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Application of deep-learning–
based artificial intelligence in
acetabular index measurement
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1Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China, 2Fifth
Clinical Medical College, Anhui Medical University, Hefei, China, 3School of Information Science and
Technology, University of Science and Technology of China, Hefei, China

Objective: To construct an artificial intelligence system to measure acetabular
index and evaluate its accuracy in clinical application.
Methods: A total of 10,219 standard anteroposterior pelvic radiographs were
collected retrospectively from April 2014 to December 2018 in our hospital.
Of these, 9,219 radiographs were randomly selected to train and verify the
system. The remaining 1,000 radiographs were used to compare the
system’s and the clinicians’ measurement results. All plain pelvic films were
labeled by an expert committee through PACS system based on a uniform
standard to measure acetabular index. Subsequently, eight other clinicians
independently measured the acetabular index from 200 randomly selected
radiographs from the test radiographs. Bland–Altman test was used for
consistency analysis between the system and clinician measurements.
Results: The test set included 1,000 cases (2,000 hips). Compared with the
expert committee measurement, the 95% limits of agreement (95% LOA) of
the system was −4.02° to 3.45° (bias =−0.27°, P < 0.05). The acetabular index
measured by the system within all age groups, including normal and
abnormal groups, also showed good credibility according to the Bland–
Altman principle. Comparison of the measurement evaluations by the system
and eight clinicians vs. that of, the expert committee, the 95% LOA of the
clinician with the smallest measurement error was −2.76° to 2.56° (bias =
−0.10°, P= 0.126). The 95% LOA of the system was −0.93° to 2.86° (bias =
−0.03°, P= 0.647). The 95% LOA of the clinician with the largest
measurement error was −3.41° to 4.25° (bias = 0.42°, P < 0.05). The
measurement error of the system was only greater than that of a senior
clinician.
Conclusion: The newly constructed artificial intelligence system could quickly
and accurately measure the acetabular index of standard anteroposterior pelvic
radiographs. There is good data consistency between the system in measuring
standard anteroposterior pelvic radiographs. The accuracy of the system is
closer to that of senior clinicians.
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FIGURE 1

Schematic view of a standard pelvic plain film. Quotient of pelvic
rotation (Qr/Ql), Symphysis os-ischium angle (S), and Pelvic tilt
index (R/T).
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Introduction

Developmental dysplasia of the hip (DDH) is the most

common lower extremity deformity in children and the most

common skeletal dysplasia causing lower extremity disability,

with a prevalence rate of 0.1–2/1,000 (1). At present, it is

generally believed that the earlier DDH is treated, the better

the prognosis will be. Therefore, early diagnosis of DDH is

crucial. The diagnosis of DDH in children >6 months old

largely depends on pelvic plain radiography (2). The

acetabular index of children can be obtained from plain pelvic

radiography, which is a commonly used index for diagnosing

DDH and monitoring acetabular development after treatment

(3). The acetabular index was measured by the Hilgenreiner

method (4, 5). Related studies have shown that there is a large

error in the repeatability measurement of acetabular index

and the measurement between different doctors (6, 7), which

often leads to misdiagnosis and missed diagnosis of DDH.

Therefore, it is necessary to construct an artificial system that

can accurately and quickly measure the acetabular index.

In recent years, artificial intelligence has been widely applied

in the medical field (8). From data collection and image

recognition to clinical diagnosis and decision-making, the

reliability and superiority of artificial intelligence has been

proven to a certain extent (9, 10). In this study, a

computerized deep-learning convolutional neural network

model was constructed, trained, and validated by using the

pelvic plain radiographs labeled by clinicians. Assuming high

accuracy in measuring acetabular index, the system can be

used to automatically measure acetabular index of plain pelvic

films.
Information and methods

Pelvic plain film

This retrospective study was approved by the Medical

Research Ethics Committee of the Children’s Hospital of

Anhui Medical University (approval No.: 20190021). This

study collected pelvic radiographs anonymously, so no

informed consent was obtained. Standard pelvic plain films

from 2014 to 2018 were collected from Radiology Department

of our hospital. As shown in Figure 1, a standard pelvic plain

film must meet the following three conditions (5, 7): (1)

Quotient of pelvic rotation: the ratio of the horizontal

diameter of the right obturator foramen to that of the left

obturator foramen (Qr and Ql in Figure 1) is between 0.56

and 1.8; (2) Symphysis os-ischium angle: the angle (S in

Figure 1) formed by the intersection of two straight lines

tangent to the highest point of the ischium and the highest

point of pubic symphysis projection ranging from 90 to 135;
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and (3) Pelvic tilt index: The ratio of the vertical diameter of

the obturator foramen to the distance between the superior

margin of the pubic bone and the Y-line (“R” and “T” in

Figure 1) is between 0.75 and 1.2. The pelvic plain film that

does not meet any of the above three conditions is considered

to have severe rotation or tilt. Finally, a total of 10,219

anonymous standard pelvic plain films from patients aged

between 10 days and 10 years were collected. According to

their age, the patients were divided into four subgroups: <6

months, ≥6–12 months, ≥12–24 months and ≥24 months.

