects model to evaluate the consistency and

reliability of the same histogram parameter between the two

independent observers (< 0.40, poor agreement; 0.40–0.59, fair

agreement; 0.60–0.74, good agreement; and ≥ 0.75, excellent

agreement). For histogram metrics showing significant between-

group differences, univariate and multivariate logistic regression

analyses were performed to determine the independent

predictors of lung cancer. Furthermore, we used receiver

operating characteristic (ROC) curves to assess the diagnostic

performance of each histogram parameter in differentiating lung

cancer from inflammatory lesions, and identified the

corresponding optimal cut-off value. Then, the area under the

ROC curve (AUC), sensitivity, specificity, positive predictive

value (PPV) and negative predictive value (NPV) were

calculated. The DeLong test (14) was used to compare the

AUC values of different histogram metrics, and the Benjamin–

Hochberg false discovery rate was used to correct for multiple
Frontiers in Oncology 04
comparisons (15). A p value less than 0.05 was considered to

indicate statistical significance.
Results

Demographic and clinical characteristics

According to the pathological results or radiological follow-

up after anti-inflammatory treatment, the included 59 patients

were divided into two groups: the lung cancer group (n = 39) and

the inflammatory lesion group (n = 20). The demographic and

clinical characteristics of the two patient groups are shown in

Table 2. There were no significant differences in age, sex, lesion

size and lesion location between the lung cancer and

inflammatory lesion groups (all p > 0.05).
Interobserver agreement

As show in Table 3, all the ADC, D, D*, f, Kapp and Dapp

histogram parameters of pulmonary lesions showed excellent or

good interobserver agreement, with an ICC range from 0.678

to 0.894.
Between-group differences in whole-
lesion histogram metrics

Compared to inflammatory lesions, lung cancer had

significantly lower ADCmean, ADCmedian, Dmean and Dmedian

values, and showed significantly higher ADCskewness, Kapp
mean,

Kapp
median, Kapp

SD, Kapp
kurtosis and Dapp

skewness values (all p < 0.05)

(Table 4). No significant differences in ADCSD, ADCkurtosis, DSD,

Dkurtosis, Dskewness, Kappskewness, Dapp
mean, Dapp

median, Dapp
SD and

Dapp
kurtosis values were observed between the lung cancer and

inflammatory lesion groups (all p > 0.05). We also did not find

significant between-group differences in all D* and f histogram

metrics (all p > 0.05). Representative cases of lung cancer and

inflammatory lesions are shown in Figures 1, 2, respectively.
Independent predictors of lung cancer

As shown in Table 5, univariate logistic regression analysis

revealed that ADCmean, ADCmedian, ADCskewness, Dmedian,

Kapp
mean, Kapp

median, Kapp
SD, Kapp

kurtosis and Dapp
skewness were

statistically significant variables in the evaluation of lung cancer

(all p < 0.05). Further multivariate logistic regression analysis

showed that ADCskewness (odds ratio [OR] = 7.061, p = 0.019)
frontiersin.org
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TABLE 3 Intra-observer agreement on whole-volume histogram parameters.

Parameter ICCs 95% CI Parameter ICCs 95% CI

ADC histogram f histogram

Mean 0.849 (0.750-0.909) Mean 0.774 (0.626-0.863)

Median 0.838 (0.731-0.903) Median 0.743 (0.570-0.846)

Standard deviation 0.876 (0.794-0.926) Standard deviation 0.678 (0.398-0.820)

Skewness 0.799 (0.667-0.879) Skewness 0.766 (0.611-0.859)

Kurtosis 0.843 (0.740-0.905) Kurtosis 0.723 (0.542-0.832)

D histogram Kapp histogram

Mean 0.768 (0.615-0.861) Mean 0.834 (0.434-0.930)

Median 0.883 (0.768-0.936) Median 0.842 (0.415-0.936)

