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Introduction: The present study aimed to investigate the association of the

paraoxonase 1 (PON1) Q192R polymorphism with coronary artery disease

(CAD) and cardiometabolic risk factors in Iranian patients suspected of CAD.

Methods: This cross-sectional study was conducted on 428 patients

undergoing angiography. The data related to demographic information and

physical activity were collected by valid and reliable questionnaires. The PON-

1 genotypes were detected by the polymerase chain reaction-restriction

fragment length polymorphism (RFLP-PCR) technique. The Gensini and

SYNTAX score, anthropometric measurements, and biochemical and clinical

parameters were measured by standard protocols.

Results and discussion: Findings indicated that the odds of obesity was

significantly higher in people with the RR genotype compared to the QQ

genotype carriers (OR: 2.95 CI: 1.25–6.93, P = 0.014) and also odds of low

high-density lipoprotein cholesterol (HDL-C) was marginally higher (OR: 2.31

CI: 0.97–5.49, P = 0.056). There was no significant association between other

CAD risk factors with PON1 Q192R polymorphism (P > 0.05). Further analysis

showed a significant interaction between sex and 192QR (P = 0.019) and 192

RR (P = 0.007) genotypes on body mass index (BMI). More specifically, the

risk of obesity in men carrying the RR genotype was 3.38 times (OR: 3.38
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CI: 1.08–10.58, P = 0.036). Also, a significant joint effect of the RR genotype

and sex on HDL-C was seen (P = 0.003). The stratification based on sex

showed that the risk of low HDL-C is significantly higher in women carrying

the RR genotype (OR: 6.18 CI: 1.21–31.46, P = 0.028). A marginal sex-genotype

interaction was also found in the risk of elevated alanine aminotransferase

(ALT) (P = 0.057). In summary, the findings showed that the risk of obesity and

low HDL-C was higher in people carrying the RR genotype. On the other hand,

a Q192R polymorphism-sex interaction was observed on the risk of obesity,

elevated ALT, and low HDL-C.
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Introduction

Coronary artery disease (CAD) is the leading cause of death
and disability worldwide, accounting for approximately one-
third of all deaths in people over age 35 (1). The disease
causes about 7 million deaths and 129 million disabilities
annually and imposes a substantial economic burden (2). Two
categories of modifiable and non-modifiable risk factors have
been identified in the incidence of CAD, of which atherosclerosis
and dyslipidemia are the most important (3). On the other
hand, twin studies have shown that the heritability of CAD
ranges from 41 to 77 percent (4). The interpersonal differences
observed in plasma biochemical factors and the risk of CAD in
people with the same diet may be due to genetic differences (5).
Due to the importance of genetic factors in CAD, many studies
have investigated single nucleotide polymorphisms (SNP) of
genes involved in the severity and occurrence of the disease
(6). SNPs are genetic factors that exert the effect of genetic
differences on food metabolism (7). The paraoxonase 1 (PON1)
gene is located on the long arm of chromosome 7 (q21.3–
22.1) and contains 26,857 bp. This gene includes nine exons
and eight introns (8) and is highly polymorphic (9). The
association of its common polymorphisms with lipid profile
and susceptibility to CAD has been extensively investigated
(10, 11). Numerous studies have shown that PON1 Q192R
polymorphism (rs662) is associated with susceptibility to CAD
(12, 13). For example, a meta-analysis study in 2019 showed
that PON1 Q192R polymorphism increases the risk of CAD in
people with type 2 diabetes, especially in Asian and Caucasian
populations (14). A number of the studies reported that the RR
genotype reduces high-density lipoprotein cholesterol (HDL-
C)’s capacity to prevent low-density lipoprotein cholesterol
(LDL-C) oxidation, so the 192R allele carriers have a higher risk
of CAD than 192Q allele carriers (11). Other studies’ findings
do not support these results. Conversely, another meta-analysis
showed that the risk of CAD development is significantly higher
in Q allele carriers (10).

Although many studies assessed the association between
PON1Q192R polymorphism and the risk of CAD in the
European populations, as far as we know, no study has
investigated the association between CAD (based on Gensini
and SYNTAX score) and the mentioned polymorphism in the
Iranian ethnicity. The present study aimed to examine the
association of the PON1 Q192R polymorphism with CAD and
cardiometabolic risk factors in Iranian patients suspected of
CAD.

