
Journal of Universal Computer Science, vol. 28, no. 10 (2022), 1058-1086
submitted: 4/2/2020, accepted: 8/10/2022, appeared: 28/10/2022 CC BY-ND 4.0

Development and Evaluation of a Software Product Line
for M-Learning Applications

Venilton FalvoJr
(University of São Paulo, São Carlos, São Paulo, Brazil

https://orcid.org/0000-0003-2367-3761, falvojr@usp.br)

Anderson da Silva Marcolino
(Federal University of Paraná, Palotina, Paraná, Brazil

https://orcid.org/0000-0002-4014-1882, anderson.marcolino@ufpr.br)

Nemesio Freitas Duarte Filho
(Federal Institute of São Paulo, Sertãozinho, São Paulo, Brazil

https://orcid.org/0000-0001-5084-3733, nemesio@ifsp.edu.br)

Edson OliveiraJr
(State University of Maringá, Maringá, Paraná, Brazil

https://orcid.org/0000-0002-4760-1626, edson@din.uem.br)

Ellen Francine Barbosa
(University of São Paulo, São Carlos, São Paulo, Brazil

https://orcid.org/0000-0003-3275-2293, francine@icmc.usp.br)

Abstract: The popularity of mobile devices in all social classes has motivated the development

of mobile learning (m-learning) applications. The existing applications, even having many benefits

and facilities in relation to the teaching-learning process, still presents problems and challenges, es-

pecially regarding the development, reuse and architectural standardization. Particularly, there is a

growing adoption of the Software Product Line (SPL) concept, in view of research that investigates

these gaps. This paradigm enables organizations to explore the similarities and variabilities of

their products, increasing the reuse of artifacts and, consequently, reducing costs and development

time. In this context, we discuss how systematic reuse can improve the development of solutions

in the m-learning domain. Therefore, this work presents the design, development and experimental

evaluation of M-SPLearning, an SPL created to enable the systematic production of m-learning

applications. Specifically, the conception of M-SPLearning covers from the initial study for an

effective domain analysis to the implementation and evaluation of its functional version. In this

regard, the products have been experimentally evaluated by industry software developers, pro-

viding statistical evidence that the use of our SPL can speed up the time-to-market of m-learning

applications, in addition to reducing their respective number of faults.

Keywords: software product lines, mobile learning applications, variability management, experi-
mental evaluation
Categories: D.2.1, D.2.5, D.2.8, D.2.10, D.2.11, D.2.13, L.2.2, L.3.0, L.7.0

DOI: 10.3897/jucs.90663

https://orcid.org/0000-0003-2367-3761
https://orcid.org/0000-0003-2367-3761
https://orcid.org/0000-0002-4014-1882
https://orcid.org/0000-0002-4014-1882
https://orcid.org/0000-0001-5084-3733
https://orcid.org/0000-0001-5084-3733
https://orcid.org/0000-0002-4760-1626
https://orcid.org/0000-0002-4760-1626
https://orcid.org/0000-0003-3275-2293
https://orcid.org/0000-0003-3275-2293


FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1059

1 Introduction

In the last decades, several changes in software reuse approaches have led to the concept
of Software Product Lines (SPL). According to [Linden et al., 2007], this approach
represents one of the most disruptive paradigms in software development since the
advent of high-level programming languages. Thereby, companies which have developed
project-by-project software for years, can now focus on building and maintaining this
systematic reuse strategy, focusing on the variabilities of their products.

For successful adoption of an SPL, its domain must be carefully defined. If the domain
is too large and the products vary widely, the core assets will be overloaded beyond
their designed variabilities. As a result, production savings will be lost and the SPL
will collapse. Therefore, properly defining the domain and its respective variabilities is
essential. For this, the concept of variability management [Chen and Babar, 2011, Galster
et al., 2014] arises intrinsically, aiming to enable the healthy diversification of a domain’s
product portfolio [Capil la et al., 2013].

On the other hand, the rapid growth of Information and Communication Technologies
(ICT) has favored the emergence of innovative ways of dealing with the problems of
traditional education [Kraut, 2013]. More than ever, people, companies and organizations
are looking for effective ways of training and qualification, in view of an increasingly
competitive ICT job market [Kukulska-Hulme and Traxler, 2005, Sharples et al., 2009,
Matzavela and Alepis, 2021]. Mobile learning (m-learning), for instance, has provided a
strong interaction between learners and instructors, enabling them to actively participate
in the knowledge construction process anytime and anywhere [Moreira and Rocha,
2018, Matzavela and Alepis, 2021].

Despite the benefits provided in the teaching and learning process, the m-learning
solutions still presents challenges in its adoption globally [Sharples, 2013, Kraut, 2013].
Few studies discuss public policies and definitions of a base curriculum to guide the ef-
fective adoption of m-learning applications. Furthermore, propositions of reuse strategies
in this domain are scarce, making it a relevant research object [FalvoJr, 2015, Marcolino
and Barbosa, 2015, Marcolino and Barbosa, 2016].

Therefore, there is a lack of studies that present m-learning solutions developed
through systematic reuse strategies, such as SPL. [Bezerra et al., 2009] and [Chen and
Babar, 2011] conducted broader systematic reviews and both identified gaps related
to SPL adoption and variability management, respectively. Furthermore, although the
concept of SPL is already consolidated in some domains, there are few studies exploring
m-learging applications specifically [FalvoJr, 2015, Marcolino and Barbosa, 2015, Mar-
colino and Barbosa, 2016].

Such gaps, identified through formal literature reviews in the domain of m-learning
applications, motivated us to develop [FalvoJr et al., 2014a, FalvoJr et al., 2014b] and
evaluate (focus of this work) an SPL in this domain. The SPL is named M-SPLear
ning and it has been created based on a concise UML-based variability management
approach, named SMarty (Stereotype-basedManagement of Variability), which provides
mechanisms to facilitate the identification and representation of variabilities [OliveiraJr
et al., 2010, Marcolino et al., 2013, Marcolino et al., 2014b, Marcolino et al., 2014a, Bera
et al., 2015, Marcolino et al., 2017].

It is worth mentioning that M-SPLearning differs significantly from other studies
focused on Generative Learning Objects (GLO) [Costea et al., 2018, Burbaite et al.,
2014, Stuikys et al., 2013]. While a Learning Object (LO) concept usually refers to a
small-sized, reusable instructional component, designed for distribution over the Internet,
for use in different Learning Management Systems (LMS), being accessible by many



1060 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

users [Costea et al., 2021, Anido-Rifon et al., 2001] and a GLO are reusable educational
templates to be filled with learning content [Costea et al., 2021], M-SPLearning provides
a mobile platform that can support learning content, created through the platform itself
by their users. To conclude, considering the technical aspects of an SPL, it could be
evolved to support and integrate GLO and LO, but in this study, only the aspects as a
LMS are considered.

In this paper we discuss how the adoption of an SPL approach can improve the
development of m-learning applications. For this, we experimentally evaluate M-SPLear
ning, comparing it with a single software development methodology, common in the
industry. The research question to be answered is: “Can SPLs improve the time-to-
market of stable m-learning applications?”

The experimental evaluation is based on two relevant software development variables:
time-to-market and number of faults. These variables can be directly influenced by the
adopted development methodology and approaches that support the variabilities and
commonalities management [Hubaux et al., 2011, Capil la et al., 2013]. Additionally,
in the industry segment, on-time delivery and quality are crucial variables for business
success and customer satisfaction, both are important facets of product development
strategy [Hubaux et al., 2011, Dóra et al., 2013].

In this perspective, the experiment was conducted in person at a Brazilian software
company, aiming at comparing the software development methodology used by its
employees with M-SPLearning. In addition to comparing both approaches, it was also
possible to promote the exchange of experiences between experts from industry and
academia, in view of the low adoption of SPL in the Brazilian industry in general [FalvoJr,
2015, Marcolino and Barbosa, 2015, Marcolino and Barbosa, 2016].