The hip joints were graded according to the Tönnis criteria

(11), where grades 1–4 were considered abnormal, then the

hips were divided into a normal group and an abnormal

group. Nine thousand two hundred and nineteen of these

pelvic radiographs were randomly selected, labeled, and used

for training and validating the depth learning system, and the

remaining 1,000 pelvic radiographs were used to test the

system (Figure 2). The specific distribution of data is depicted

in Table 1.
Expert committee measurements

The pelvic plain films used were labeled according to the

Hilgenreiner method (Figure 3). Four key points on all

images were labeled using a picture archiving and

communication system (PACS) workstation (Figure 3A). The

line connecting the bilateral acetabular centerpoints was the

Hilgenreiner line, and the acetabular index was the angle from
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TABLE 1 Clinical characteristics of the study participants.

Characteristic Entire set
(n =

10,219)

Training set (n
= 9,219)

Testing set (n
= 1,000)

Sex

Male 2,410 2,232 178

Female 7,809 6,987 822

Age

Median 1.0 1.0 1.0

0–2 years 8,577 7,663 914

0–6 months 540 468 72

≥ 6–12 months 4,092 3,758 334

≥ 12–24
months

3,945 3,437 508

≥2 years 1,642 1,556 86

Hip

Normal 9,804 8,838 966

Abnormal 10,634 9,600 1,034

FIGURE 2

Research flow chart.
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the center point of the Y-shaped cartilage to the point on the

lateral edge of the acetabulum and the Hilgenreiner line

(Figure 3B). In all, 10,219 plain pelvic radiographs were

assigned to a panel of 13 clinicians (10 of whom had at least

8 years of clinical experience in pediatric orthopedics; 2

radiologists had more than 15 years of clinical experience in

imaging diagnosis; and 1 chief physician had over 25 years of

clinical experience in imaging diagnosis of pediatric

orthopedics). All the key points on the pelvic plain film were

marked according to the unified learning Hilgenreiner

method, and the acetabular index value was measured

through multiple rounds of cross-examination.
Network framework

In this study, image automatic recognition and

measurement were performed based on a deep-learning

method called the Faster RCNN-DDH (FR-DDH) network

(Figure 4). For the input image, the network first uses a series

of convolution layers and ResNet-101 to obtain the high-

dimensional feature map and extract the spatial information.

Then, a region proposal network (RPN) generates possible

neighborhood regions according to the feature map. Then, the
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region of interest (ROI) combines the neighborhood region

and the feature map. Once assembled, each area is fixed in

size. Then, the feature regions with fixed sizes branch the

results into two outputs through the full join layer:

classification results and regression results. Finally, the key

points are located in the corresponding regions, and the

measurement results are obtained.
System test and evaluation

First, the measurement results of the deep learning system

and the expert committee on 1,000 pelvic radiographs in the

test set were compared and analyzed in this study. Then, 200

plain pelvic radiographs were randomly selected from the test

set and assigned to four pediatric orthopedic clinicians (O1,

O2, O3, and O4) and four radiologists (R1, R2, R3, and R4)

outside the expert committee, where O1 and R1 were senior

physicians and the remaining six were junior physicians. The

eight physicians independently measured the acetabular index

on 200 plain pelvic plates during the same time period; the

measurement was not repeated. Finally, the measurement

results were compared and analyzed with the measured values

of the expert committee. The difference between the

measurement results of the 200 pelvic plain films and the

lateral values of the expert committee was plotted as a violin

figure.
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FIGURE 3

Illustration of standard pelvic plain film labeling. The patient is an 18-month-old child (A) The green dots in the figure represent the key labeling points
determined according to Hilgenreiner method, namely the Y-type cartilage center point and the acetabular lateral edge point; (B) The acetabular
index was determined by connecting the key points according to the Hilgenreiner method.

FIGURE 4

Network framework. The network first uses a series of convolutional layers and ResNet-101 to extract image features. ROI then assembles the
neighborhood regions and feature maps generated by RPN. Then, the collected feature regions output two branch results through the full
connection layer. Finally, key points are located in these results and measured.
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Data analysis

Acetabular index measurement results were consistent with

normal distribution measurement data. All data were

statistically analyzed using SPSS 24.0 (IBM Corporation,

Armonk, NY, United States); Origin 2021 (Microcal Software

Inc, Northampton, MA, United States); and GraphPad Prism

5 (GraphPad Inc, San Diego, CA, United States). Bland–

Altman test was used to evaluate the consistency of

measurement results of the deep learning system, eight

physicians, and the expert committee. Paired t-test was used

to determine the difference in acetabular index between

artificial intelligence and the expert committee. Analysis of

variance and two independent samples t-test were used to
Frontiers in Pediatrics 04
analyze the difference of acetabular index between subgroups.