Materials and methods

Participants

The present cross-sectional study was approved by the ethics
committee of Isfahan University of Medical Sciences (Ethical
approval code: IR.MUI.RESEARCH.1400.200), Iran, and was
part of a larger research that its protocol was approved by the
ethics committee of Shahid Sadoughi University of Medical
Sciences, Yazd, Iran. Among the patients admitted under
diagnostic coronary angiography in Afshar Hospital in Yazd,
based on inclusion and exclusion criteria, 463 patients were
enrolled. Patients aged 25–75 years with CAD who were willing
and able to participate in the study were included. Patients with
the following criteria were not included in the study: (1) history
of cancer, heart failure, heart attack, percutaneous coronary
intervention (PCI), coronary artery bypass grafting (CABG),
chronic kidney disease stage 3 and above, specific liver disease
or receiving medication for liver disorders, immunodeficiency,
AIDS; (2) people with severe obesity [body mass index (BMI)
above 40]; (3) pregnant and lactating women; (4) people who for
any reason have limited food intake by mouth; (5) have a special
diet. Non-response to many food frequency questionnaire items
and not detecting the type of genotype led to the patient’s
exclusion from the study. Finally, data from 428 patients
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were analyzed. Eligible individuals filled out written informed
consent. The study was conducted in accordance with the
Declaration of Helsinki.

Assessment of the CAD

The extent and severity of CAD were assessed by Gensini
and SYNTAX scores. For this purpose, the coronary angiogram
was interpreted by an experienced cardiologist blinded for
demographic and clinical data except for age and sex. Gensini
and SYNTAX scores were calculated randomly for several
participants by the second cardiologist. The Gensini score
calculation begins by assigning a severity score to each identified
coronary stenosis as follows: 1 point for ≤25% narrowing, 2
points for 26–50% narrowing, 4 points for 51–75% narrowing, 8
points for 76–90% narrowing, 16 points for 91–99% narrowing,
and 32 points for total occlusion (100%). After that, each lesion
score is multiplied by a factor that takes into account the
importance of the coronary arteries and the lesion’s position in
the coronary circulation (5 for the left main coronary artery,
2.5 for the proximal segment of the left anterior descending
coronary artery, 2.5 for the proximal segment of the circumflex
artery, 1.5 for the mid-segment of the left anterior descending
coronary artery, 1.0 for the right coronary artery, the distal
segment of the left anterior descending coronary artery, the
posterolateral artery, and the obtuse marginal artery, and 0.5
for other segments). Finally, the Gensini score was obtained by
summating the coronary segment scores. A higher Gensini score
indicates a more intensive disease (15–17). The participants
were categorized into two groups based on Gensini score:
low Gensini score (<20) and intermediate-high Gensini score
(≥20) (18).

The SYNTAX score was calculated through the internet-
based SYNTAX calculator version 2.0.1 SYNTAX score
algorithm comprising consecutive and interactional self-
guided questions focusing on functional and anatomical
parameters of the lesions with ≥50% stenosis in arteries with a
diameter of ≥1.5 mm. The final SYNTAX score was obtained
by summation of all lesion scores. The participants were
categorized into two groups based on SYNTAX score: low
SYNTAX score (<23) and intermediate-high SYNTAX score
(≥23). A higher SYNTAX score indicates a more intensive
disease (19, 20).

Anthropometric and blood pressure
measurements

In this study, a nutritionist measured weight using a
portable digital scale and the body analyzer (Omron Inc., Osaka,

1 http://syntaxscore.org/calculator/syntaxscore/frameset.htm

Japan), with an accuracy of 0.1 kg, with minimal coverage
and without shoes. Height was measured with an accuracy of
0.1 cm, using a wall-fixed measuring tape in a standing position
with shoulders in normal alignment and no shoes. BMI was
calculated as body weight (kg) divided by height squared (m2).
Waist circumference (WC) was assessed by a flexible inelastic
tape measure (i.e., the tape measure should not stretch when
taking the measurement) in the standing position to the nearest
1 cm. The narrowest area between the iliac crest and the
last rib was measured (21). We also recorded blood pressure
measured by nurses before patients underwent angiography.
BMI ≥ 30, WC > 102 cm for men and > 88 cm for women
were considered obesity and abdominal obesity, respectively.
The use of antihypertensive drugs or blood pressure ≥ 130
and/or ≥ 85 mm Hg was considered hypertension (22, 23).