The paper is organized as follows: Section 2 presents the M-SPLearning and en-
compasses essential background; Section 3 addresses the M-SPLearning experimental
evaluation; Section 4 discusses the lessons learned from the development and application
of M-SPLearning and its prospective improvements; Section 5 summarizes the related
work; and Section 6 presents our conclusions and perspectives for future work.

2 M-SPLearning: an Overview

Mobile learning stands out for its ability to promote genuine interaction between students
and instructors, anytime and anywhere, providing exciting new teaching opportunities
[Kukulska-Hulme and Traxler, 2005, Sharples et al., 2009]. Despite its benefits, m-
learning is still considered an incipient concept, having limitations that hamper its
effective development and adoption. For instance, even with the increasing demand
for m-learning applications, few studies have addressed development issues through
a systematic reuse strategy, such as SPL, in the m-learning domain [FalvoJr, 2015,
Marcolino and Barbosa, 2015, Marcolino and Barbosa, 2016].

More specifically, mobile applications can be implemented on different development
platforms, mostly Android or iOS. Actually, the domain of m-learning also includes
such Operating Systems (OS) and their particularities. Thus, to define a viable domain in
terms of scope, we selected a single OS, the Android. Our choice was mainly based on
the number of devices that each OS controls, as Android has (consistently) held between
70% and 80% of the global smartphone market share in recent years [Chau and Reith,
2021, StatCounter, 2021].

Considering the ubiquity of mobile devices and the lack of systematic reuse ap-
proaches that relate the concepts of mobility and education [FalvoJr, 2015, Marcolino and



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1061

Barbosa, 2015, Marcolino and Barbosa, 2016], we have worked on the development of
an SPL for the m-learning domain, named M-SPLearning [FalvoJr et al., 2014a, FalvoJr
et al., 2014b]. Its conception followed the proactive approach proposed by [Krueger,
2002], which includes the phases of Domain Engineering, Architecture and Design.
These phases are summarized below, along with the M-SPLearning’s product genera-
tion dynamics.

2.1 Domain Engineering

The proactive approach is appropriate when the requirements for a set of products to be
created are stable and can be defined in advance [Krueger, 2002]. In this context, our
SPL was based on the m-learning requirements catalog proposed by [Duarte Filho and
Barbosa, 2013] and the quality model ISO/IEC 25010 [ISO/IEC, 2010]. This catalog
was established from the results of a systematic review also conducted in the domain of
this study.

To facilitate the understanding and the maintenance of the catalog, a three-level
hierarchical structure (criteria, requirements and description) was adopted. Additionally,
based on the knowledge of domain specialists, the requirements were prioritized in order
to reflect the main experiences and needs in the m-learning setting [Duarte Filho and
Barbosa, 2013].

We used this requirements catalog as a reference for the creation of an adherent feature
model for M-SPLearning (Figure 1), designed using FeatureIDE1. The interpretation of
the feature model is simple and follows the traditional concepts conceived by the Feature-
Oriented Domain Analysis (FODA) [Kang et al., 1990]. Basically, each requirement was
mapped as a primary feature, generating its respective secondary features. Thus, a total
of 30 features were modeled and submitted to the S.P.L.O.T.2, which indicated 3,840
possible variations for our feature model. Our primary features and their responsibilities
for m-learning applications are detailed following:

– Compatibility: includes the Coexistence and Interoperability. Both are mandatory for
m-learning applications, given the need for multiple devices to interact in the same
ecosystem, which often interoperates with other systems and solutions. In particular,
Coexistence is intrinsic in the mobile domain, so it was defined as abstract;

– Pedagogical: it has the educational and pedagogical requirements, providing themain
features of m-learning applications. In particular, the Interactivity is optional and
depends on the constraint: (Collaboration or ResultsAndFeedbacks or Help) implies
Interactivity. Lastly, Content Management, Educational Activities and Multimedia
Resources are mandatory; the latter offers a choice of one or more multimedia
resources to support teaching;

– Security: this is a critical feature because any mobile app must send/receive informa-
tion securely. Subfeatures Integrity and Confidentiality were defined as mandatory,
as they are essential for data consistency and integrity. On the other hand, the Authen-
ticity is optional because not every m-learning application has explicit authentication
of its users;

1 Tool available at https://featureide.github.io.
2 Tool available at http://splot-research.org.

https://featureide.github.io
http://splot-research.org


1062 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

– Usability: addresses the essential visual interface features of m-learning applications,
abstracting the User Interface (UI) and User Experience (UX) platform standards.
It is fundamental for the acceptance of the app in the market, because the products
generated by SPL must adopt usability standards that offers an attractive experience
to the end users. Therefore, all features were defined as mandatory, with the excep-
tion of Attractiveness, which has a constraint: (Audio or Image or Video) implies
Attractiveness. Furthermore, all subfeatures are abstract because the guidelines are
provided by the development platform itself, such as Material Design for Android;

– Communication: responsible for exchanging information between users, making
the teaching ecosystem more collaborative and cohesive, due to the interactivity of
learners and synchronization of activities. Anyway, this feature and subfeatures are
optional and accept any possible combinations;

– Support: offers interesting features for some m-learning applications, such as user
support and internationalization. In this context, all elements were classified as
optional because they are not mandatory for all applications.

2.2 Architecture

Based on Domain Engineering phase, we designed a software architecture adherent to
the requirements m-learning domain. Such architecture and its components represent, in
an abstract level, the core assets of M-SPLearning. From this moment, SPL variability
management has become essential for the organization and standardization of M-SPLear
ning.

Therefore, the SMarty approach was assigned for this responsibility, mainly because:
(i) full compliance with UML, which standardizes SPL design and validation; (ii) cogni-
tive ease in view of compatibility with market modeling tools; and (iii) the existence of
experimental evidence of its superior effectiveness compared to other UML-based ap-
proaches [Marcolino et al., 2013, Marcolino et al., 2014b, Marcolino et al., 2014a, Bera
et al., 2015, Marcolino et al., 2017].

In this context, one of the M-SPLearning most representative assets is the architec-
ture diagram (Figure 2). This diagram abstracts the variabilities, similarities and interac-
tions between M-SPLearning’s architectural components. So, we have an overview of
the SPL and its domain assets, essential information for the Design phase that details the
responsibility of each component.

Based on the architectural diagram, it is possible to identify the structural, base used
to the construction of the M-SPLearning. The package Core Assets comprises the SPL
concrete features and its components represent the specific features of the m-learning
domain, grouped into component core. Thereby, the fundamental modules for products
generated by M-SPLearning could be visually unified. Note that SMarty is used to
represent the variabilities present in two components. To conclude, the Application
Layer contains a component that characterizes the M-SPLearning UI, identifying its
association with Core Assets, enabling the derivation of products. Each product should
include the components available in the Core Assets, making each m-learning application
able to use different features according to its configurations.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1063

Figure 1: M-SPLearning Feature Model (designed using FeatureIDE).

2.3 Design

In this phase of project, the variabilities and similarities identified in the previous phases
are designed. For this, the core asset elements were visually represented by another
SMarty-based component diagram (Figure 3). This diagram presents all the concrete
features modeled for M-SPLearning, so it is less abstract than our architectural diagram.
The resulting components were taggedwith SMarty stereotypes, which allows the analysis
of the number of possible configurations of products supported by SPL. In this sense,
SMarty provides the following stereotypes: optional,mandatory, variable, variationPoint
and variability.

From this component diagram, we proposed a production plan that introduce the
interactions between UI, API Services and Android Template, which together define the
configuration/generation dynamics of M-SPLearning products. Therefore, we designed
a SMarty-based activity diagram to formally describe our Production Plan (Figure 4).



1064 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

Figure 2: M-SPLearning Architecture.

In that regard, the variation point exposes all variabilities elicited for M-SPLearning.
Thus, the customization of the products was centralized at a single point, simplifying the
configuration and generation processes of m-learning applications.

2.4 Product Generation

The creation of products essentially depends on the implementation of the assets/com-
ponents elicited in the previous phases. Because of this, a specific set of features was
prioritized, aiming to define a viable scope for the construction and evaluation of the
M-SPLearning.