P < 0.05 was used to indicate statistically significant differences.
Results

A total of 10,219 subjects (2,410 male and 7,809 female;

mean age: 1.5 ± 1.64; age range: 1 months–10 years) were

included in this study. The test set comprised 1,000 patients

(190 male and 810 female; mean age: 1.6 ± 1.68 years; age

range: 1 months–10 years). Compared to the expert

committee measurements, the 95% Limits of Agreement (95%

LOA) determined by the Bland–Altman plot for the 1,000 test

sets was −4.02° to 3.45° (bias =−0.27°, P < 0.05). In the
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evaluation of 200 pelvic plain films, the deep-learning system

measurement showed a 95% LOA of −0.93° to 2.86° (bias =

−0.03°, P = 0.647) compared to the expert committee

measurement. With regards to acetabular index measurements

in infants under six months of age, the 95% limit of

agreement was −6.82° to 4.16° (bias −1.33°, P < 0.05). For

infants ≥6–12 months of age, the 95% limit of agreement was

−3.25° to 3.88° (bias −0.32°, P < 0.05), it was −3.56° to 3.25°

(bias −0.15°, P≤ 0.05) for infants ≥12–24 months, while it

was −3.91° to 4.14° (bias 0.11°, P = 0.468) for children over

twenty-four months the 95% limits of agreement, using the

Bland–Altman method, for acetabular index measurement in

the confirmed normal hip and abnormal hip groups were

−2.56° to 2.47° (bias −0.05°, P = 0.264) and −5.06° to 4.10°

(bias −0.48°, P < 0.05), respectively (Figure 5).

In the one-way analysis of variance of acetabular index

differences between age groups, only the infants under 6

months showed significant difference compared with other

three groups. In the two independent-sample t-test revealed

significant differences between measured acetabular index

differences in the normal hip group and the abnormal hip group.

The 95%LOAof senior physicianO1was−2.76° to 2.56° (bias =
−0.10°, P = 0.126), which was the smallest measurement error
FIGURE 5

Bland–altman scatter plot: the diagnosis of deep learning system test set was
cases randomly selected from the test set; (C) normal group; (D) abnormal gr
infants ≥12–24 months of age; (H) children ≥24 months of age.
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among the eight physicians. The 95% LOA in the O2

measurement of junior physicians was −3.41° to 4.25° (bias =

−0.42°, P < 0.05), which was the largest measurement error

among the eight physicians. (Table 2, Figure 6).
Discussion

In this study, we primarily evaluated the ability of artificial

intelligence to measure acetabular index. Acetabular index can

accurately reflect the development of the acetabulum. It is an

important clinical indicator for the diagnosis and efficacy

evaluation of DDH. At present, a number of studies have

evaluated the application of artificial intelligence in the

pediatric musculoskeletal disorders and include predicting

scoliosis according to x-ray (12), predicting bone age

according to hand and wrist x-ray (13), determining leglength

discrepancy from radiographs (14), quantifying the degree of

metopic craniosynostosis from skull CT scans (15), predicting

the presence of discoid lateral menisci from radiographs (16).

In this study, we constructed an artificial intelligence system

to measure the acetabular index by using 9,219 pediatric

standard pelvic radiographs. Comparison of the measurements
compared to that of the clinician. (A) 1,000 cases in the test set; (B) 200
oup; (E) infants <6 months of age; (F) infants ≥6–12 months of age; (G)
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TABLE 2 Bland–Altman consistency test results.

AI O1 O2 O3 O4 R1 R2 R3 R4

Bias −0.03 −0.10 0.42 −0.35 0.25 −0.08 0.07 0.92 −0.87

95% LOA

Lower limit −2.93 −2.76 −3.41 −3.71 −3.35 −3.11 −3.07 −2.57 −4.57

Upper limit 2.86 2.56 4.25 3.00 3.85 2.95 3.21 4.40 2.83

P 0.647 0.126 <0.05 <0.05 <0.05 0.304 0.377 <0.05 <0.05

FIGURE 6

In the evaluation of 200 radiographs, the violin chart was drawn according to the difference between the measurement results and those of the
expert committee.