Biochemical assessment

Blood samples (4 ml) were obtained from all participants
following overnight fasting. Two milliliters of blood samples
were centrifuged at 2,500 rpm for 3 min to separate the serum
from the blood cells. Buffy coats and remaining whole blood
samples were stored at −80◦C for DNA extraction and other
biochemical tests. Triglyceride (TG), total cholesterol (TC),
HDL-C, fasting blood sugar (FBS) (Biorex fars, Iran), alanine
aminotransferase (ALT), and aspartate aminotransferase (AST)
(Pars Azmun, Karaj, Iran) were measured by commercial kits.
LDL-C concentration is also calculated using the Friedewald
formula (24): LDL = TC − HDL − 1/5 (TG). Then, biochemical
markers were categorized into normal TG (<150 mg/dL) or
high TG (≥150 mg/dL), normal LDL-C (<130 mg/dL) or high
LDL-C (≥130 mg/dL), normal HDL-C (≥40 mg/dL for men
and ≥50 mg/dL for women) or low HDL (<40 mg/dL for men
and <50 mg/dL for women) (22), normal TC (<200 mg/dL) or
high TC (≥200 mg/dL) (25), normal ALT (<47 IU/L for men
and <30 IU/L for women) or elevated ALT (>47 IU/L for men
and >30 IU/L for women), normal AST (<30 IU/L) or elevated
AST (>30 IU/L) (26), and normal FBS (<110 mg/dL) or high
FBS (≥110 mg/dL) (22).

DNA extraction and genotyping

DNA samples were isolated from the white blood cell
genome of the complete blood sample of the participants
using the SimBiolab Blood Kit, according to the manufacturer’s
protocol. The Q192R polymorphism (major allele: Q, minor
allele: R), a fragment of 520 base pairs (bp) in exon 6 of
the PON1 gene, was genotyped by the polymerase chain
reaction-restriction fragment length polymorphism (PCR-
RFLP) method. The PCR mixture was provided in a total
volume of 20 µl containing 2 µl of genomic DNA, 10 µl of
Master Mix (Amplicon, Denmark), 6 µl of water and 1 µl
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(10 pmol) of each oligonucleotide primer. Forward and reverse
primer consists of AAACCCAAATACATCTCCCAGAAT and
GCTCCATCCCACATCTTGATTTTA, respectively. PCR is
performed by repeating three steps. First, DNA templates were
denatured at 95◦C for 5 min; amplification consisted of 45
cycles at 95◦C for 15 s, annealing at 60◦C for 30 s, extension
at 72◦C for 30 s, with a final extension at 72◦C for 5 min.
Amplified DNA (10 ml) was digested with 5 U restriction
enzyme HinfI (Fermentase, Germany) at 37◦C, overnight to
detect two different alleles, the 214 bp (Q allele), 24 bp and
190 (R allele). All products were visualized by electrophoresis
in 2% agarose gel (SinaClon, Iran) at 90 V for 2.5 h. Three
DNA fragments show with different lengths: homozygous RR (2
bands: 190 and 24 bp), heterozygous QR (3 bands: 214, 190, and
24 bp), and homozygous QQ (1 band: 214 bp). The 24 bp was
invisible in the gel due to its fast migration speed (Figure 1).

Assessment of other variables

General demographic data including age, smoking status,
the medication used, and medical history were collected
using valid and reliable questionnaires. Physical activity was
assessed using International Physical Activity Questionnaire

(IPAQ). Physical activity level was calculated based on
metabolic equivalent task minutes per week (27). Persian
translation validation of IPAQ has previously been confirmed
by Moghaddam et al. (28).