In this context, the following features were implemented, due their importance in
the domain of m-learning applications: (i) Pedagogical: includes educational activities
through the management of interactive and multimedia content; (ii) Security: provides
confidentiality and integrity of data, which includes the user authentication; and (iii)
Communication: related to data synchronization. Such features are rendered in the M-
SPLearning’s UI, which enables the selection of variabilities, through a Website, for
product generation (Figure 5).

The products generated are Android Apps ready for installation (APK files), which
solve their variability in configuration time. Figure 6 shows same product configurations,
highlighting Pedagogical variabilities:

(a) Interactivity variability unchecked, resulting in an authentication provided only by
the M-SPLearning itself;

(b) Interactivity variability checked, resulting in the possibility of authentication via
social media (Facebook and Twitter);

(c) Only Video feature checked onMultimedia Resources, resulting in the exclusivity
of this type of content.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1065

Figure 3: M-SPLearning Design.



1066 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

Figure 4: M-SPLearning Production Plan.

To conclude, the conception of M-SPLearning involved analysis, design and con-
struction of an SPL for generating m-learning applications. In particular, an experimental
evaluation was conducted, which represents the main contribution of this work. Details
about the experiment performed and the results obtained are presented in Section 3.

3 M-SPLearning Experimental Evaluation

This section reports the M-SPLearning’s experimental evaluation, which observes the
time-to-market and the quality of the generated products (m-learning applications). Our
SPL was compared with an ad hoc methodology, which we named as Single Software
Development (SSD). This methodology occurs when developers use only their own
knowledge to implement m-learning applications from scratch, without any reuse tech-
nique.

This experimental evaluation considered the analysis and comparison of two im-
portant indicators involved in the software development process: time-to-market and
quality (number of faults). Although the comparison does not consider two SPL, the final
objective is to verify if the core assets components are enough to allow the development
of stable m-learning apps. Additionally, we would like to obtain insights favorable to
the adoption of SPL in the m-learning domain, promoting the demystification of this
systematic reuse approach for the creation of educational applications, in the context of
software development companies, aiming to bring academia and industry closer together.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1067

Figure 5: M-SPLearning UI: highlighting Pedagogical variabilities.

Figure 6: M-SPLearning Products - Pedagogical Variations: (a) Interactivity

unchecked; (b) Interactivity checked; and (c) Only Video checked on Multimedia

Resources.



1068 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

For this, the experimental process was carried out in the Brazilian software industry,
taking into account the knowledge of employees/participants. Thus, the results of each
methodology allowed us to verify in a second instance, as lessons learned, how the
developers behaved when exploring a totally new approach and outside their comfort
zone. Ultimately, we assume that the SSD approach could represent a bias, due to the
participants’ experience with this methodology in their day-to-day work. Therefore, the
experimental evaluation will also contribute to the discussion of such nuances.

We followed the guidelines proposed by [Wohlin et al., 2012] and the report template
suggested by [Jedlitschka and Pfahl, 2005] for the conduction of this experiment.

3.1 Aim and Research Question

The experiment aimed at comparing M-SPLearning (also referenced as SPL in this
section for convenience) with an SSD, for the purpose of identifying the most efficient,
with respect to the time spent on the creation of m-learning applications and the num-
ber of faults found, from the point of view of software engineers in the context of
practitioners from a software development company.

Two research questions (R.Q.) based on the research objective were raised:

– R.Q.1 Which methodology is more efficient regarding time-to-market in the m-
learning domain: SSD or SPL?

– R.Q.2Which methodology presents more quality, in terms of number of faults, in
the m-learning domain: SSD or SPL?

3.2 Experimental Planning

This section describes the experimental planning and procedures for supporting future
replications. All information regarding the design, configuration of the environment,
dynamics of execution and tests are in the experimental package, available at http:
//falvojr-msc.github.io/msplearning.

Formulation of Hypotheses

We defined two sets of hypotheses to be tested. Each of them is related to its respective
research questions (R.Q.1 and R.Q.2):

R.Q.1 hypotheses: time-to-market

– Null Hypothesis (H0): there is no significant difference of time-to-market (t) be-
tween SSD and M-SPLearning. (H0 : µ(t(SSD)) = µ(t(SPL)));

– Alternative Hypothesis (H1): there is a significant difference of time-to-market (t)
between SSD and M-SPLearning. (H1 : µ(t(SSD)) 6= µ(t(SPL))).

R.Q.2 hypotheses: quality, in terms of number of faults

– Null Hypothesis (H0): there is no significant difference between SSD and M-SPLear
ningwith regard to quality, in terms of number of faults (f ), in the software products
created. (H0 : µ(f(SSD)) = µ(f(SPL)));

– Alternative Hypothesis (H1): there is a significant difference between SSD and M-
SPLearning with regard to quality, in terms of number of faults (f ), in the software
products created. (H1 : µ(f(SSD)) 6= µ(f(SPL))).

http://falvojr-msc.github.io/msplearning
http://falvojr-msc.github.io/msplearning


FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1069

Objects

We considered two software products configurations for m-learning applications using
Android platform for evaluating SSD and M-SPLearning: Product 1 (P1) and Product 2
(P2). They are described as follows:

– P1: m-learning application that provides support to image-based educational content;

– P2: m-learning application that provides support to video-based educational content.

Selection of Variables

The dependent variables time (t) and faults (f ) were defined by the following equations
(Equation 1 and Equation 2):

µ(t) = (Σxi)/n, i = 1..n (1)

µ(f) = (Σyi)/n, i = 1..n (2)

where:

t is the implementation time (minutes);

f is the number of faults;

xi is the time of implementation of participant i;

yi is the number of faults detected in the implementation of participant i;

n is the total of participants in the experiment.

Independent variables are the development methodology, which is a factor with
one control (SSD) and one treatment (SPL), and the software product configuration for
m-learning application, which is a factor with two treatments (P1 and P2). Table 1 shows
the description of dependent and independent variables.

Time-to-market is the time spent, in average, for the implementation of a software
product with a specific group of variabilities of M-SPLearning. Regarding the number
of faults, the implemented products were tested using the concept of test cases [Craig
and Jaskiel, 2002]. In this way, we quantified the average number of defects for each
application/product. Such metrics are relevant since they are directly related to time-to-
market and quality of the m-learning applications. Additionally, they are relevant metrics
for development industry [Jabangwe et al., 2018].

Selection of Participants

The experiment was carried out with employees of a Brazilian software development
company, who had 2.72 (average) years of experience as developers in the Java pro-
gramming language (target platform of the experiment on the Android platform). In this
context, 18 developers participated as volunteers within the company environment. We
emphasize that the participants also have experience in architecture and software design.



1070 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

Variable

(Type)
Class Entity

Type of

Attribute

Scale

Type
Range

Counting

Rule

Development

Methodology

(Independent)

Method

Software

development

methodology

N/A Nominal
SSD and

SPL
N/A

Software

Products

(Independent)

Product

Mobile

software

product

N/A Nominal P1 and P2 N/A

Time

(Dependent)
Product

Time to

market

Internal: time;

external: time

to market.

Ordinal

From

00:00:00

to

03:00:00

Eqn. (1)

Faults

(Dependent)
Product

Number of

faults

Internal: faults;

external: quality.
Ordinal

Any

positive

integer

Eqn. (2)

Table 1: Description of Dependent and Independent Variables.

The number of practitioners available in the industry limits a random selection of
participants from a population. To reduce this bias, the random capacity was applied at in-
strumentation level, more specifically, at the assignment of the development methodology
(SSD or SPL) and software product (P1 or P2) by participant.