Standard deviation 0.834 (0.654-0.912) Standard deviation 0.871 (0.786-0.922)

Skewness 0.807 (0.680-0.883) Skewness 0.881 (0.797-0.929)

Kurtosis 0.800 (0.667-0.879) Kurtosis 0.863 (0.770-0.918)

D* histogram Dapp histogram

Mean 0.785 (0.633-0.872) Mean 0.839 (0.732-0.903)

Median 0.724 (0.535-0.836) Median 0.875 (0.794-0.925)

Standard deviation 0.745 (0.575-0.846) Standard deviation 0.801 (0.670-0.880)

Skewness 0.840 (0.734-0.903) Skewness 0.894 (0.823-0.936)

Kurtosis 0.799 (0.666-0.879) Kurtosis 0.807 (0.154-0.928)
F
rontiers in Oncology
 05
 f
ICCs, intraclass correlation coefficients; CI, confidence interval.
TABLE 2 Demographic and clinical characteristics of the two patient groups.

Lung cancer (n = 39) Inflammatory lesions (n = 20) p value

Age (years) 59.2 ± 9.3 55.1 ± 10.8 0.130

Gender, n (%) 0.933

Male 18 (46.2%) 9 (45.0%)

Female 21 (53.8%) 11 (55.0%)

Lesion size (mm) 28.9 ± 8.0 30.7 ± 7.7 0.431

Lesion location, n (%) 0.480

Right upper lobe 15 (38.5%) 8 (40.0%)

Right middle lobe 1 (2.6%) 2 (10.0%)

Right lower lobe 8 (20.5%) 4 (20.0%)

Left upper lobe 10 (25.6%) 2 (10.0%)

Left lower lobe 5 (12.8%) 4 (20.0%)

Diagnosis, n
Adenocarcinoma, 27; Squamous cell

carcinoma, 12
Lung abscess, 10; tuberculosis, 4; pneumonia, 6
ron
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TABLE 4 Between-group differences in histogram parameters.