Statistical analysis

Continuous and categorical variables were expressed as
mean ± standard deviation (SD) and frequencies (percentages).
The chi-squared and one-way ANOVA tests were used to
compare basic qualitative and quantitative variables between
three genotypes (QQ, QR, and RR), respectively. We categorized
the Gensini score, SYNTAX score, and cardiometabolic risk
factors into categorical variables with two categories based
on valid cut-off values for each variable. We evaluated
their linear association with PON1 genotypes by using one-
way ANOVA. Also, binary logistic regression was used to
investigate the association of the PON1 genotypes with
the Gensini score, SYNTAX score, and cardiometabolic
risk factors in crude and multivariable-adjusted models.
In multivariable models, the potential confounding effects
of physical activity, gender, age, smoking status, alcohol
consumption, the medication used (antihypertension drugs,

FIGURE 1

Agarose gel electrophoresis for the rs662 polymorphism of paraoxonase 1 (PONl) gene. The 214 bp bands correspond to wild homozygous QQ
genotype produced one fragment, while 190, 214, and 24 bp correspond to heterozygous QR that produced three fragments. The 190 and
24 bp correspond to variant homozygous RR genotype produced two fragments. The 24 bp was invisible in the gel due to its fast migration
speed. About 50 bp ladder marker (L1), QQ genotype (L3, 5, 8, 9, 10), QR genotype (L2, 4, 6, 7, 11, 12, 13), and RR genotype (L1, 14).
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antidiabetic drugs, and antihyperlipidemic drugs), and BMI (for
high BMI and WC all mentioned confounders were adjusted
except BMI) were adjusted. The results of logistic regression
were reported as odds ratio (OR) and 95% confidence interval
for the OR. The possible interaction effect of sex and the PON1
Q192R polymorphism on the Gensini score, SYNTAX score,
and CAD risk factors was evaluated through logistic regression.
When there was a significant interaction, the stratified analysis
was done by sex, and the association of the PON1 Q192R
polymorphism with the Gensini score, SYNTAX score, and CAD
risk factors was analyzed. Analyses were performed using SPSS
software version 24 (IBM Corp., Armonk, NY, USA). P-values
less than 0.5 were considered significant.

Results

General characteristics of study
participants

Characteristics of study participants according to PON1
genotypes are demonstrated in Table 1. The mean age of the
participants was 56.74 years. The prevalence of PON1 Q192R
polymorphism genotypes was QQ (47.4%), QR (45.1%), and RR
(7.5%), and overall, 70 and 30% for Q and R alleles, respectively.
The genotype PON1 Q192R polymorphism was distributed
according to Hardy-Weinberg equilibrium (p > 0.05). Age,
physical activity, medication use, gender, smoking status, and
alcohol consumption were not different among genotypes of
Q192R polymorphism.

Distribution of CAD risk factors across
PON1 Q192R genotypes

The distribution of anthropometric indices, biochemical
parameters, and other CAD risk factors across PON1 gene
variants (QQ, QR, and RR) is reported in Table 2. HDL-
C was marginally lower in carriers of at least one copy
of the minor allele of Q192R polymorphism than in non-
carriers (P = 0.090). Patients with the QR genotype have
marginally higher FBS levels than carriers of the QQ and RR
genotypes (p = 0.051). There was no significant difference
between PON1’s genotypes regarding anthropometric indices,
Gensini and SYNTAX score, and other biochemical and clinical
parameters.

Association between PON1 Q192R
genotypes and CAD risk factors

Crude and multivariable-adjusted odds ratios of the
associations between PON1 Q192R polymorphism and Gensini

TABLE 1 Characteristics of study participants according to PON1
genotypes.

Variables Type of genotype

QQ (203) QR (193) RR (32) Pa

Age (y) 57.20 ± 9.61b 56.08 ± 8.84 57.84 ± 11.06 0.397

Physical activity
(MET-
minutes/week)

38.33 ± 6,619 4,696 ± 8,304 4,284 ± 604 0.203

Gender, male, n (%) 124 (61.1)b 125 (65.5) 20 (62.5) 0.709

Medication use, n (%)

Antihyperlipidemic
drugs, yes n (%)

76 (37.4) 66 (34.2) 11 (34.4) 0.786

Antihypertension,
yes (%)

89 (43.8) 107 (55.4) 14 (43.8) 0.989

Antidiabetic drugs,
yes (%)

62 (30.5) 62 (32.1) 13 (40.6) 0.524

Smoking status, n
(%)

0.655

Never smoker 139 (86.5) 118 (61.1) 21 (65.5)

Current smoker 57 (28.1) 66 (34.2) 10 (31.3)

Former smoker 7 (3.4) 9 (4.7) 1 (3.1)