Block classification was defined by two factors with two treatments, which were
interspersed in four groups. The block classification avoid undesirable effects in the
treatments comparison, rising the experimental precision and the balancing, besides to
simplify and improve the statistical analysis of the experimental data [Brooks et al.,
1996]. The balancing was applied in the tasks, which were assigned in equal numbers to
a similar number of participants. Therefore, the 18 participants were randomly separated
into groups:

– First Group: focused on SSD with P1 and M-SPLearning with P2;

– Second Group: focused on M-SPLearning with P1 and SSD with P2;

– Third Group: focused on SSD with P2 and M-SPLearning with P1; and

– Fourth Group: focused on M-SPLearning with P2 and SSD with P1;

Instrumentation

The experiment was supported by the following set of instruments: (i) similar desktop
computers with all necessary tools (Eclipse IDE and plugins); (ii) a consent term for the
experimental study; (iii) a characterization questionnaire; (iv) use case, component and
sequence UML diagrams; (v) interface messages; (vi) database model; (vii) a project base;
(viii) similarities of the products; and (ix) experimental forms for SSD and M-SPLear
ning, randomly distributed and feedback questionnaire.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1071

Analysis Procedures

The main assessment tools were the products developed based on two software spec-
ifications (P1 and P2) for m-learning applications, also available in the experimental
package.

A specific niche of features was used for the evaluation. The variabilities related to
multimedia resources enabled the creation of up to 15 different products. P1 and P2 were
specified and implemented by SSD and SPL methodologies.

To collect the data for the analysis of time-to-market, the initial and final time of
implementation process for P1 and P2 were registered individually in the experimental
form to be calculated in Equation 1. On the other hand, for the analysis of quality, each
of 15 developed products were tested and the number of faults was collect to compare
the use of SPL and SSD methodologies by means of the Equation 2.

3.3 Execution

This section describes how the experiment was conducted. Firstly, it is worth men-
tioning that the execution in the industry was an important project decision, aiming to
bring Brazilian software development companies closer to reuse approaches already
consolidated in the academy, such as SPL.

Sampling

The sample was composed of a total of 21 practitioners, who participated in the training
session. However, 18 participants, effectively contributed in the experimental execution,
due to the unavailability of three volunteers in the execution day.

Pilot Project

A pilot project was developed with two practitioners from industry, who evaluated the
study instrumentation and established the duration of the training and execution sessions.
The results and these participants were not considered in the final execution and data
analysis of the experiment.

Training

The participants underwent a three-day training session, in which were considered the
essential concepts of Android development for SSD and M-SPLearningwith the Eclipse
IDE. The knowledge was evaluated through essays at the end of each training session.
On the fourth day, the experiment was performed. The training time lasted approximately
40 minutes. The materials used were: (1) slides – presentation; (2) diagrams; (3) libraries
– java and android; (4) data models; and (5) forms.

Participation Procedure

We defined the following steps for participation in the experiment:

1. The participants were divided into four groups randomly;



1072 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

2. The researcher gave participants a set of documents containing UML diagrams, a
dataset model and an interface message specification for each product, such as the
material used in training session. Each participant was provided with a desktop
computer with all requirements to develop a software product and an experimental
form to register the time spent in the development process.

3. The participant read each given document;

4. The researcher explained the documents;

5. The participant read and clarified possible doubts about the products specifications;

6. Each participant received and used two randomly drawn methodologies for the
development of a requested m-learning product. For each application, participants
registered its duration (start time, end and breaks). At the end of the two development
tasks they were asked to answer a feedback questionnaire, giving their opinion about
the experimental execution and the technologies used.

3.4 Data Analysis and Interpretation

As the experiment session was finished, collected data was prepared in order to apply
the statistical tests.

3.4.1 Descriptive Statistics

For each participant (“Participant #” column), we collected the following data: total
time of implementation (t in minutes) and total number of faults (f), identified by testing
procedures, and the mean calculation. These results are shown in Table 2 and the results
for each participant are plotted in the box-plots of Figures 7 and 8.

As we can see in Table 2 and in Figures 7 and 8, with regard to time-to-market,
using SSD 50% of the developers took at least 104.00 minutes to develop an m-learning
product with 33.98 minutes of standard deviation and maximum value of 176 minutes.
On the other hand, using M-SPLearning, the 50% of the developers took at least 3
minutes with an standard deviation of 3.75 minutes and maximum time of 14 minutes.
Therefore, the analyzed time-to-market between SSD and M-SPLearing is considerable
different with better results to the M-SPLearning SPL.

Regarding the number of faults, using SSD, 50% of the developers found at least four
faults with standard deviation of 8.46 and maximum value 34. By using M-SPLearning,
50% of the developers found no faults, with standard deviation of 2.91 and maximum
value of nine faults. Thus, the analyzed number of faults favored M-SPLearning as it
leads to a reduced number of faults during the m-learning product development.

Although, the results of analyzing the descriptive statistics of time-to-market and
number of faults generally favored M-SPLearning, we conducted inferential statistics
analysis to strength these results.

3.4.2 Inferential Statistics

Based on the results obtained by the use of SSD and SPL to the development of two
m-learning products, we summarize, analyze and interpret the SSD and M-SPLearning
collected data (Table 2 and Figures 7 and 8) by means of the Shapiro-Wilk normality
test and the Mann-Whitney-Wilcoxon hypothesis test.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1073

Figure 7: Boxplots for SSD and M-SPLearning time

Figure 8: Boxplots for SSD and M-SPLearning faults



1074 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

SSD M-SPLearning

Participant # Time (t) Faults (f) Time (t) Faults (t)

1 161 15 2 9

2 90 8 1 0

3 105 4 11 0

4 104 1 3 0

5 73 2 1 0

6 99 9 3 0

7 165 12 10 0

8 95 1 3 0

9 104 3 2 0

10 102 0 4 0

11 61 0 2 0

12 82 4 8 0

13 114 1 4 0

14 103 6 14 0

15 111 2 2 0

16 176 9 4 0

17 120 17 5 0

18 175 34 2 9

Total 2040 min 128 81 min 18

Mean 113.33 min 7.11 4.50 min 1

Median 104 min 4 3 min 0

Std. Dev. 33.98 min 8.46 3.75 min 2.91

Table 2: SSD and SPL Collected Data and Descriptive Statistics.

Time-to-market (R.Q.1)

– Collected Data Normality Tests: The Shapiro-Wilk test [Shapiro and Wilk, 1965]
was adopted for the analysis of the normal distribution of the samples. Being applied
to the data set collected for the SSD and SPL methodologies in relation to the
averages of time and faults, providing the following results for the time-to-market
dependent variable:

• SSD time (N=18):

For mean value (µ) of 113.33 and standard deviation value of (σ) 33.98, the
time for the SSD was p = 0.0274.

In the Shapiro-Wilk test for a sample size (N) 18 with 95% of significance level
(α = 0.05), p = 0.0274 (0.0274 < 0.05) and calculated value ofW = 0.8813 <
W = 0.8970, the sample is considered non-normal.

• SPL time (N=18):

For mean value (µ) of 4.50 and standard deviation value of (σ) 3.75, the time
for the SPL was p = 0.0014.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1075

For a sample size (N) 18 with 95% of significance level (α = 0.05), p = 0.0014
(0.0014 < 0.05) and calculated value of W = 0.7978 < W = 0.8970, the sample
is considered non-normal.

– Mann-Whitney-Wilcoxon for SSD and SPL time samples: a rank with weights
was assigned to each sample value. The weights were added and applied in Equation
3:

U(DM) = N1 ∗N2 +
N1 ∗ (N1 + 1)

2
−

n∑
i=1

total2 (3)

where:

U(DM) equation for each independent sample (development methodology);

N1 is the size of the sample for the X methodology;

N2 is the size of the sample for the compared methodology (Y);

total2 is the sum of the weights given for the compared methodology.

The time values calculated by Equation 3 were 326.5 for SSD and 0.00 for SPL.
Each weight matches the participants weights of development process time with SSD or
SPL methodology. Therefore, as both values are different (326.5 > 0), this leads to the
rejection of the null hypothesis (H0) and acceptance of the alternative hypothesis (H1).

Based on the Figure 7 it is noticed that the time spend in SSD was higher, with the
mean of 113 minutes while M-SPLearning took 4.5 minutes. However, it is important
to highlight that such time does not include the time spent in the development of core of
the products.