Wu et al. 10.3389/fped.2022.1049575
with those of experienced clinicians demonstrated the reliability

of the artificial intelligence tool to accurately measure acetabular

indices. In the test set of 1,000 cases (2,000 hips), the 95% LOA

for the deep-learning system measurements ranged from −4.02°
to 3.45°, when compared to expert committee measurements.

However, relevant studies have shown that the measurement

error of different clinicians ranges from 3.5° to 10° (6, 7, 17).

The results were compared with the clinically allowable error

ranges according to the Bland–Altman principle (18). If the

95% LOA is clinically acceptable, the deep learning system is

considered reliable to measure the acetabular index.

In this study, cases were divided into a normal hip group

and an abnormal hip group according to Tönnis standard.
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The results showed that the consistency of measured

acetabular index in normal group was better than that in

abnormal group. This result is due to the fact that in a

normal hip x-ray, the sclerotic area of the lateral edge of the

acetabulum is usually clear and continuous. However, in

abnormal hip joints, especially in acetabular dysplasia, the

sclerotic area of the lateral edge of the acetabulum is usually

unclear and discontinuous, making it difficult to accurately

distinguish the lateral edge of the acetabulum on x-ray (19).

Under these circumstances, measuring the acetabular index

may produce large errors. Fortunately, the acetabular index

measured by deep learning system in the normal group and

the abnormal group, using the Bland–Altman principle, both
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showed good credibility. In addition, the acetabular index

declined more rapidly in the first 3 months of life and then

changed more rapidly between the ages of 1 and 5 years (20).

Therefore, we divided the cases into four different age groups,

and the results showed that the consistency of measured

acetabular index in infants under six months of age was

worse than that in the other three groups. This is somewhat

different from our previous studies (17), and this difference

may be due to data collection. We collected cases in infants

under six months of age during our retrospective data

collection, so we included this in our study.

The acetabular index measured by different physicians is

marginally different, which may lead to delayed diagnosis or

excessive treatment for children with DDH. Relevant literature

has pointed out that it is necessary to compare clinicians’

accuracy with that of artificial intelligence-based tools (21). In

the evaluation of the measurement results of the deep learning

system and the eight clinicians, the measurement error of the

most senior physician O1 (95% LOA: −2.76° to 2.56°) was the

smallest, followed by the deep learning system (95% LOA:

−0.93° to 2.86°) and the senior radiologist R1 (95% LOA:

−3.11° to 2.95°) (Table 2). The measurement errors of the

remaining six junior physicians were greater than those of the

artificial intelligence system, and the physician with the largest

measurement error was O2 (95% LOA: −3.41° to 4.25°). This

means that the accuracy of the deep learning system in

measuring the acetabular index is second only to that of the

senior orthopedist O1. Therefore, it can be concluded that the

measurement reliability of the deep learning system is high

whether compared with the pediatric orthopedist or the

radiologist. However, the primary doctor may have insufficient

experience, so the error is slightly larger. In the violin figure of

acetabular index difference, it can also be seen that the median

value and overall distribution of the difference between the

measured values of the deep learning system and the measured

values of the expert committee are close to 0. Therefore, it can

be considered that the deep learning system is a reliable tool to

measure acetabular index, and the measurement accuracy may

be improved to a certain extent by using the deep learning

system-based measurement as a reference for clinicians when

reading films. In addition, the time required for the deep

learning system to identify and measure a flat pelvic slice is

about 1 s, which greatly improves the efficiency of slice reading.

This study has some limitations. First, the acetabular index

measured by the Committee of Experts was obtained through

multiple rounds of cross-examination by multiple

authoritative physicians. However, there are still some

differences when compared with the true value of acetabular

index. Second, previous studies have shown that the deep

learning system is different for measuring the pelvic plain

films of dislocated and non-dislocated, older and younger

children (17). In this study, the degree of dislocation and age

were not included in the assessment. Therefore, there is a
Frontiers in Pediatrics 07
certain bias in the result analysis of the 200 randomly selected

plain pelvic radiographs. Moreover, the deep learning system

in this study cannot automatically identify the rotation and

tilt of the image, nor can it automatically correct the errors

caused by the tilt rotation. Finally, this is a single center

study. Therefore, in the future we aim to collect more data

and further optimize the system algorithm to reduce errors.

More multicenter comparative studies are currently being

conducted to improve the accuracy of the system measurements.

In summary, a deep-learning–based artificial intelligence

system that can automatically measure acetabular index was

successfully constructed in this study. The results of the artificial

intelligence system compared with clinicians also confirmed the

reliability of the system in measuring acetabular index. At the

same time, the system greatly improved the efficiency of film

reading and reduced human errors in the measurement. In the

future, more studies are needed to further evaluate and optimize

the artificial intelligence system, and strive for its early and wide

application in clinical practice.
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