Alcohol
consumption, n (%)

0.704

Never smoker 190 (94.5) 180 (93.8) 29 (93.5)

Current smoker 7 (3.5) 6 (3.1) 2 (6.5)

Former smoker 4 (2) 6 (3.1) 0 (0)

Met, metabolic equivalent for task.
aObtained from Chi-squared test and one-way ANOVA for categorical and continuous
variables, respectively.
bContinuous and categorical data are presented as mean ± (SD) and frequency
(percentage). P < 0.05 was considered as statistically significant.

and SYNTAX score and biochemical and clinical parameters
are presented in Table 3. The crude logistic regression
model identified that the odds of obesity was significantly
higher in people with the RR genotype compared to the
QQ genotype carriers (OR: 2.41 CI: 1.09–5.31, P = 0.029).
This association remained unchanged after adjusting for age,
gender, physical activity, medication use, alcohol consumption,
and smoking status confounders (OR: 2.95 CI: 1.25–6.98,
P = 0.014). Furthermore, homozygote people for the minor
allele (RR genotype) compared to people with the QQ
genotype have marginally higher odds of low HDL-C levels
in the crude model (OR: 2.08 CI: 0.96–4.50, P = 0.061)
and after adjustment of potential confounders (OR: 2.31 CI:
0.97–5.49, P = 0.056). In addition, the logistic regression
model indicated that in patients with the RR genotype,
the odds of elevated ALT were marginally lower than in
people with the QQ genotype (OR: 0.29 CI: 0.07–1.09,
P = 0.067). There was no significant association between
other CAD risk factors with PON1 Q192R polymorphism
(P > 0.05).
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TABLE 2 Anthropometric indices, biochemical parameters, and other
CAD risk factors across PON1 gene variants.

Variables Type of genotype

QQ QR RR P-value*

BMI 27.38 ± 4.06 27.36 ± 4.54 28.60 ± 4.55 0.315

WC (cm) 99.88 ± 14.28 99.25 ± 11.03 101 ± 9.89 0.747

Gensini score 33.89 ± 42.60 34.37 ± 41.12 42.66 ± 51.78 0.562

SYNTAX
score

10.24 ± 12.52 11.03 ± 13.89 11.35 ± 12.83 0.808

TG (mg/dl) 152.60 ± 81.77 155.20 ± 88.42 159.40 ± 99.57 0.905

TC (mg/dl) 198.58 ± 102.40 206.02 ± 124.78 197.29 ± 114.94 0.803

LDL (mg/dl) 98.01 ± 39.81 99.61 ± 44.61 91.30 ± 41.62 0.598

HDL (mg/dl) 50.12 ± 13.14 48.45 ± 11.10 45.35 ± 9.83 0.090

FBS (mg/dl) 128.42 ± 55.86 143.12 ± 74.75 123.11 ± 51.22 0.051

SBP (mm/hg) 128.86 ± 15.18 128.53 ± 13.55 128.39 ± 14.16 0.969

DBP (mm/hg) 80.32 ± 11.90 78.43 ± 10.81 78.77 ± 12.59 0.263

ALT (IU/L) 56.64 ± 108.42 64.76 ± 108.79 28.35 ± 13.61 0.316

AST (IU/L) 44.49 ± 40.09 44.60 ± 28.95 41.15 ± 20.40 0.907

BMI, body mass index; WC, waist Circumference; HDL-c, high density lipoprotein
cholesterol; LDL-c, low density lipoprotein cholesterol; TC, total cholesterol; TG,
triglyceride; FBS, fast blood sugar; SBP, systolic blood pressure; DBP, diastolic blood
pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase. Values are
reported as mean ± (SD).
*Obtained from one-way ANOVA. P < 0.05 were considered as statistically significant.

Interactions of sex and PON1
genotypes on BMI, HDL-C, and ALT

There was a significant interaction between sex and
192QR (P = 0.019) and 192RR (P = 0.007) genotypes in
the association with BMI. We also identified an interaction
between 192 RR and sex in the associations with serum levels
of HDL-C (P = 0.003). A marginal sex-genotype interaction
was also found in the risk of elevated ALT (P = 0.057).
Accordingly, we conducted stratified analysis by sex and
then evaluated the association of three PON1 genotypes
with BMI, HDL-C, and ALT separately in men and women
(Table 4).