Therefore, the answer to R.Q.1 is that SPL is more efficient than the SSD to implement
software products for mobile platform taking into account the products P1 and P2
specification. The implementations of the base project (used by SSD) and M-SPLear
ning (used by SPL) were also considered in the experiment.

Regarding the base project, it consisted of a simple structure with only some ab-
stractions and best practices of the company, also explored during the training sessions.
This project was implemented in 480 minutes (8 hours), which is relevant for some
analysis. In different circumstances, the M-SPLearning took 10599 minutes (≈177
hours) to be developed, mainly due to the complexity of building/integrating core assets
and generating products.

Based on the time spent in the development of each software product, it is possible
to make some estimates related with the time efforts for both SSD and M-SPLearning
methodologies evaluated. The total of time considering the time required for the imple-
mentation of each base project adopting the SSD methodology plus the total development
time to each participant (480 minutes), the total time would be 10680 minutes or 178
hours (totaltime((subjects(18) x minutes(480)) + 2040 = 10680 minutes).

On the other hand, taking into account the base project developing with SPL method-
ology, the time spent by the 18 participants was 81 minutes (1 hour and 21 minutes) and
the total time would be 11361 minutes or 189 hours and 35 minutes (totaltime((partici-
pants(18) x minutes(4.5)) + 10599 = 11361 minutes).

Comparing the values, we notice that the development with M-SPLearning takes
621 minutes (11 hours and 35 minutes) more than SSD. However, after the SPL imple-
mentation, this approach allows the evolution and insertion of new variabilities, assuring



1076 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

the faster generation of new products in addition to other advantages of the adoption of M-
SPLearning. To conclude, according to [Linden et al., 2007], the Return On Investment
(ROI) of an SPL usually occurs after the production of 3 to 4 products.

Number of Faults (R.Q.2)

– Collected Data Normality Tests: In this context, the same statistical tests applied
to the time-to-market dependent variable were performed for the average of faults,
starting with the Shapiro-Wilk test:

• SSD faults (N=18):

For a mean value (µ) 7.11 and standard deviation value of (σ) 4, the fault for
the SSD was p = 0.0006 for the Shapiro-Wilk normality test.

For a sample size (N) 18 with 95% significance level (α = 0.05), p = 0.0006
(0.0006< 0.05) and value ofW = 0.7740<W = 0.8970, the sample is considered
non-normal.

• SPL faults (N=18):

For a mean value (µ) 1.00 and standard deviation value of (σ) 0, the fault for
the SPL was p = 0.00000007 for the Shapiro-Wilk normality test.

For a sample size (N) 18with 95%of significance level (α = 0.05), p = 0.00000007
(0.00000007 < 0.05) and value of W = 0.3730 < W = 0.8970, the sample is
considered non-normal.

– Mann-Whitney-Wilcoxon for SSD and SPL faults samples: the number of faults
calculated for SSD by Equation 3 was 282, whereas for M-SPLearning, it was 42.
Each weight matches participants development project faults with SSD or M-SPLear
ning. There is evidence that both values are different (282 > 42), which leads to
the rejection of the null hypothesis (H0) and acceptance of the alternative hypothesis
(H1).

According to the result from the Mann-Whitney-Wilcoxon, the answer for R.Q.2
is that SSD is prone to present more faults in the software products developed than the
M-SPLearning. Figure 8 confirmed such number, showing that SSD present a mean of
6 faults, while M-SPLearning had a mean of 1 fault.

The faults found were identified based on test cases defined with a group of quality
analysts from a software industry encompassing both SPL and SSD methodologies.
These test cases considered the main functionalists of the expected software products.

Table 3 summarizes our results in the normality and statistical tests. In terms of time-
to-market, the statistical difference showed by Mann-Whitney-Wilcoxon test (MWW in
Table 3) provides evidence that SPLwasmore efficient than SSD in the development of P1
and P2, so R.Q.1 was answered. Regarding the number of faults, the statistical difference
presented by Mann-Whitney-Wilcoxon test provides evidence that SSD showed more
faults than M-SPLearning in the development of P1 and P2; therefore, R.Q.2 has been
answered.

Two types of faults were found for two participants that used the M-SPLearning,
one for each configuration (P1 and P2). In both test cases, the product was expected to
display a list of educational content (video or image), but nothing was displayed due to
connectivity issues related to the corporate proxy.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1077

Element SSD M-SPLearning

Participants N(SSD) = 18 N(M-SPLearning) = 18

Time to Implementation

Mean 113.33 4.5

Shapiro-Wilk
p = 0.0274 (p <0.05)

Non-normal.

p = 0.0014 (p <0.05)

Non-normal.

MWW 326.5 0

Result

R.Q.1 H2: M-SPLearning has a smaller time-to-market

than SSD, based on evidenced statistical

difference of the time to implementation.

Number of Faults

Mean 7.11 1

Shapiro-Wilk
p = 0.0006 (p <0.05)

Non-normal.

p = 0.00000007 (p <0.05)

Non-normal.

MWW 282 42

Result

R.Q.2 H2: M-SPLearning has a smaller faults in the products

than SSD, based on evidenced statistical

difference of the number of faults.

Table 3: SSD and M-SPLearning Normality and Statistical Tests Results.

For the SSDmethodology, the faults were more serious. All the participants presented
faults somehow. For the image (P1) and video (P2) software product, the faults where
found in the same test cases: (i) the data was expected to be validated before be stored
by the application to the data base in the content creation process; (ii) the application
should present a form with the selected educational content, but nothing was displayed;
and (iii) the informational messages were not displayed on some screens.

According to the results of the Wilcoxon test, both R.Q.1 and R.Q.2 null hypotheses
can be rejected with a significance level of 95% (α = 0.05). It is important to highlight
that, even with a small number of participants and with a reduced statistical power,
this experimental evaluation is important since it allows the collection of preliminary
evidences about the compared methodologies. Besides, the sample can be increased in
future replications [Falessi et al., 2018].

Additionally, it was also possible to identify clear differences between products
screens (Figure 9). In this sense, M-SPLearning considered the best practices of the
Android platform at the time. So an evaluation in terms of UI/UX could be conducted in
the future.

3.5 Threats to Validity

This section addresses the actions taken to directly mitigate the threats of this experiment,
according to the Conceptual Model of [Neto and Conte, 2013] and [Wohlin et al., 2012].

1. Threats to Internal Validity:

– Differences among participants: as we selected participants with different
experience levels, variations in their skills were reduced during the training



1078 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

Figure 9: Example developed applications - P2: (a) M-SPLearning and (b) SSD.

sessions. The assessments conducted in the end of each day of training demon-
strated the level of knowledge in the content used in the experimental execution
and assured the reduction in variations in the participant skills. Even knowing
that a more homogeneous sample reduces the participants representativeness, we
decided to conduct a training session to reduce the heterogeneity of participants,
that could threat the conclusion validity;

– Fatigue effects: on average, the experiment lasted 180 minutes. Fatigue was not
considered relevant since the participants could leave the room for a quick break.
They were warned to not communicate during the breaks and, as a guarantee,
a human observer supervised them. Periods of absence were registered and
disregarded in the time analysed;

– Influence among participants: the participants performed the experiment under
the supervision of a human observer, then a possible influence of communication
among them could be mitigated. Since participants behave differently when
being observed, training sessions allowed the adaptation the participants to the
environment, reducing this threat;

– Training Sessions: in the training sessions, technical explanations were given
for every participant. This action was taken to avoid possible biases, in addition
to encouraging each member of the training to expose their doubts.

2. Threats to External Validity:

– Instrumentation: m-learning products and other instruments were tested in the
pilot project and were considered significant for the analysis of time-to-market
and number of faults;

– Participants: more experiments considering different metrics with industry
practitioners must be conducted for the identification of other relevant factors
related to the adoption of M-SPLearning.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1079

3. Threats to Construct Validity:

– Independent Variables: independent variables were tested in the pilot project
to guarantee their validity;

– Number of SPL products: we are aware that SPL requires an initial investment
to provide return on investment, e.g. the development of at least three products.
However, as for this research context on m-learning applications there is no
previous directly related work, we assume SPL and its inherited variability might
provide insights on how it contributes to reuse core assets to produce prospective
similar products. We discuss this in Section 4.