Parameter Lung cancer (n = 39) Inflammatory lesions (n = 20) p value

ADC histogram

Mean (×10-3 mm2/s) 1.416 ± 0.272 1.587 ± 0.250 0.022

Median (×10-3 mm2/s) 1.402 ± 0.264 1.579 ± 0.254 0.017

SD (×10-3 mm2/s) 0.241 ± 0.084 0.264 ± 0.075 0.302

Skewness 0.232 (0.094, 0.530) -0.118 (-0.457, 0.339) 0.026

Kurtosis 2.993 ± 0.367 3.144 ± 0.509 0.195

D histogram

Mean (×10-3 mm2/s) 0.990 (0.894, 1.193) 1.151 (1.050, 1.268) 0.021

Median (×10-3 mm2/s) 1.001 (0.916, 1.159) 1.243 (1.125, 1.348) 0.001

SD (×10-3 mm2/s) 0.418 (0.261, 0.547) 0.381 (0.266, 0.537) 0.974

Skewness 0.294 (-0.001, 0.436) 0.080 (-0.145, 0.288) 0.053

Kurtosis 3.249 ± 1.034 3.048 ± 0.808 0.452

D* histogram

Mean (×10-3 mm2/s) 41.433 ± 15.895 43.806 ± 17.807 0.604

Median (×10-3 mm2/s) 13.538 (9.113, 25.339) 14.713 (9.968, 17.970) 0.873

SD (×10-3 mm2/s) 53.670 (44.784, 59.286) 55.318 (53.064, 57.793) 0.423

Skewness 1.268 ± 0.644 1.335 ± 0.886 0.740

Kurtosis 2.822 (2.125, 4.197) 2.457 (1.873, 2.769) 0.073

f histogram

Mean (%) 26.190 (12.893, 34.909) 20.275 (13.792, 28.146) 0.554

Median (%) 19.878 (11.915, 32.691) 16.212 (11.326, 28.087) 0.387

SD (%) 19.358 (10.533, 25.203) 18.642 (14.426, 26.733) 0.642

Skewness 0.374 ± 0.525 0.637 ± 0.608 0.089

Kurtosis 2.455 (1.842, 2.627) 2.349 (1.886, 2.984) 0.987

Kapp histogram

Mean 0.726 ± 0.132 0.652 ± 0.100 0.030

Median 0.739 ± 0.125 0.658 ± 0.106 0.017

SD 0.223 (0.153, 0.302) 0.160 (0.133, 0.199) 0.007

Skewness -0.947 (-1.236, 0.191) -0.498 (-0.670, 0.294) 0.113

Kurtosis 4.865 (4.057, 5.676) 3.848 (3.213, 4.493) 0.008

Dapp histogram

Mean (×10-3 mm2/s) 1.727 (1.385, 2.414) 1.886 (1.383, 2.254) 0.994

Median (×10-3 mm2/s) 1.712 (1.284, 2.338) 1.795 (1.304, 2.196) 0.873

SD (×10-3 mm2/s) 0.499 (0.377, 0.623) 0.492 (0.366, 0.622) 0.904

Skewness 0.417 ± 0.391 0.027 ± 0.723 0.009

Kurtosis 2.843 (2.527, 3.449) 2.806 (2.379, 3.220) 0.665
F
rontiers in Oncology
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Normally distributed data are expressed as mean ± SD and compared using two-sample t-test, while non-normally distributed data are expressed as median (lower quartile, upper
quartile) and compared using Mann-Whitney U-test. SD, standard deviation.
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andDmedian (OR = 0.044, p = 0.031) were independent predictors

of lung cancer.
Diagnostic performance of whole-lesion
histogram metrics

Figure 3 shows the ROC curves of different histogram

parameters for differentiating malignant lung cancers from

benign inflammatory lesions, and the measurements of ROC

analyses are shown in Table 6. ROC curve analysis revealed that

Dmedian showed the best performance for differentiating lung

cancer from inflammatory lesions, with an area under the ROC

curve of 0.777 (95% confidence interval [CI]: 0.660-0.984).
Frontiers in Oncology 07
Using a Dmedian of 1.091 × 10-3 mm2/s as the optimal cut-off

value, the sensitivity, specificity, PPV and NPV were 69.23%,

85.00%, 90.00% and 58.62%, respectively. The AUC values of

ADCmean, ADCmedian and ADCskewness, Dmean, Kapp
mean,

Kapp
median, Kapp

SD, Kapp
kurtosis and Dapp

skewness were 0.673 (95%

CI: 0.536-0.810), 0.681 (95% CI: 0.544-0.818), 0.678 (95% CI:

0.517-0.840), 0.685 (95% CI: 0.543-0.826), 0.673 (95% CI: 0.532-

0.814), 0.686 (95% CI: 0.546-0.826), 0.715 (95% CI: 0.586-0.845),

0.711 (95% CI: 0.577-0.846), and 0.721 (95% CI: 0.571-0.870),

respectively. Further pairwise comparisons of ROC curves did

not yield significant differences in AUCs (all p > 0.05).

ADCskewness had the highest sensitivity (92.31%) and ADCmean

showed the highest specificity (95.00%) in differentiating lung

cancer from inflammatory lesions.
A B

D E F

G H

C

FIGURE 1

A 56-year-old female diagnosed with adenocarcinoma of the left lower lobe. (A) ADC map; (B) D map; (C) D* map; (D) f map (E) Dapp map; (F)
Kapp map; (G) microscopic image of H&E staining (original magnification, ×200); (H) an example diagram of the histogram.
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A B

D E F

C

FIGURE 2

A 52-year-old male diagnosed with lung abscess of the left lower lobe. (A) ADC map; (B) D map; (C) D* map; (D) f map (E) Dapp map; (F) Kapp map.
TABLE 5 Results of univariate and multivariate logistic regression analyses.

Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

ADC histogram

Mean (×10-4 mm2/s) 0.782 (0.626-0.977) 0.030

Median (×10-4 mm2/s) 0.771 (0.616-0.967) 0.024

Skewness 8.212 (1.589-42.449) 0.012 7.061 (1.385-35.990) 0.019

D histogram

Mean (×10-3 mm2/s) 0.063 (0.004-1.104) 0.059

Median (×10-3 mm2/s) 0.035 (0.002-0.571) 0.019 0.044 (0.003-0.756) 0.031

Kapp histogram

Mean (×10-1) 1.696 (1.035-2.781) 0.036

Median (×10-1) 1.835 (1.088-3.096) 0.023

SD (×10-1) 2.897 (1.226-6.844) 0.015

Kurtosis 1.603 (1.048-2.451) 0.029

Dapp histogram

Skewness 4.213 (1.272-13.954) 0.019
F
rontiers in Oncology
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Variables with p < 0.05 in the univariate logistic regression analysis were included in the multivariate logistic regression analysis. OR, odds ratio; CI, confidence interval.
tiersin.org

https://doi.org/10.3389/fonc.2022.1082454
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.1082454
Discussion

Using whole-lesion volume histogram analysis, the present

study suggests that histogram metrics of DWI, IVIM and DKI

parameters can objectively provide the overall histologic

information of lung lesions and are clinically feasible and of

value in differentiating lung cancer from benign inflammatory

lesions. Our study also found significant between-group

differences in histogram features of multiple magnetic

resonance diffusion parameters, indicating that lung cancer has

different histological features compared with inflammatory
Frontiers in Oncology 09
lesions. Furthermore, of all the histogram metrics, Dmedian

showed the best diagnostic performance in differentiating lung

cancer from benign inflammatory lesions, and ADCskewness and

Dmedian were identified as independent predictors of lung cancer.

Our findings confirmed the potential value of histogram analysis

of quantitative MRI parameters in the diagnosis of lung lesions.

An important finding of our study was that lung cancer

showed lower ADCmean, ADCmedian, Dmean and Dmedian values

compared to inflammatory lesions. Both the ADC and D are

diffusion-related parameters, and prior study has demonstrated

a strong negative association between tumor cellularity and the
FIGURE 3

ROC curves of the quantitative histogram metrics for differentiating lung cancer from inflammatory lesions.
TABLE 6 ROC analysis results of whole-lesion histogram parameters for distinguishing lung cancer from benign lung lesions.

Parameter p value AUC (95% CI) OCVs Sensitivity (%) Specificity (%) PPV (%) NPV (%)

ADCmean (×10-3 mm2/s) 0.022 0.673 (0.536-0.810) < 1.255 38.46 95.00 93.75 44.19

ADCmedian (×10-3 mm2/s) 0.017 0.681 (0.544-0.818) < 1.339 43.59 90.00 89.47 45.00

ADCskewness 0.026 0.678 (0.517-0.840) > -0.095 92.31 55.00 80.00 78.57

Dmean (×10-3 mm2/s) 0.021 0.685 (0.543-0.826) < 1.057 66.67 75.00 86.67 55.17

Dmedian (×10-3 mm2/s) 0.001 0.777 (0.660-0.894) < 1.091 69.23 85.00 90.00 58.62

Kapp
mean 0.030 0.673 (0.532-0.814) > 0.701 58.97 80.00 85.19 50.00

Kapp
median 0.017 0.686 (0.546-0.826) > 0.692 64.10 70.00 80.65 50.00

Kapp
SD 0.007 0.715 (0.586-0.845) > 0.208 58.97 90.00 92.00 52.94

Kapp
kurtosis 0.008 0.711 (0.577-0.846) > 4.522 64.10 80.00 86.21 53.33

Dapp
skewness 0.009 0.721 (0.571-0.870) > 0.251 69.23 75.00 84.38 55.56
fro
ROC, receiver operating characteristic; AUC, area under the curve; OCVs, optimal cut-off values; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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ADC value (16). Thus, given that malignant tumors usually have