Gender-specific associations of
genotypes and CAD risk factors

Stratified analysis based on sex indicated that only in
the men population, RR genotype carriers had a higher risk
of obesity than QQ genotype carriers (OR: 3.38, CI: 1.08–
10.58, P = 0.036), while in women, the odds of obesity
was not significantly different among the three genotypes.
Classification based on sex also showed that the increased
risk of low HDL-C in RR genotype carriers compared to
QQ carriers is seen only in the women population and

TABLE 3 Crude and multivariable-adjusted ORs (and 95% CIs) for the
association of PON1 rs662 genotypes with anthropometric indices,
biochemical parameters, and other CAD risk factors.

Type of genotype

QQ£ QR P-value† RR P-value†

High BMI

Crude 1.00 1.17
(0.73–1.88)

0.511 2.41
(1.09–5.31)

0.029

Model 1 1.00 1.39
(0.83–2.32)

0.200 2.95
(1.25–6.98)

0.014

High WC

Crude 1.00 0.81
(0.53–1.24)

0.351 0.89
(0.40–1.96)

0.782

Model 1 1.00 0.85
(0.53–1.38)

0.529 0.90
(0.37–2.19)

0.826

High Gensini score

Crude 1.00 1.13
(0.57–1.69)

0.549 1.67
(0.77–3.60)

0.190

Model 1 1.00 1.06
(0.67–1.69)

0.777 1.25
(0.64–3.61)

0.338

High SYNTAX sore

Crude 1.00 0.96
(0.57–1.63)

0.902 1.30
(0.52–3.27)

0.566

Model 1 1.00 0.96
(0.54–1.71)

0.911 1.23
(0.45–3.35)

0.675

High TG

Crude 1.00 1.03
(0.67–1.58)

0.873 0.94
(0.42–2.08)

0.880

Model 1 1.00 0.91
(0.54–1.51)

0.725 0.84
(0.34–2.11)

0.722

High TC

Crude 1.00 0.83
(0.54–1.28)

0.411 0.85
(0.38–1.89)

0.707

Model 1 1.00 0.85
(0.53–1.36)

0.506 0.91
(0.38–2.17)

0.833

High LDL-C

Crude 1.00 1.29
(0.79–2.12)

0.304 0.75
(0.27–2.09)

0.588

Model 1 1.00 1.20
(0.70–2.07)

0.491 0.84
(0.29–2.45)

0.759

Low HDL-C

Crude 1.00 0.92
(0.58–1.44)

0.724 2.08
(0.96–4.50)

0.061

Model 1 1.00 0.97
(0.58–1.61)

0.922 2.31
(0.97–5.49)

0.056

High FBS

Crude 1.00 1.33
(0.88–1.99)

0.167 0.92
(0.43–1.97)

0.842

Model 1 1.00 1.44
(0.92–2.24)

0.105 0.90
(0.40–2.02)

0.801

(Continued)
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TABLE 3 (Continued)

Type of genotype

QQ£ QR P-value† RR P-value†

High SBP

Crude 1.00 1.33
(0.88–2.03)

0.172 1.19
(0.54–2.63)

0.655

Model 1 1.00 1.16
(0.73–1.84)

0.510 1.03
(0.44–2.40)

0.938

High DBP

Crude 1.00 0.75
(0.45–1.26)

0.288 1.05
(0.42–2.62)

0.903

Model 1 1.00 0.70
(0.41–1.21)

0.207 1.01
(0.39–2.58)

0.979

Elevated ALT

Crude 1.00 0.84
(0.51–1.39)

0.510 0.28
(0.08–1.01)

0.052

Model 1 1.00 0.82
(0.48–1.39)

0.465 0.29
(0.07–1.09)

0.067

Elevated AST

Crude 1.00 1.63 (1–2.63) 0.046 0.93
(0.38–2.29)

0.887

Model 1 1.00 1.56
(0.94–2.61)

0.084 1.07
(0.41–2.78)