4. Threats to Conclusion Validity:

– Number of Participants: since the number of participants was reduced, mainly
by the availability of practitioners in the industry, the sample size must be
increased in prospective replications of the experiment. Furthermore, according
to [Falessi et al., 2018, Höst et al., 2000], the growth of experimental executions
in an industrial environment, even with small samples, is important for the
maturity of emerging development approaches;

– SPL Adoption Advantages: it is known that not possible to cover the demon-
stration of all the benefits of the adoption of SPL based on just the creation of
specific products of an SPL, since the core assets are fundamental. However,
the analysis of development time of specific products and the quantity of faults
are two metrics preconized by the software industry to guarantee a reduced time-
to-market and costs of refactoring and maintenance. Finally, new experimental
studies can be conducted, based on the experimental package of this study,
allowing the investigation to consider more advantages or even disadvantages
in the adoption of SPL.

4 Lessons Learned and Prospective Improvements

As the main lessons learned during the execution of the activities discussed herein, we
highlight:

Domain Characteristics: domain analysis can be considered one of the most impor-
tant activities for the creation of an SPL. The use of the requirements catalog
[Duarte Filho and Barbosa, 2013] significantly contributed in terms of domain
knowledge, supporting the adoption of the proactive model for the development of
M-SPLearning.

Variability Management: the adoption of the SMarty approach supported the repre-
sentation of variability points during the design of M-SPLearning, ensuring the
synergy of the components modeled with the SPL concept. In addition, it contributed
to a better assimilation of the SPL concept among the participants of the experiment,
due to its compliance with the UML. Finally, we have already mentioned that SMarty
has many publications validating its diagrams and, more recently, a model-based
testing approach [Petry et al., 2021] has been proposed, which could be explored in
future work.



1080 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

SPL Architecture: SPL requires mechanisms to allow a transparent and easy manner
to reflect all updates in the core assets in the architecture, and vice versa. That is,
changes to the core assets require more efforts to maintain architectural integrity.
Additional tools and analysis must be done to guarantee that all changes, or in the
architecture or in the components, are reflecting all features and behaviors that the
line has until that moment.

SPL Development: considering M-SPLearning, the implementation of something ge-
neric and customizable is significantly different from a SSD approach. Therefore,
developing features in an SPL requires a greater effort, which is justified by the
subsequent gains of reuse [Clements and Northrop, 2002].

On the other hand, the SSD methodology hinders the maintenance of the products,
without any rigorous development process defined. Since all developers tend to
program their own way, supporting each product they develop can, in most cases,
take more time and costs. If an SPL practice is adopted, being rigorously followed,
time and cost to give support tend to decrease.

Experimental Evaluation: researches show that test executions in SPL are scarce and
need to be evaluated and validated [Engström and Runeson, 2011]. So, we decided to
apply test cases in the generated products, enabling an interesting market comparison
between development methodologies.

The experimental evaluation provided relevant results for the adoption of M-SPLear
ning. The choice for active participants from the industry contributed to the reduction
of the training session. However, experience and understanding of the concepts is
always a difficult issue to be measured.

In addition, the use of testing techniques in the traditional development process and
new ways to quickly test products from an SPL require more attention and research.
One benefit in the adoption of SPL is about the quality improvement, since the
products and their components are tested in several instances, leading to a quickly
fix for the final client. Despite the use of components in a large number of products
and, consequently, for a greater number of target users for SPL, the way components
and products were tested could be improved to be made more adequately with the
variabilities of SPL. Literature reflects more concern to test the SPL architecture in
comparison to test the final components and products [Machado et al., 2014, Petry
et al., 2020].

5 Related Work

Our paper encompasses three main perspectives in industrial environments: (i) m-learning
applications; (ii) SPL, with its benefits through variability management; and (iii) ex-
perimental software engineering. Adopting SPL as methodology to develop m-learning
applications allowed us to get positive evidence in a real industry environment about
two measurable SPL benefits – quality of products and time-to-market – when experi-
mentally compared with a singular software development process without a variability
management approach to support the developers. Thus, our results come to complement
the experiences related in other researches for these three perspectives.

[Bezerra et al., 2009] conducted a systematic literature review of SPL applied to
mobile middlewares, but only six studies were significant for the review. According



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1081

to the authors, the few results obtained highlight the need of more research in the
area. Besides that, [Chen and Babar, 2011], in other systematic review, concluded the
status of evaluation of variability management approaches in SPL engineering was quite
unsatisfactory. Thus, we identified some relevant related work, described in order of
importance in the Table 4.

Author(s) Domain Findings

[Gamez et al.,

2015]

SPL for

mobile

systems

Propose a self-adaptation of mobile systems with

dynamic SPL. The management of variabilities is

achieved using the Common Variability Language.

[Marinho

et al., 2010]

SPL for

mobile and

context-aware

applications

Describe an architecture for nested SPL in the domain

of mobile and context-aware applications. However,

the authors did not specify how to improve the

management of variabilities.

[Jaring and

Bosch, 2002]

SPL variability

management

Conducts a case study focused on professional mobile

communication infrastructures. They discuss the need

for handling variability in a more explicit manner,

analysing the SPL and a method to represent and

normalize variabilities. Some issues were highlighted,

such as the need of a notation format to describe the

variabilities.

[Hubaux et al.,

2011]

SPL variability

management

Combine variability representation and industrial case

studies evaluations. They developed a Textual

Variability Language (TVL) combining graphical and

textual notations and performed an evaluation through

a quantitative and qualitative analysis, considering four

cases from different companies, sizes and domains.

[Eriksson

et al., 2009]

SPL variability

management

Describes an approach to manage natural-language

requirements specifications in an SPL context.

[Ardis et al.,

2000]

SPL variability

management

and tests

Use the Family-Oriented Abstraction, Specification

and Translation (FAST) approach as a development

process for an SPL in a case study, covering all aspects

of domain analysis with tests. According to the authors,

test process in an SPL presents significant challenges.

[Gacek et al.,

2001]
SPL tests

Presents a case study regarding the adoption of SPL in

a small company. An holistic view of the challenges

and changes in business was discussed, especially the

automatization of tests in their developed components.

Table 4: Summary of Related Work

It is important to highlight that neither [Gamez et al., 2015] nor [Marinho et al., 2010]
allowed us to conduct a direct comparison with respect to our work, because these works
explore amore generic SPL domain. On the other hand, the works of [Hubaux et al., 2011],
[Eriksson et al., 2009] and [Ardis et al., 2000] proposed the specification of variabilities



1082 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

through language and graphical representations in industry case studies. In our research,
the representation of variability was made by using the SMarty approach, which has
already been evaluated in other experimental studies [Marcolino et al., 2013, Marcolino
et al., 2014b, Marcolino et al., 2014a, Bera et al., 2015, Marcolino et al., 2017].

Only two studies addressed some quality issues and tests, as our work. [Ardis et al.,
2000] defined a testing approach based on modeling test cases with an integer tuple.
However, the proposed method was applied only in the context of SPL, not considering
the SSD methodology. [Gacek et al., 2001] adopted two-fold strategies in a case study
to test the SPL products. Firstly, single components were tested by the developers
themselves; secondly, the system was tested at runtime in the target environment, using
special test code inserted in each component. Similar to the [Ardis et al., 2000] study,
only the SPL methodology was considered, unlike our experiment, where quality analysts
defined and executed test cases on products generated by two different development
methodologies.

Finally, although all related works have been applied in the industry, none of them
compare development methodologies, highlighting variables such as quality and time-to-
market. Additionally, there are still several opportunities and open questions regarding
systematic reuse and experimental evaluation, particularly in the m-learning domain.
This lack of research in the area motivated our work.

6 Conclusions and Future Work

This work presented M-SPLearning – an SPL that intends to support the systematic
generation of m-learning applications on the Android platform. According to [Linden
et al., 2007], abstractions such as SPL allow the development process to be documented
and reused systematically, contributing to the better comprehension of the target domain.