rapid cell proliferation and high cell density and malignant

tumor cells have large nuclei and little cytoplasm, lower ADC

andD histogram metrics (mean and median) in lung cancer may

be attributed to higher cellularity and reduced extracellular space

that leads to a more pronounced restriction of diffusional motion

of water molecules. Using single-section ROI method and

whole-lesion histogram analysis, prior studies have

consistently demonstrated significantly lower ADCmean and

Dmean values in malignant lung tumors than benign lesions (3,

6, 7, 9, 13, 17–19). In contrast, another study based on whole-

lesion histogram analysis revealed significantly higher ADCmean

and ADCmedian values in lung cancer compared with benign

inflammatory lesions (20). This opposite result may be

attributed to the selection of different benign lung lesions, as

they included lung cancer and specific infectious lesions

(pulmonary abscesses and mycobacterium infections) for

comparison. Overall, our findings of reduced ADCmean and

ADCmedian in lung cancer relative to inflammatory lesions are

compatible with these previous studies.

Another important finding of our study was that lung cancer

had significantly higher values in most of the Kapp histogram

metrics (mean, median, SD and kurtosis) compared to

inflammatory lesions. DKI detects non-Gaussian interactions of

water molecules within tissue environments, and the additional

parameter derived from DKI model, Kapp, may reflect the

heterogeneity and irregularity of cellular microstructure, as well as

the amounts of interfaces within cellular tissues (5). Thus, the

possible reason for the higher histogrammetrics of DKI parameters

in lung cancer is that the cellular structure and tissue environment

of lung cancer are more complex than those of inflammatory

lesions, leading to more significant non-Gaussian distribution in

lung cancer. Similarly, higher mean Kapp value in malignant

pulmonary tumors than in benign lesions has been demonstrated

by previous studies using single-section ROI analyses (3, 21).

However, another study found that the Kapp of malignant tumors

was lower than that of benign lesions, although the difference was

not statistically significant (7). Inconsistency of previous research

results may be associated with differences in the selection of b-

values, the inclusion criteria of lung lesions and the chosen of

analytical methods. Notably, most of previous studies only used

single-slice ROI method to compare differences in DKI parameters

between malignant and benign lung lesions, and did not consider

the important aspects of texture and heterogeneity in the whole

lesions. Considering that whole-lesion histogram analysis allows for

a more comprehensive, intuitive and accurate assessment of the

microscopic motion of water molecules in tissues compared to

traditional single-section ROI method, our findings may provide

more reliable biomarkers for the differential diagnosis of

lung lesions.

Additionally, we found that both the ADCskewness and

Dapp
skewness values of lung cancer showed a “positive

skewness” pattern and were significantly higher than that of
Frontiers in Oncology 10
inflammatory lesions, which is consistent with a recent study

(13). Skewness reflects the degree of asymmetry of the data, and

the skewness of the normal distribution is 0. A “positive

skewness” pattern of the ADC and Dapp means that more data

are distributed to the left of the mean value. Higher ADCskewness

and Dapp
skewness values in lung cancer might be due to its higher

cell density and more pixels had lower ADC and Dapp values.