0.887

BMI, body mass index; WC, waist circumference; HDL-c, high density lipoprotein
cholesterol; LDL-c, low density lipoprotein cholesterol; TC, total cholesterol; TG,
triglyceride; FBS, fast blood sugar; SBP, systolic blood pressure; DBP, diastolic blood
pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
£Reference group. Values are reported as odds ratio and 95% confidence interval.
Model 1: adjusted for physical activity, gender, age, smoking status, medication used
(antihypertension drugs, antidiabetic drugs, and antihyperlipidemic drugs), alcohol
consumption, and BMI (for high BMI and WC all mentioned confounders were
adjusted except BMI). P < 0.05 were considered as statistically significant.
†Obtained from logistic regression.
Bolded values are statistically or marginally significant.

not in males (OR: 6.18, CI: 1.21–31.46, P = 0.028). We
did not find a significant association between the ALT
and any of the PON1 genotypes in men and women
(Table 4).

Discussion

Although many studies have assessed the association
between PON1Q192R polymorphism and CAD in the European
populations, as far as we know, no study has investigated the
association between CAD (based on Gensini and SYNTAX
score) and the mentioned polymorphism in the Iranian
ethnicity, so the present study aimed to examine the
association of the PON1 Q192R polymorphism with CAD
and cardiometabolic risk factors in Iranian patients suspected
of CAD. Although our findings generally indicated that
the risk of obesity in RR genotype carriers was higher
than in QQ genotype carriers, the stratification of patients

TABLE 4 Multivariable adjusted odds ratios and 95% CI of rs662
polymorphism on BMI, HDL-C, and ALT stratified by sex.

Variables Type of genotype

QQ QR P† RR P†*

High BMI

Men 1 1.24
(0.58–2.63)

0.574 3.38
(1.08–10.58)

0.036

Women 1 1.71
(0.82–3.55)

0.147 2.47
(0.67–9.05)

0.171

Q192R* sex 1 1.45
(1.06–1.98)

0.019 2.16
(1.23–3.78)

0.007

Low HDL-C

Men 1 0.89
(0.44–1.80)

0.765 1.10
(0.32–3.77)

0.873

Women 1 1.09
(0.50–2.36)

0.820 6.18
(1.21–31.46)

0.028

Q192R* sex 1 1.25
(0.91–1.72)

0.156 2.35
(1.32–4.18)

0.003

Elevated ALT

Men 1 0.91
(0.45–1.84)

0.793 0.45
(0.08–2.46)

0.360

Women 1 0.56
(0.23–1.35)

0.202 0.20
(0.02–1.78)

0.150

Q192R* sex 1 0.84
(0.59–1.20)

0.353 0.41
(0.16–1.02)

0.057

Values are reported as odds ratio and 95% confidence interval.
†Obtained from logistic regression.
*Model is adjusted for physical activity, age, smoking status, medication used
(antihypertension drugs, antidiabetic drugs, and antihyperlipidemic drugs),
alcohol consumption, and BMI (for high BMI, all mentioned confounders were
adjusted except BMI).
Bolded values are statistically or marginally significant.