Considering the systematic studies carried out previously, there is a gap in the use
of systematic reuse approaches (e.g., SPL) in the domain of m-learning applications
[FalvoJr, 2015, Marcolino and Barbosa, 2015]. Highlighting the importance of research
on approaches to reducing the software development workforce in this context; decreasing
the time-to-market; increasing the quality of developed systems; among other benefits.

The main contribution of this work is related to the proposition of M-SPLearning
and its experimental evaluation, which evidenced an improvement in the process of
developing educational mobile applications through the use of SPL. Actually, the fault
tolerance and time-to-market of such applications is essential to the end users. Therefore,
there is a need to experimentally evaluate the products generated by the proposed SPL.

We experimentally evaluated the use of M-SPLearning with respect to the singular
software development. The obtained results were significant for the reuse approach,
showing a reduction on time-to-market and a better quality in terms of number of faults
when considering the software products developed with the support of variabilities.

The SMarty approach was crucial to the design and development of M-SPLearning.
The ease of importing the SMarty Profile into UML tools and the support provided by
the SMarty Process in the representation of variability provided cost savings and better
quality to the generated software products. In addition, with the experimental evaluations
carried out, improvements could be applied to its elements, making SMarty a more
complete and concise approach to use.

As important future work, we intend to evolve M-SPLearning based on the inputs
provided by our experimental evaluation and considering GLO and LO support [Costea
et al., 2021, Costea et al., 2018, Burbaite et al., 2014, Stuikys et al., 2013]. In this sense,



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1083

new experimental evaluations can be planned from two perspectives: (i) replication of
the experimental evaluation presented here, in order to increase the statistical power of
the initial sample; and (ii) design and execution of experiments, aiming to evaluate the
SPL itself and not just its respective products, as explored in this work. For this, there
are currently well-defined guidelines to promote SPL experiments [Furtado et al., 2021],
which can structure even more effective evaluations.

The conceptual model developed has also been evaluated and evolved, considering
the specific domain of programming teaching. More studies on the adoption of M-SPLear
ning in different contexts should result in improvements in our proposal, making it more
suitable for the use in both academia and industry.

Moreover, for a complete evaluation of M-SPLearning, all features elicited by the
catalog requirements must be properly implemented. Therefore, an experimental study
involving the SPL itself should be conducted as well.

Finally, we also intend to investigate the use of other adoptionmodels [Krueger, 2002].
For instance, the extractive model can be applied in similar products to those generated
by M-SPLearning, aiming at increasing the validity of similarities and variabilities
specified. The reactive model can be investigated as an alternative to the evolution of
the proposed SPL as well.

Acknowledgements

The authors would like to thank CAPES/Brazil (PROCAD Grant number 071/2013) and
FAPESP/Brazil (Grant number 2012/04053-9) for supporting this work.

References

[Anido-Rifon et al., 2001] Anido-Rifon, L., Fernández-Iglesias, M., Llamas-Nistal, M., Caeiro-
Rodriguez, M., Santos-Gago, J., and Rodríguez-Estévez, J. (2001). A component model for
standardized web-based education. Journal on Educational Resources in Computing (JERIC),
1(2es).

[Ardis et al., 2000] Ardis, M., Daley, N., Hoffman, D., Siy, H., and Weiss, D. (2000). Software
product lines: a case study. Software: Practice and Experience, 30(7):825–847.

[Bera et al., 2015] Bera, M. H. G., OliveiraJr, E., and Colanzi, T. E. (2015). Evidence-based
smarty support for variability identification and representation in component models. In Proceed-
ings of the 17th International Conference on Enterprise Information Systems - Volume 2, ICEIS
2015, pages 295–302. SCITEPRESS - Science and Technology Publications, Lda.

[Bezerra et al., 2009] Bezerra, Y. M., Pereira, T. A. B., and da Silveira, G. E. (2009). A system-
atic review of software product lines applied to mobile middleware. In 2009 Sixth International
Conference on Information Technology: New Generations, pages 1024–1029.

[Brooks et al., 1996] Brooks, A., Daly, J., Miller, J., Roper,M., andWood,M. (1996). Replication
of experimental results in software engineering. International Software Engineering Research
Network (ISERN) Technical Report ISERN-96-10, University of Strathclyde, 2.

[Burbaite et al., 2014] Burbaite, R., Bespalova, K., Damasevicius, R., and Stuikys, V. (2014).
Context aware generative learning objects for teaching computer science. International Journal of
Engineering Education, 30(4):929–936.

[Capil la et al., 2013] Capil la, R., Bosch, J., and Kang, K.-C. (2013). Systems and Software
Variability Management: Concepts, Tools and Experiences. Springer.

[Chau and Reith, 2021] Chau, M. and Reith, R. (2021). Smartphone market share.



1084 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

[Chen and Babar, 2011] Chen, L. and Babar, M. A. (2011). A systematic review of evaluation
of variability management approaches in software product lines. Information and Software
Technology, 53(4):344 – 362. Special section: Software Engineering track of the 24th Annual
Symposium on Applied Computing.

[Clements and Northrop, 2002] Clements, P. and Northrop, L. (2002). Software product lines:
practices and patterns. Addison-Wesley.

[Costea et al., 2021] Costea, F.-M., Chirila, C.-B., and Creţu, V.-I. (2021). Middle school arith-
metic auto-generative learning objects to support learning in the covid-19 pandemic. In 2021 IEEE
15th International Symposium on Applied Computational Intelligence and Informatics (SACI),
pages 000039–000044. IEEE.

[Costea et al., 2018] Costea, F.-M., Chirila, C.-B., and Creţu, V.-L. (2018). Towards auto-
generative learning objects for industrial it services. In 2018 IEEE 12th International Symposium
on Applied Computational Intelligence and Informatics (SACI), pages 000155–000160. IEEE.

[Craig and Jaskiel, 2002] Craig, R. D. and Jaskiel, S. P. (2002). Systematic software testing.
Artech House.

[Dóra et al., 2013] Dóra, P. M., Oliveira, A. C., and Moura, J. A. B. (2013). Simultaneously
improving quality and time-to-market in agile development. In International Conference on
Software Technologies, pages 84–98. Springer.

[Duarte Filho and Barbosa, 2013] Duarte Filho, N. F. and Barbosa, E. F. (2013). A requirements
catalog for mobile learning environments. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing (SAC), pages 1266–1271, New York, NY, USA.

[Engström and Runeson, 2011] Engström, E. and Runeson, P. (2011). Software product line
testing – a systematic mapping study. Information and Software Technology, 53(1):2–13.

[Eriksson et al., 2009] Eriksson, M., Börstler, J., and Borg, K. (2009). Managing requirements
specifications for product lines – an approach and industry case study. Journal of Systems and
Software, 82(3):435 – 447.

[Falessi et al., 2018] Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka,
A., and Oivo, M. (2018). Empirical software engineering experts on the use of students and
professionals in experiments. Empirical Software Engineering, 23(1):452–489.

[FalvoJr, 2015] FalvoJr, V. (2015). Study and Definition of a Software Product Line for the
Development of Mobile Learning Applications. Master’s thesis, University of Sao Paulo (USP).
In Portuguese.

[FalvoJr et al., 2014a] FalvoJr, V., Duarte Filho, N. F., OliveiraJr, E., and Barbosa, E. F. (2014a).
A contribution to the adoption of software product lines in the development of mobile learning
applications. In Proceedings of the Frontiers in Education Conference (FIE).

[FalvoJr et al., 2014b] FalvoJr, V., Duarte Filho, N. F., OliveiraJr, E., and Barbosa, E. F. (2014b).
Towards the establishment of a software product line for mobile learning applications. In Proceed-
ings of the 26th International Conference on Software Engineering and Knowledge Engineering
(SEKE), pages 678 – 683.