Both the quantitative parameters D* and f derived from

IVIM are related to perfusion. In IVIM theory, D* is considered

to be proportional to the blood velocity and capillary segment

length, while f reflects the blood perfusion of the tissue and is

related to blood volume (4, 22). Differences in D* and f between

malignant and benign lung lesions have been inconsistent in

previous studies using single-section ROI analyses. Some studies

found no significant differences in both D* and f values between

lung cancer and benign lesions (7, 23, 24), while others revealed

significant higher D* or lower f values in lung cancer compared

to benign lesions (6, 25, 26). For whole-lesion histogram

features, in line with all prior whole-lesion histogram studies

(9, 13), we also did not find significant differences in any

histogram metrics of D* and f between lung cancer and benign

inflammatory lesions, suggesting that D* and f histogram

characteristics cannot reflect the characteristics of lung lesions

well and have relatively limited value in the differential diagnosis

of pulmonary lesions. Two possible reasons may account for the

non-significant differences in D* and f between lung cancer and

inflammatory lesions. First, both our findings and those of

previous studies revealed that measurement consistency of D*

and f among different observers were relatively low (3, 13), and

prior studies also found thatD* had a relatively large SD (23, 26),

indicating poor reproducibility of these two parameters. Second,

malignant lung tumors have rich neovascularization due to the

high expression of vascular endothelial growth factor, which

may theoretically increase blood supply of tumor tissues (27);

however, malignant tumors tend to have immature new blood

vessels with increased microvascular permeability and relatively

insufficient veins or lymphatic vessels to drain the excess leaking

fluid, which may result in compression of tumoral vessels and

lead to reduced blood perfusion in the tissues. Thus, non-

significant difference in D* and f values between lung cancer

and benign lesions may be due to the combined effect of the

two factors.

Further ROC analyses suggested that whole-lesion quantitative

histogram analysis of conventional DWI, IVIM and DKI are

clinically feasible and of potential value in differentiating lung

cancer from inflammatory lesions. We found that ADCskewness

had the highest sensitivity and ADCmean achieved the highest

specificity in differentiating lung cancer from inflammatory

lesions. This finding means that ADCskewness, a metric that

reflects the higher cellular density in malignant tumors, has a

relatively better performance in the diagnosis of lung cancer;

while ADCmean, a metric that measures the overall diffusion and

perfusion information of lesions, shows a better performance in
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identifying inflammatory lesions. Moreover, our study revealed that

Dmedian had the highest AUC in differentiating lung cancer from

inflammatory lesions, and further multivariate logistic regression

analysis found that the Dmedian was an independent predictor of

lung cancer. These findings suggest thatDmedian may act as a reliable

biomarker for differentiating lung cancer from inflammatory

lesions, and highlight the superiority of the whole-lesion volume

histogram analysis in the differential diagnosis of solitary lung

lesions. A recent meta-analysis also confirmed that D had the

best performance in the differential diagnosis between malignant

and benign solitary pulmonary lesions (28). Unlike ADC that is

sensitive to both the diffusion of water molecules and

microcirculation perfusion, D reflects only the pure diffusion of

water molecules by removing the effect of perfusion portion and can

achieve a more accurate assessment of the restricted movements of

water molecules in tissues. Malignant tumors have high cell density

and reduced extracellular space; thus, the low diffusion coefficient

detected in lung cancer may be mainly related to pure molecular

diffusion rather than perfusion.

This study has several limitations. First, the sample size

included was small, resulting in a small number of lung lesions

available for analysis. We also did not evaluate the diagnostic

performance of whole-lesion histogram analysis of DWI, IVIM

and DKI in distinguishing subtypes of lung cancer due to a small

sample size. Future studies with larger sample sizes are needed to

verify our findings and to further assess the role of DWI, IVIM

and DKI histogram features in the differential diagnosis of

pathological types of lung cancer. Second, we only included

lung lesions with a maximum diameter ≥ 15 mm for histogram

analysis, which may lead to selection bias. Third, some

inflammatory lesions were confirmed based on long-term

follow-up rather than by pathological examinations, which

may lead to inaccurate results to some extent.

In summary, the results of our study suggest that whole-

lesion quantitative histogram analysis of DWI, IVIM and DKI

parameters provides a useful tool for differentiating lung cancer

from inflammatory lesions, and Dmedian may act as a potential

biomarker for the differential diagnosis of solitary

pulmonary lesions.
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