based on sex showed that this association exists only in
the men population. Limited studies have investigated the
association of PON1 Q192R polymorphism with BMI as a
risk factor related to CAD in general (29–32). In line with
our results, Hassan et al. reported that BMI was significantly
different among the three genotypes of PON1, and the
RR genotype was associated with elevated BMI compared
to the QQ genotype in CAD patients (29). Veiga et al.
showed that the R allele frequency was significantly higher
in obese women and associated with an increased risk of
obesity (30). Similarly, Alharbi et al. suggested that BMI in
diabetic patients carrying the RR genotype is significantly
higher than the QQ genotype carriers (31). Contrary to the
mentioned findings, another study showed that in patients
with familial hypercholesterolemia, the QQ genotype was
significantly associated with higher BMI than the RR genotype
(32). One of the reasons for these discrepancies can be
attributed to the interaction of genetic and environmental
factors, including sex and race.
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The results of the present study also illustrated that
the risk of low HDL-C was marginally higher in the RR
genotype carriers compared to the QQ genotype carriers.
Although stratifying patients according to sex showed that
the RR genotype is associated with a higher risk of low
HDL-C only in women. Regarding other lipid factors (TG,
TC, and LDL-C), no significant difference was seen between
the three genotypes of PON1 Q192R polymorphism (QQ,
QR, and RR). Wamique et al. reported that diabetic patients
with the RR genotype have higher LDL-C and lower HDL-
C levels vs. non-carriers (36). Similarly, in Hassan et al.’s
study, RR genotype carriers had significantly lower HDL-
C levels and higher TC, LDL-C, and TG levels than the
QQ carriers (33). Interestingly, in another study, the R vs.
Q allele was associated with increased HDL-C in white
adults, whereas the opposite was true in blacks. Neither
the Q nor the R allele was associated with LDL-C and
TG in both races (34). On the other hand, in several
studies, there was no significant difference regarding HDL-C
across different Q192R genotypes in CAD patients (35–37).
Among the reasons for the discrepancies in the findings of
the studies, we can mention the interaction of genetic and
environmental factors such as race, diet, and gender. The
present study findings did not reveal an association between
the risk of CAD (based on Gensini and SYNTAX score) and
PON1Q192R polymorphism. Few studies have investigated the
association of PON1 Q192R polymorphism with the risk of
CAD (based on Gensini and SYNTAX scores). Similar to
our research, Gu et al. reported no significant association
between the Gensini score and Q192R polymorphism (38).
Bayrak et al.’s study also showed Gensini scores distribution
between different genotypes of Q192R polymorphism was not
significantly different (39). In addition, the result of the present
study indicated that in patients with the RR genotype, the
odds of elevated ALT were marginally lower than in people
with the QQ genotype. Studies in this field are limited. We
found only one study that showed that liver enzymes (AST
and ALT) were not associated with Q192R polymorphism
(40).

Although the exact mechanisms of these associations have
not been thoroughly investigated, the Q192R polymorphism
seems to affect the activity of the paraoxonase 1 (PON1)
enzyme (41, 42). The paraoxonase-1 (PON1) enzyme is
one of the proteins constituting HDL-C particles and is
responsible for its antioxidant and anti-inflammatory properties
(43). PON1 has two lactonase and 3-esterase activities,
which prevent oxidative changes in lipoproteins (44). More
precisely, PON1 hydrolysis thiolactone to homocysteine and
detoxifies it. Thiolactone induces atherogenic damage to the
endothelium (45). PON1 inhibits LDL-C oxidation and lipid
peroxides accumulation in macrophages. Decreased oxidized-
LDL uptake is probably mediated via PON1 interaction with the

scavenger receptor class B type 1 (SR-BI) on the macrophage’s
surface, which results in the pro-inflammatory response
suppression of macrophages (46). PON1 also diminishes
monocyte chemotaxis and adhesion to endothelial cells, thereby
preventing endothelium damage and atherosclerosis (47). Also,
the research shows that incubating PON1 with HDL leads
to a decrease in the expression of intercellular adhesion
molecule (ICAM)-1 on endothelial cells, which helps reduce
the progression of inflammation in the endothelium. PON1
also protects against the pro-inflammatory effects of oxidized
phospholipids and lipopolysaccharide. Furthermore, PON1
reduces cholesterol biosynthesis by macrophages and increases
cholesterol efflux from LDL-C (48). Some research works,
but not all (49), have shown that in the RR genotype
carriers, PON1 enzyme activities decreases, which increases
oxidative stress and inflammation, and all these events may
be related to the incidence of atherosclerosis and CAD
(50, 51).

The present study has strengths, which are briefly
addressed. First, this study is the first study that measures
the association between the risk of CAD (based on Gensini and
SYNTAX score) with Q192R polymorphism in patients
undergoing coronary angiography. Second, to obtain
the association, confounding factors were adjusted. On
the other hand, the present study has limitations that
should not be ignored. Due to the cross-sectional nature
of the study design, it is not possible to derive a causal
association. This study was done only on patients in Iran,
so it cannot be generalized to the whole world. Third, due
to budget limitations, it was not possible to measure the
PON1 of serum, so it is difficult to talk about possible
mechanisms. Fourth, in this study, we could not detect some
patients’ genotypes.

Conclusion

The findings showed that the risk of obesity and low
HDL-C was higher in people carrying the RR genotype.
On the other hand, a Q192R polymorphism-sex interaction
was observed on the risk of obesity, elevated ALT, and
low HDL-C. Although a significant association between
PON1 Q192R and the associated CAD risk factors was
observed, more innovative observational and mechanism-based
studies are needed to confirm this association and identify
potential mechanisms.
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