[Furtado et al., 2021] Furtado, V., OliveiraJr, E., and Kalinowski, M. (2021). Guidelines for pro-
moting software product line experiments. In 15th Brazilian Symposium on Software Components,
Architectures, and Reuse, SBCARS ’21, page 31–40. Association for Computing Machinery.

[Gacek et al., 2001] Gacek, C., Knauber, P., Schmid, K., and Clements, P. (2001). Successful
software product line development in a small organization. IESE-Report No. 013.01/E.

[Galster et al., 2014] Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avgeriou, P. (2014).
Variability in software systems: A systematic literature review. IEEE Transactions on Software
Engineering, 40(3):282–306.



FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and… 1085

[Gamez et al., 2015] Gamez, N., Fuentes, L., and Troya, J. M. (2015). Creating self-adapting
mobile systems with dynamic software product lines. IEEE Software, 32(2):105–112.

[Höst et al., 2000] Höst, M., Regnell, B., and Wohlin, C. (2000). Using students as subjects—
a comparative study of students and professionals in lead-time impact assessment. Empirical
Software Engineering, 5(3):201–214.

[Hubaux et al., 2011] Hubaux, A., Boucher, Q., Hartmann, H., Michel, R., and Heymans, P.
(2011). Evaluating a textual feature modelling language: Four industrial case studies. In Malloy,
B., Staab, S., and van den Brand, M., editors, Software Language Engineering, pages 337–356,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[ISO/IEC, 2010] ISO/IEC (2010). ISO/IEC 25010 System and software quality models. Techni-
cal report, International Organization for Standardization (ISO).

[Jabangwe et al., 2018] Jabangwe, R., Edison, H., and Duc, A. N. (2018). Software engineering
process models for mobile app development: A systematic literature review. Journal of Systems
and Software, 145:98 – 111.

[Jaring and Bosch, 2002] Jaring, M. and Bosch, J. (2002). Representing variability in software
product lines: A case study. In International Conference on Software Product Lines, pages 15–36.
Springer.

[Jedlitschka and Pfahl, 2005] Jedlitschka, A. and Pfahl, D. (2005). Reporting guidelines for
controlled experiments in software engineering. In International Symposium on Empirical Software
Engineering.

[Kang et al., 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.
(1990). Feature-oriented domain analysis (foda) feasibility study. Technical report, Software
Engineering Institute, Carnegie Mellon University.

[Kraut, 2013] Kraut, R. (2013). Policy guidelines for mobile learning.

[Krueger, 2002] Krueger, C. W. (2002). Easing the transition to software mass customization. In
Proceedings of the 4th International Workshop on Software Product-Family Engineering, pages
282–293, London, UK.

[Kukulska-Hulme and Traxler, 2005] Kukulska-Hulme, A. and Traxler, J. (2005). Mobile learn-
ing: a handbook for educators and trainers.

[Linden et al., 2007] Linden, F. J. v. d., Schmid, K., and Rommes, E. (2007). Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer.

[Machado et al., 2014] Machado, I., McGregor, J., Cavalcanti, Y., and de Almeida, E. (2014).
On strategies for testing software product lines: A systematic literature review. Information and
Software Technology, 56(10):1183–1199.

[Marcolino et al., 2014a] Marcolino, A., OliveiraJr, E., and Gimenes, I. (2014a). Towards the
effectiveness of the smarty approach for variability management at sequence diagram level. In
Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 2,
ICEIS 2014, pages 249–256. SCITEPRESS - Science and Technology Publications, Lda.

[Marcolino et al., 2014b] Marcolino, A., OliveiraJr, E., Gimenes, I., and Barbosa, E. (2014b).
Empirically based evolution of a variability management approach at uml class level. 38th Annual
International Computers, Software & Applications Conference, 1:354–363.

[Marcolino et al., 2017] Marcolino, A., OliveiraJr, E., Gimenes, I., and Barbosa, E. (2017). Vari-
ability resolution and product configuration with smarty: An experimental study on uml class
diagrams. Journal of Computer Science, 13:307–319.

[Marcolino et al., 2013] Marcolino, A., OliveiraJr, E., Gimenes, I., and Maldonado, J. C. (2013).
Towards the Effectiveness of a Variability Management Approach at Use Case Level. In Proceed-
ings of the 25th International Conference on Software Engineering and Knowledge Engineering
(SEKE), pages 214–219, Boston, MA, US.



1086 FalvoJr V., Marcolino A., Duarte Filho N., OliveiraJr E., Barbosa E.: Development and…

[Marcolino and Barbosa, 2015] Marcolino, A. S. and Barbosa, E. F. (2015). Software Product
Lines in the Educational Domain: A Systematic Mapping. Simpósio Brasileiro de Informática na
Educação, 1:239–249. In Portuguese.

[Marcolino and Barbosa, 2016] Marcolino, A. S. and Barbosa, E. F. (2016). Towards an M-
learning Requirements Catalog for the Development of Educational Applications for the Teaching
of Programming. In: 2016 IEEE Frontiers in Education Conference (FIE), 2016, Erie (PA)., pages
1–5.

[Marinho et al., 2010] Marinho, F., Costa, A., Lima, F., Neto, J., Filho, J., Rocha, L., Dantas, V.,
Andrade, R., Teixeira, E., and Werner, C. (2010). An architecture proposal for nested software
product lines in the domain of mobile and context-aware applications. In Proceedings of the 4th
Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS), pages 51–60,
Salvador, BA, BR.

[Matzavela and Alepis, 2021] Matzavela, V. and Alepis, E. (2021). M-learning in the covid-19
era: physical vs digital class. Education and Information Technologies.

[Moreira and Rocha, 2018] Moreira, F. and Rocha, Á. (2018). A special issue on disruption of
higher education in the 21st century due to icts.

[Neto and Conte, 2013] Neto, A. A. and Conte, T. (2013). A conceptual model to address threats
to validity in controlled experiments. In Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering, EASE ’13, pages 82–85, New York, NY,
USA. ACM.

[OliveiraJr et al., 2010] OliveiraJr, E., Gimenes, I. M. S., and Maldonado, J. C. (2010). Sys-
tematic management of variability in uml-based software product lines. Journal of Universal
Computer Science, 16(17):2374–2393.

[Petry et al., 2021] Petry, K., OliveiraJr, E., Costa, L., Zanin, A., and Zorzo, A. (2021). Smar-
tytesting: A model-based testing approach for deriving software product line test sequences. In
Proceedings of the 23rd International Conference on Enterprise Information Systems, pages
165–172. INSTICC, SciTePress.

[Petry et al., 2020] Petry, K. L., OliveiraJr, E., and Zorzo, A. F. (2020). Model-based testing of
software product lines: Mapping study and research roadmap. Journal of Systems and Software,
167:110608.

[Shapiro and Wilk, 1965] Shapiro, S. S. and Wilk, M. B. (1965). An Analysis of Variance Test
for Normality (Complete Samples). Biometrika, 52:591–611.

[Sharples, 2013] Sharples, M. (2013). Mobile learning: research, practice and challenges. Dis-
tance Education in China, 3(5):5–11.

[Sharples et al., 2009] Sharples, M., Arnedillo-Sánchez, I., Milrad, M., and Vavoula, G. (2009).
Mobile learning. In Technology-enhanced learning, pages 233–249. Springer.

[StatCounter, 2021] StatCounter (2021). Mobile os market share worldwide.

[Stuikys et al., 2013] Stuikys, V., Burbaite, R., and Damasevicius, R. (2013). Teaching of com-
puter science topics using meta-programming-based glos and lego robots. Informatics in Education,
12(1):125–142.

[Wohlin et al., 2012] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén,
A. (2012). Experimentation in Software Engineering. Springer Science & Business Media.


	Introduction
	M-SPLearning: an Overview
	Domain Engineering
	Architecture
	Design
	Product Generation

	M-SPLearning Experimental Evaluation
	Aim and Research Question
	Experimental Planning
	Execution
	Data Analysis and Interpretation
	Descriptive Statistics
	Inferential Statistics

	Threats to Validity

	Lessons Learned and Prospective Improvements
	Related Work
	Conclusions and Future Work

